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Abstract: Alternative strategies against multidrug-resistant (MDR) bacterial infections are suggested
to clinicians, such as drug repurposing, which uses rapidly available and marketed drugs. We gath-
ered a collection of MDR bacteria from our hospital and performed a phenotypic high-throughput
screening with a 1280 FDA-approved drug library. We used two Gram positive (Enterococcus fae-
cium P5014 and Staphylococcus aureus P1943) and six Gram negative (Acinetobacter baumannii P1887,
Klebsiella pneumoniae P9495, Pseudomonas aeruginosa P6540, Burkholderia multivorans P6539, Pandoraea
nosoerga P8103, and Escherichia coli DSM105182 as the reference and control strain). The selected
MDR strain panel carried resistance genes or displayed phenotypic resistance to last-line therapies
such as carbapenems, vancomycin, or colistin. A total of 107 compounds from nine therapeutic
classes inhibited >90% of the growth of the selected Gram negative and Gram positive bacteria at
a drug concentration set at 10 µmol/L, and 7.5% were anticancer drugs. The common hit was the
antiseptic chlorhexidine. The activity of niclosamide, carmofur, and auranofin was found against
the selected methicillin-resistant S. aureus. Zidovudine was effective against colistin-resistant E. coli
and carbapenem-resistant K. pneumoniae. Trifluridine, an antiviral, was effective against E. faecium.
Deferoxamine mesylate inhibited the growth of XDR P. nosoerga. Drug repurposing by an in vitro
screening of a drug library is a promising approach to identify effective drugs for specific bacteria.

Keywords: multidrug-resistant bacteria; extensively-drug resistant bacteria; alternative strategy;
drug repurposing; old drugs; antibiotic combination

1. Introduction

The emergence and spread of multidrug-resistant (MDR) pathogens represent a global
healthcare question nowadays. Treating infections caused by MDR bacteria can be chal-
lenging for clinicians [1,2].

Multi-drug resistance is conventionally defined as resistance to one or more than one
agents of three or more antibiotic classes [3]. Pathogens can also be qualified as extensively
drug-resistant (XDR) if they remain susceptible to only one or two antimicrobial categories,
or pandrug-resistant (PDR) if they are resistant to all of antimicrobial categories routinely
tested in the laboratory [3]. The definition of “difficult-to-treat” resistant (DTR) bacteria
seems to be more suitable for clinical practice, qualifying Gram negative bacteria when
they are resistant to all first-line antibiotics, such as β-lactams or fluoroquinolones [4].
In any case, treatment of MDR bacterial infections can be limited due to resistance to
first-line antibiotics and, now, to last-line therapies [5]. Resistant Gram positive cocci
has shown resistance to glycopeptides [6]. Carbapenems or polymyxins may become
ineffective against Gram negative strains due to the emergence of carbapenemase enzymes
or structural changes [6]. Therapeutic impasses due to resistant bacteria are still rare, for
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now, but in some situations, clinicians must now tackle resistance to treat fragile patients [5].
Strategies to prevent therapeutic impasses are essential, especially for non-fermenting Gram
negative bacteria. Indeed, they display a broad intrinsic resistance and are often infectious
agents in immunocompromised patients [7]. As a result, many alternative strategies are
now considered to optimize the treatment of infectious diseases by MDR bacteria, such as
phage therapy, antibodies, probiotics, antivirulence factors, and drug repurposing [8,9].

The objective of drug repurposing is to identify a novel clinical use for an existing drugs
approved in clinical medicine for a different indication. This method should be considered
for treating new pathogens or agents for which no effective treatment is available [10].
Indeed, current pharmaceutical companies have no economic interest in developing new
molecules to treat MDR bacteria that remain isolated cases [10]. As the situation is a public
health issue [11], finding effective drugs already in our armamentarium can be an excellent
alternative. Moreover, this offers advantages in terms of economic drug development or as
an accelerator of the process by skipping preclinical trials [12]. To treat MDR infections,
repurposing a drug seems to be an easy and rapid strategy. One of the methods to do
this is a phenotypic-based assay, which consists of testing the efficacy of a large panel
of drugs on the survival of a bacterium in vitro, as a high-throughput screening [10].
Using this strategy, some efficient drugs have been found so far, such as ribavirin against
Candida strains [13], the antiretroviral zidovudine against Enterobacteriaceae [14] and the
antihelminthic niclosamide against Staphylococcus aureus [15]. This strategy allows us to
test a drug library at a single concentration that is sometimes higher than the concentration
tested in routine testing [16].

