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Abstract: Mycobacterium bovis (M. bovis), a Mycobacterium tuberculosis complex species responsible
for tuberculosis in cattle and zoonotic tuberculosis in humans, is present in Algeria. In Algeria
however, the M. bovis population structure is unknown, limiting understanding of the sources and
transmission of bovine tuberculosis. In this study, we identified the whole genome sequence (WGS) of
13 M. bovis strains isolated from animals exhibiting lesions compatible with tuberculosis, which were
slaughtered and inspected in five slaughterhouses in Algeria. We found that six isolates were grouped
together with reference clinical strains of M. bovis genotype-Unknown2. One isolate was related to M.
bovis genotype-Unknown7, one isolate was related to M. bovis genotype-Unknown4, three isolates
belonged to M. bovis genotype-Europe 2 and there was one new clone for two M. bovis isolates. Two
isolates from Blida exhibited no pairwise differences in single nucleotide polymorphisms. None of
these 13 isolates were closely related to four zoonotic M. bovis isolates previously characterized in
Algeria. In Algeria, the epidemiology of bovine tuberculosis in cattle is partly driven by cross border
movements of animals and animal products.

Keywords: Mycobacterium tuberculosis; Mycobacterium bovis; tuberculosis; cattle; Algeria

1. Introduction

Bovine tuberculosis is a chronic, deadly infection most often caused by Mycobacterium
bovis (M. bovis) and Mycobacterium caprae (M. caprae), two species belonging to the My-
cobacterium tuberculosis complex [1,2]. M. bovis most often infects cattle but also causes
tuberculosis in other animal species and is a re-emerging cause of zoonotic tuberculosis
in humans [3,4]. This disease poses a major threat to public health and creates socio-
economic problems, including loss of meat due to seizures in slaughterhouses and lower
milk yields [5,6]. Accordingly, bovine tuberculosis has an impact upon the international
trade of animals and animal products [6,7], and bovine tuberculosis must be notified to
the World Organization for Animal Health, as mentioned in its Terrestrial Animal Health
Code [8].

In Algeria, some of the 2,049,652 heads of cattle [9] in the country are suspected to be
infected by M. bovis [10]. Cases of bovine tuberculosis are often reported in slaughterhouse
registers, and slaughterhouse workers exhibit a higher prevalence of M. bovis tuberculosis
than the general population [11] (F. Tazerart, unpublished data). In Algeria, ante-mortem
tuberculin skin test screening and post-mortem examinations for suspicious lesions at the
slaughterhouse are the official diagnostic procedures for the disease [12]. Nevertheless,
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in the absence of systematic laboratory diagnosis, definitive confirmation of the disease
is lacking. Consequently, bovine tuberculosis remains a neglected infectious disease in
Algeria, and few microbiology studies have been reported [10]. The identification of the
circulation of M. bovis strains and their hosts and geographical distribution are poorly
understood.

This study aimed to start bridging this gap, using whole genome sequencing (WGS)
to investigate a few M. bovis strains currently circulating in Algeria.

2. Results
2.1. Data Analysis

Of the 928 cattle routinely slaughtered and inspected, 94 (10.13%, CI 8.24–12.34%)
animals had visible lesions compatible with tuberculosis. The prevalence of suspected
lesions significantly varied across the five studied slaughterhouses (p = 0.001). Preva-
lence was 20.9% at the Médéa slaughterhouse, which was the most affected site, and
5.8% at the Bgayet slaughterhouse, which was the least affected site (Figure 1). Males
accounted for 617/928 (66.5%) of slaughtered animals and females for 311/928 (33.5%)
(p < 10−4), although the prevalence of tuberculous lesions was higher in females than
in males (n = 41/311 (13.18%) compared to n = 53/617 (8.59%), p = 0.038). Most of the
slaughtered animals were aged <2 years (n = 427/928; 46%), followed by animals aged
2–5 years (n = 399/928; 43%) and animals older than 5 years (n = 102/928; 11%). Older
animals >5 years were most affected (25.5%), followed by young animals (<2 years) at
9.83%, then adult animals (2–5 years) at 6.51%. The differences among prevalence values
were significant (p < 10−4). Most slaughtered animals were of average weight (score 2.5–3)
(536/928; 57.75%), followed by lean animals (286/928; 30.81%). The prevalence of the
suspected lesions was 60/536 (11.2%) in average weight animals, 31/286 (10.8%) in lean
animals and 03/106 (2.8%) in fatty animals (p = 0.03). Tuberculous lesions were mainly
located on the lymph nodes (95.7%) and 4.3% in the viscera (Table 1).

Figure 1. Location of the five slaughterhouses in four departments in northern Algeria.
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Table 1. Distribution of suspected cases of tuberculosis according to the variation factors.