Currently, scientific research is mainly directed towards finding new drugs against
bacteria that belong to the ESKAPE group (including Enterococcus faecium, S. aureus, Kleb-
siella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.).
However, some “intrinsically” multi-drug resistant bacteria remain major challenges to
be treated successfully. This is especially the case in cystic fibrosis (CF) patients, particu-
larly after pulmonary transplant when post-transplantation immunosuppressive therapy
increases the risk for opportunistic infections [17]. The impact of PDR bacterial pathogens
contributes to greater mortality in the immunocompromised CF population because of
treatment difficulties [18,19].

The objective of our study was to decipher which drugs are still effective against
bacteria that have a high level of drug resistance and pose potential treatment problems.
We focused on various MDR or XDR bacteria, especially those found in CF patients. We
investigated the action on the bacterial growth of drugs with an untested antimicrobial
potential in vitro, which could be a first step towards a new drug repurposing strategy. We
gathered a collection of various drug-resistant bacteria from our hospital and performed a
phenotypic high-throughput screening with a 1280 FDA-approved drug library.

2. Results
2.1. Antibiotic Resistance Profile and Genomic Support of Selected Strains Panel

The two MDR Gram positive strains were a clinical strain of methicillin- and glycopeptides-
resistant S. aureus P1943 carrying the mecA gene [20], and a clinical strain of vancomycin-
resistance E. faecium P5015 carrying a vanA gene (Table 1). Among the six Gram negative
bacteria tested, three isolates (the Escherichia coli DSM 105182 strain [21], K. pneumoniae
P9495, and A. baumannii P1887 [22]) were classified as MDR and three isolates were classified
as XDR (P. aeruginosa P6540, Burkholderia multivorans P6539, and Pandoraea nosoerga P8103),
as shown in Table 1. Four isolates were carbapenem-resistant (P9495, P1887, P6539, and
P8103), including three producing NDM-1 for A. baumannii, OXA-48 for K. pneumoniae, and
OXA-158 for P. nosoerga. Five of them were resistant to colistin, a last-line therapeutic drug
(all except A. baumannii). The E. coli DSM 105182 strain carried a plasmid-mediated colistin
resistance gene, mcr-1 (Table 1).
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Table 1. Antimicrobial susceptibility profiles and characterization from the selected panel according
to the study of Magiorakos et al. [3]. MDR: multidrug-resistant; XDR: extensively drug-resistant.

Strain and No. Characterization [3] Non-Susceptibility to at Least One Agent
in All Those Classes

Known Resistance
Genes

S. aureus P1943 [20] MDR Fluoroquinolones, anti-staphylococcal
β-lactams, glycopeptides, and macrolides

mecA, gyrA, aaD, bleO,
and ermC

E. faecium P5015 MDR Aminoglycosides, glycopeptides, and
tetracyclines vanA

E. coli DSM 105182 [21] MDR Polymyxins, tetracyclins, and
fluoroquinolones mcr-1

K. pneumoniae P9495 MDR

Aminoglycosides, penicillins + β-lactamase
inhibitors, carbapenems, extended-spectrum

cephalosporins, fluoroquinolones, folate
pathway inhibitors, monobactacms, and

polymyxins

blaOXA-48

A. baumannii P1887 [22] MDR

Aminoglycosides, carbapenems,
fluoroquinolones, penicillins + β-lactamase

inhibitors, extended-spectrum
cephalosporins, and folate pathway

inhibitors

blaOXA-51, blaOXA-23,
and blaNDM-1

P. aeruginosa P6540 XDR

Aminoglycosides, antipseudomonal
cephalosporins, antipseudomonal

fluoroquinolones, penicillins + β-lactamase
inhibitors, monobactacms, and polymyxins

B. multivorans P6539 XDR

Aminoglycosides, carbapenems,
cephalosporins, fluoroquinolones,

penicillins + β-lactamase inhibitors,
monobactacms, folate pathways inhibitors,

glycylcyclines, and polymyxins

P. nosoerga P8103 XDR

Aminoglycosides, carbapenems,
cephalosporins, fluoroquinolones,

penicillins + β-lactamase inhibitors,
rifamycins, folate pathways inhibitors,

tetracyclins, phosphonic acids, and
polymyxins

blaOXA-158

2.2. General High-Throughput Screening Results

Various hits with a growth inhibition rate of 90% or more were found, as shown in
Figure 1, and the non-anti-infective compounds are listed for each bacterium in Table 2.

Table 2. Hits that are not in the “infectiology” therapeutic class but in all other classes.

Name of Strain Hits Except “Infectiology” Class

S. aureus
P1943

Dronedarone hydrochloride (cardiovascular); thonzonium bromide (dermatology); auranofin
(metabolism); pinaverium bromide (neuromuscular); and

5-fluorouracil, carmofur, and gemcitabine (oncology)

E. faecium
P5015

Amiodarone and dronedarone hydrochloride (cardiovascular); clomiphene citrate (Z and E)
(endocrinology); auranofin (metabolism); tamoxifen citrate, gemcitabine, carmofur, floxuridine,

pemetrexed disodium, raltitrexed, 5-fluorouracil, and methotrexate (oncology)

E. coli
DSM 105182 Azaperone and lomerizine hydrochloride (central nervous system)

P. nosoerga
P8103 Deferoxamine mesylate (hematology)
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Figure 1. Hits found after an in vitro screening of the 1280 drugs library for each bacterium according
to their therapeutic class. On the left, we discarded the duplicates and found 107 hits for all the
Gram positive and negative bacteria. Some drugs are classified in various therapeutic classes and can
be either antibacterial, antifungal, or antiviral, so we first considered the antibacterial effect in our
counting or the major known effect. This chart highlights that most molecules that are active in vitro
against bacterial growth are anti-infectives. Only a few options among the 1280 molecules tested
can inhibit the bacterial growth of P. nosoerga or P. aeruginosa. All the compounds per bacterium are
detailed in Supplementary Table S1. MDR: multidrug-resistant; XDR: extensively drug-resistant.

Overall, 62 drugs inhibited at least 90% of the S. aureus growth, 37 for E. faecium, 27 for
E. coli, 16 for K. pneumoniae, and 16 for A. baumannii (Figure 1). Among the XDR bacteria,
6 hits were found for P. aeruginosa, 9 for P. nosoerga, and 15 for B. multivorans.

Overall, among these nine therapeutic classes involved, we found 107 different hits
for all the selected Gram positive and Gram negative pathogens in total, including 20 (19%)
beyond antimicrobial agents (Figure 1). Among them, eight (7.5%) oncology drugs were
found active on Gram positive bacteria, namely: tamoxifen citrate, gemcitabine, carmofur,
floxuridine, pemetrexed disodium, raltitrexed, 5-fluorouracil, and methotrexate (Table 2).
For the two MDR Gram positive bacteria tested, 23 common hits were found, includ-
ing an antiarrhythmic (dronedarone hydrochloride), two antiseptics (chlorhexidine and
hexachlorophene), twelve antibacterials, an antiprotozoal (monensin sodium salt), an an-
tihelminthic (closantel), an antirheumatic (auranofin), two antifungals (oxiconazole and
sulconazole nitrate), and three antineoplastics (5-fluorouracil, carmofur, and gemcitabine;
Figure 2). Gram negative bacterial hits all belonged to antimicrobial agents, except two
(azaperone and lomerizine hydrochloride) for E. coli and deferoxamine mesylate for P.
nosoerga (Figure 1 and Table 2). Between Gram negative and Gram positive bacteria, the
antiseptic chlorhexidine was the only common compound among all of the therapeutic
class (Figure 2).

2.3. Main Hits by Species

All hits are reported in Figure 2, but we mentioned below those that required our
attention for each species.

Various antibiotics (furazolidone and monensin) and antiseptics were effective, but
alsoantihelminthics, such as closantel, niclosamide, or pyrvinium pamoate, or antifungals,
such as sulconazole, inhibited this S. aureus. In addition, the antiarrhythmic dronedarone
was also effective against this strain (Table 2). Among the compounds, we noticed that
antifungal azoles were effective against E. faecium (butoconazole, econazole, oxiconazole,
tioconazole, and sulconazole). All these drugs are intended for topical use. Amiodarone,
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methotrexate, and an antiviral drug, trifluridine, were also found to be effective (Table 2).
The same clomiphene citrate and tamoxifen, selective oestrogen receptor modulators,
inhibited the growth of the resistant E. faecium. E. coli bacterial growth was inhibited
by anti-infective drugs such as known antibiotics or antiseptics, but also by an antiviral,
zidovudine. The veterinary neuroleptic azaperone and the migraine treatement lomerizine
hydrochloride (central nervous system (CNS)) were two non-anti-infective drugs effective
against E. coli (Table 2).
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Antibiotics such as tetracyclines or aminoglycosides and the antiviral zidovudine
inhibited the growth of K. pneumoniae.

Drugs not belonging to the anti-infectious class showed very limited efficacy in inhibit-
ing the growth of A. baumannii. As anti-infectious drugs, fluroquinolones, rifamycin, and
antiseptics (merbromin, triclosan, and chlorhexidine) were found to be the most effective
against the selected carbapenem-resistant A. baummanii. Colistin was also effective at
11.5 mg/L (10 µmol/L).

Against these XDR non-fermenting Gram negative bacteria (P. aeruginosa, B. multivo-
rans, and P. nosoerga), fewer drugs showed action on their growth, and they were mostly
antiseptics or antibiotics. However, this screening may point to potential combination or
higher dosage regimens on drugs that are still effective against XDR strains (Table 3). For
instance, higher concentrations of colistin were effective against P. aeruginosa when it was
initially resistant in our routine tests (Table 2). In terms of drug repurposing, by reducing
the detection limit to 55%, we were able to find that an anti-rheumatic agent, auranofin,
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was effective against P. aeruginosa. Deferoxamine mesylate was the only non-anti-infective
hit against P. nosoerga (Table 2).

Table 3. Possible alternative solutions for the selected XDR strains with in vitro activity. If the doses
of these antibiotics are increased, it is to consider improved efficacy. However, this must be monitored
if the dosages would be beyond the recommendations (for renal function, serum concentrations, etc.)
and these molecules are not recommended for use as monotherapy.

Combination Therapy Drug Repurposing Increased Dosages

P. aeruginosa Rifampicin + imipenem
Colistin + imipenem

Auranofin
(+ colistin ± ceftazidime) Colistin

P. nosoerga Rifampicin + minocyclin Deferoxamine + ascorbic acid
(+ gentamicin) Rifampicin

B. multivorans Fluoroquinolones
+ β-lactams - Fluoroquinolones

2.4. Comparison with Data from the Literature

We compared our results with pharmacokinetic data from literature studies for each
bacterium in order to repurpose our hits (Supplementary Table S2).

The concentration tested for the antiarrhythmic dronedarone in the screening was
effective against S. aureus, but was much higher than the plasma concentrations found in
humans (tested at 5.9 mg/L and found from 0.084 to 0.167 mg/L in human plasma) [23].
However, amiodarone was active as an achievable concentration on E. faecium (tested at
6.5 mg/L and found at 1170 mg/L in human plasma). This antibacterial effect on Gram
positive bacteria has not been previously demonstrated to the best of our knowledge. The
narrow therapeutic window of antiarrhythmics and their side-effects leads to a challenging
clinical use and can thus be controversial [24].

Anticancer drugs have also shown some effectiveness against Gram positive bacteria.
In this screening, gemcitabine was effective at 2.6 mg/L for S. aureus and E. faecium. In the
literature, the maximum serum concentration (Cmax) could be 2 mg/L with infusion at
600 mg/m2 [25] or 40.9 mg/L with an administration of 2000 mg/m2 [26].

Previous pharmacokinetics data on deferoxamine mesylate revealed a steady-state concen-
tration of 3.9 mg/L using continuous intravenous deferoxamine infusion at 50 mg/kg/d [27],
which is in the same range as our screening concentration (5.6 mg/L–10 µmol/L).

3. Discussion
3.1. What Are the Potential Therapeutic Options for Treating These MDR Bacteria?

After analyzing the results of this screening of 1280 molecules on a panel of XDR or
MDR strains, we found several possible options that could help to fight these bacteria after
assessing their effective antibacterial potential and performing additional assays.

3.2. To Find a Common Hit

The only common hit we found among 1280 drugs for this panel was chlorhexidine.
By disrupting the cell membrane and interfering with osmosis [28] (Figure 3), this widely
antiseptic and disinfectant is used, for instance, as a topical agent for skin decolonization or
to sterilize surgical tools [29]. After all, this common result is in favor of the chlorhexidine
bathing recommended before performing a transplant to limit Gram negative bacterial
infections [30,31]. Its efficacy among MDR and XDR bacteria is also supported by previous
studies on VRE [32], MRSA [33], carbapenemase-producing K. pneumoniae [34], or MDR
Gram negative [35]. Despite its wide use in prevention, its effectiveness must be monitored
for the development of resistance or adverse effects [36]. Furthermore, not finding a
common hit for these bacteria for systemic use is not worrisome, as this would also affect
the vital microbiota.
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3.3. To Repurpose a Molecule

In this study, some hits were specifically efficient against bacteria and were not initially
marketed for that use: they could be tied to drug repurposing [10]. In this way, the anti-
helminthic niclosamide, with more than 90% inhibition of S. aureus, has already been widely
proposed to treat drug-resistant bacteria [15,37–39] (Figure 3). Its antibacterial potential has
been described for hospital acquired infections as MRSA [15] or intestinal decolonization
of VRE [39], but also in combination with colistin to treat colistin-resistant Gram negative
bacilli infections [37,38]. As carmofur and auranofin are also effective against MRSA, they
have been further investigated for their anti-biofilm activity [40]. The efficacy of clomiphene
on E. faecium confirmed the idea of repurposing some oestrogen receptor antagonists to
treat infectious diseases [41]. In addition, the antimetabolite methotrexate was effective
against the growth of E. faecium and could act by inhibiting dihydrofolate reductase, such
as trimethoprim, which was also effective. An old study conducted in 1974 reported
methotrexate activity with a MIC of 0.15 µg/L against Streptococcus faecium [42], formerly
named E. faecium, confirmed on S. faecalis ten years after [43]. The antibacterial effect of zi-
dovudine on E. coli and K. pneumoniae, previously shown in 1987 [44], confirmed our report
about its potential use to treat infections on colistin-resistant Gram negative bacteria [14].
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However, drug repurposing is not feasible for all cases. Concerning E. coli, the veteri-
nary use of azaperone [45] and the low serum concentration for lomerizine in humans [46]
do not allow these CNS drugs for immediate clinical use, but require further investigations
(Supplementary Table S2). Paromomycin, an aminoglycoside effective against K. pneu-
moniae, is usually used to treat parasite infections such as amebiasis. Nevertheless, like
neomycin, these aminoglycosides display a poor intestinal absorption, which is not suitable
for systemic infections. Paromomycin can still be used for the intestinal decolonisation of
resistant Enterobacteriaceae [47]. Furthermore, colistin and methotrexate are compounds
with known and feared adverse effects in clinical practice.

3.4. Using Drug Associations

A combination of drugs consisting of old drugs, broad spectrum antibiotics, and non-
anti-infective compounds, may provide killing effects [48]. Rifampicin and minocycline,
effective on P. nosoerga, should be verify the effectiveness of the combination with a checker-
board assay, as it already showed goods results [49]. Fluoroquinolones in combination with
β-lactams are also promising, as shown by in vitro testing against Burkholderia cepacian [50]
or evaluation in a large cohort study against Gram negative bacilli bacteraemia [51].

Combination therapy is recommended for MDR bacteria treatment [10]. It allows clini-
cians to use drugs at lower concentrations than in monotherapy through a synergistic effect,
as shown by Lee J. H. et al. with rifampicin and colistin against MDR A. baumannii [52].
In vitro studies reported a good efficiency of imipenem in combination with rifampicin
or colistin against MDR clinical isolates of P. aeruginosa [53,54]. Furthermore, auranofin,
which was effective against the selected XDR P. aeruginosa, has been studied in combina-
tion with polymyxins on Gram negative species that permeabilize the outer membrane of
Gram negative and help auranofin enter the bacteria cell (Figure 3). The combination with
colistin on P. aeruginosa showed a synergistic effect [55] and the addition of ceftazidime
inhibited > 80% growth of 10 MDR pathogens, including P. aeruginosa [56].

Trifluridine, an antiviral molecule, is used in monotherapy as anti-herpesvirus eye
drops. It has a low bioavailability after clinical administration as it is rapidly degraded via
thymidine phosphorylase. Therefore, in combination with a potent thymidine phosphory-
lase inhibitor, tipiracil has been studied for antineoplastic use [57]. This combination could
be tested on resistant Enterococcus sp. against systemic infections.

Deferoxamine mesylate is used to treat iron overdose as hemochromatosis because it
binds iron and aluminium. This drug is effective against P. nosoerga and is not known to date
as being used for antibacterial monotherapy. By complexing with aluminum or gallium,
deferoxamine has a Trojan horse effect, carrying these toxic metal ions into the bacterial
metabolism [58] (Figure 3). Moreover, when used with ascorbic acid, deferoxamine showed
a bacterial growth inhibiting effect [59], and added to gentamicin, this triple combination
displayed a synergistic effect against some E. coli strains [60]. As it is easy to apply, this
association should be assessed by performing MIC assays on these strains.

3.5. Damaging Basic Mechanisms of Bacteria

Although using old drugs or combinations of drugs can be successful, drugs acting
on essential mechanisms such as DNA or the protein cycle of all bacteria are frequently
represented (Figure 3).

In addition, our screening concentration was of four oncology molecules in the human
concentration range (Supplementary Table S2). Some activities have been already reported,
like 5-fluorouracil, tamoxifen, floxuridine, pemetrexed disodium, and gemcitabine in Gram
positive or in resistant Gram negative strains [10,61,62]. A study testing tamoxifen in
combination with polymyxins against XDR Gram negative pathogens used an achievable
concentration for oral administration [62]. However, we are aware that anti-cancer drugs
would not only target bacteria, but would also regulate immunity and host response [63].
As these drugs can disrupt the immune response, it is doubtful whether their use to fight
infectious diseases would be beneficial. In a review by Soo V. et al., similarities between
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cancer cells and bacterial infections encouraged the use of agents with a broad activity,
which act on the cell cycle [64] (Figure 3). Society might be frightened to try such therapies
due to the many side effects of treating infectious diseases. However, given our results,
using anticancer drugs might be the only solution to treat patients infected with a XDR
bacterium for which no treatment is available, despite their toxicity [16].

On the other hand, fluoroquinolones and tetracyclines were effective in most of our
panel. These antibiotics have a broad spectrum, with activity on Gram positive and Gram
negative bacteria. Cyclins inhibit protein synthesis and fluoroquinolones prevent DNA
replication and transcription—these mechanisms are essential for bacteria to live and are
therefore highly conserved in all species (Figure 3). However, bacteria can adapt quickly
to these antibiotics, developing several resistance mechanisms, leading to cross-resistance
and increasing MIC [65]. The selected B. multivorans was previously ciprofloxacin-resistant
with disk diffusion, but became susceptible in the screening test, where the concentration
tested was 3.31 mg/L (10 µmol/L). This difference was due to the concentration used in
the screening method being higher than the usual dose used in sensitivity testing and
medical practice. Using a higher concentration of ciprofloxacin or other fluoroquinolones
could treat B. multivorans infection (Table 3). This is in accordance with previous successful
studies with an increase of dosage regiments against PDR bacteria [66]. After assessment
of the risks and benefits of the treatment, this could lead to a better clinical response and
circumvent resistance [16].

Finally, few other anti-infective agents were effective pointing essential mechanisms.
Antiviral nucleosides analogues like trifluridine (E. faecium) or zidovudine (against En-
terobacteriaceae [14]) targeted the inhibition of DNA synthesis, which could explain their
effect on bacterial inhibition growth (Figure 3). In addition to having some synergy with
antibiotics, nucleoside analogues should be considered as new weapons against bacterial
infection, as suggested by A. E. J. Yssel et al. [61,67].

3.6. Personalizing the Treatment in a Compassionnal Approach

Access to a rapid screening method for many commercially available molecules is
a method that can help clinicians propose a therapeutic option to patients when faced
with a therapeutic impasse. This method, which should be limited to the most severe
cases, allows for the identification of molecules of interest, for which the MIC must be
checked to assess whether it is achievable in vivo. Similarly, the in vivo efficacy of the
identified molecules will depend on the data in the literature. For instance, this could
be a solution for opportunistic bacteria that have many resistance determinants such
as Burkholderiales [68]. The clinical impact of this screening can be significant, as these
molecules have already been approved and marketed and they can be quickly made
available to clinicians. The risk−benefit of patients facing such infections must be assessed
as a compassionnal treatment, as well as the management of certain adverse effects and the
toxicity that can be controlled [16]. This strategy has been applied to the emergence of new
pathogens for which no treatment is yet available because of the SARS-CoV-2 outbreak [69].

In this study, we investigate the in vitro efficacy of 1280 FDA-approved drugs among
eight MDR and XDR clinical bacteria displaying various resistance phenotypes and resis-
tance genes. We screened a library of 1280 drugs against a collection of bacteria. A total
of 107 compounds from nine different therapeutic classes inhibited > 90% growth of the
chosen Gram negative and Gram positive bacteria. In view of the hits found, we noticed
that the difficulty in finding active compounds on Gram negative bacteria is greater than
for Gram positive bacteria. This reflects our clinical practice issues with the MDR Gram
negative bacteria, and especially the non-fermenting Gram negative.

Some of these results represent a first step towards the use of a drug repurposing
strategy for the treatment of MDR bacterial infections. Nevertheless, these molecules must
be further studied on a case-by-case basis to verify their antibacterial efficacy, understand
their mechanisms of action, and confirm their suitability for a relevant administration.
Assessing a potential antibacterial must use reference bacterial isolates for obtaining the
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MIC range, MIC50, and MIC90. This protocol is, after all, becoming established in our
laboratory as clinical screening for special patients with XDR bacterial infection. Finally,
it might be judicious to create a network of different fields of expertise to promote the
investigation of these new options, so that each option can be explored in detail, with all
the necessary analyses to achieve the final goal—finding new therapeutic solutions to deal
with antibiotic resistance.

4. Materials and Methods
4.1. Collection and Susceptibility of Bacterial Strains

With the exception of the mcr-1 reference strain E. coli (DSM 105182), all strains (E.
faecium P5014, S. aureus P1943, A. baumannii P1887, K. pneumoniae P9495, P. aeruginosa P6540,
B. multivorans P6539, and P. nosoerga P8103) were collected for their antibiotic resistance
profile from clinical samples. To determine antibiotic susceptibility, the standard disk
diffusion method and breakpoint assessment were performed according to the European
Committee of Antimicrobial Susceptibility Testing (EUCAST) recommendations. When
breakpoints were not available in EUCAST, we used recommendations from the French
Society of Microbiology (CA-SFM). We used the previously published definitions from the
study of A. Magiorakos [3] to categorize the MDR (acquired non-susceptibility to at least
one agent in three or more antimicrobial categories) and XDR (non-susceptibility to at least
one agent in all but two or fewer antimicrobial categories) phenotypes.

4.2. Preparation of Isolates

The isolates were inoculated on a TSA medium (Trypticase soy agar, BioMérieux,
Marcy-l’Étoile, France) at 37 ◦C for 18–24 h. The strains were suspended at 108 CFU/mL
in 0.9% NaCl and diluted 1/100 (106 CFU/mL) in cation adjusted Mueller–Hinton broth
media (CAMHB, Merck KGaA, Darmstadt, Germany).

4.3. High-Throughput Screening Assay

The screening test was performed on 96-well microplates with 1280 FDA-approved
drugs from a chemical library (Prestwick-Chemical, Illkirch Graffenstaden, France), in
which 16% of the drugs were initially used for the nervous system, 14% for the cardiovascu-
lar system, and 14% of the anti-infectives for systemic use. Regardless of the protocol, the
final drug concentration in each well was always 10 µmol/L. Dilution of the initial plates
was performed to achieve a DMSO (dimethyl sulfoxide) concentration of less than 0.1% in
all of the final plates (initial concentration of 10%).

The plates were prepared in duplicates with 80 µL of CAMHB, 10 µL of drugs at
100 µmol/L, and 10 µL of each bacterium at 106 CFU/mL, and with negative and positive
controls, incubated at 37 ◦C for 18–24 h shaking at 300 rpm.

Bacterial growth was measured by spectrophotometry (Multiskan Spectrum, Thermo
Fisher Scientific, Waltham, MA, USA). Then, the bacterial growth inhibition rate was
calculated with the following equation as a function of absorbance (A) in the wells:

Bacterial growth inhibition (%) =

[
1−

(
Asample − Anegative control

Apositive control − Anegative control

)]
× 100

Hits were selected when the growth inhibition rate was greater than 90%.
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