Variation Factors Number of
Suspect Carcasses Rate (%) Total p

Gender
Male 53 8.59 617

0.038
Female 41 13.18 311

Age
Young (<2 years) 42 9.83 427

<10−4

Adults (2–5 years) 26 6.51 399

Elderly (>5 years) 26 25.5 102

Weight (score)
Lean (1–2) 31 10.83 286

0.03
Middle (2.5–3) 60 11.19 536

Fat (3.5–5) 3 2.83 106

Location
Lymph nodes 90 95.74 - -

Viscera 4 (3 lungs, 1 liver) 4.26 -

Total 94 10.13 928

2.2. Genomic Typing Analysis

A total of 94 samples, including 90 lymph node samples, three lung samples and
one liver sample, yielding 13 cultures obtained on Löwenstein–Jensen culture medium,
Middlebrook 7H10 solid medium and Coletsos medium were identified as M. tuberculosis
complex by partial rpoB PCR-sequencing. No other mycobacterial species was cultured
from these samples. Further WGS refined the identification of the 13 isolates as M. bovis.
Previously, the work of Loiseau et al. indicated that the diversity of M. bovis in Africa has
been underestimated, after their discovery of new clonal complexes in the continent [13].
Genomic comparison of the Algerian M. bovis isolates to the ones reviewed in the work
of Loiseau et al. indicated four different clonal complexes of M. bovis in Algeria—three
of which were the newly discovered ones, and one of which was known—the Eu2 clonal
complex commonly found in western Europe. Specifically, we found six isolates, namely
Q1128, Q1131, Q1135, Q1138, Q1139 and Q1142, which were grouped together with ref-
erence clinical strains of M. bovis clonal complex-Unknown2. One isolate, Q1134, was
related to M. bovis clonal complex-Unknown7; one isolate, Q1140, was related to M. bovis
clonal complex-Unknown4; three isolates, Q1141, Q1129 and Q1136, belonged to M. bovis
clonal complex-Europe 2; and there was one new clone for two isolates, Q1132 and Q1133,
which did not belong to any of the clonal complexes identified by Loiseau et al. (Figure 2,
Table S1) [13]. Based on available data for 3364 clinical isolates of M. bovis (Tables S1 and
S3) [13], African countries other than Algeria included Ethiopia, Malawi, Eritrea, Morocco,
Tunisia and South Africa. European countries included the UK, Switzerland, Sweden,
Spain, France, Italy, Germany, Netherlands and Belgium. American countries included the
USA, Canada, Brazil and Mexico. Asian countries include Lebanon. The proportions of
M. bovis genotypes observed in Algeria were significantly different than those observed
in other countries (p < 0.001), other African countries (p = 0.045) and American countries
(p < 0.001) but did not significantly differ from European countries (p = 0.245). Using
a 12 SNPs cut-off to detect potential cross-transmission [14], we detected one group of
transmission involving isolates Q1132 and Q1133 exhibiting 215-SNPs, and 0-SNPs after
removing repetitive regions (Figure 2, Table S2).
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Figure 2. Phylogeny tree of 105 genome sequence of Mycobacterium bovis based on 2881 variable positions extracted using
MTBseq. The scale bar indicates the number of substitutions per polymorphic site. The tree was generated using PhyML 3.0
online tools.

Further comparison of bovine isolates with four available Algerian patients’ M. bovis
isolates previously determined as belonging to the European 2 group (P9978, P9979, P9980
and P9981) [15] indicated no evidence of zoonotic infection of these isolates alone using the
same SNP cut-off as above (12-SNPs). Statistical information on the genome sequences are
reported in Supplementary Data Table S1. Reads were deposed in GenBank with accession
number PRJNA715078.

3. Discussion

In Algerian slaughterhouses, the inspection of slaughtered animals to look for lesions
compatible with tuberculosis differs from one slaughterhouse to another.

Here, more males than females were slaughtered, in accordance with regulations
prohibiting the slaughter of female animals other than in cases of necessity. However, we
observed a significantly higher prevalence of tuberculosis in females than in males, an
observation that may also reflect an increased susceptibility of females that go through
gestation, parturition and lactation, and live a long, productive life [16]. Most slaughtered
animals were under two years old, reflecting the high organoleptic value of meat in young
animals, which is in great demand. However, older animals over the age of five years
had a significantly higher prevalence of lesions suspected of being tuberculosis. Indeed,
the chances of exposure to tuberculosis increases with age [17]. Most slaughtered animals
were of average weight (score 2.5–3) reflecting consumer preference for meat containing a
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reasonable amount of fat. In addition, we observed a significant difference between the
three body weight scores of animals suspected of tuberculosis; those of average weight were
most affected, followed by those that were lean, then fatty animals, potentially explained
by the wasting nature of this disease [18].

In this context, this report on the WGS-based identification and typing of a collection
of M. bovis isolates updates the 2007 snapshot of bovine tuberculosis in Algeria [10].
The prevalence of bovine tuberculosis, as estimated from the veterinary inspection of
slaughtered cattle, was 10.13%, higher than previously reported in Algeria in 2007 (3.6%)
and in neighboring Morocco in 2014–2015 (3.7%) [10,19].

In this study, WGS revealed the presence of four different genotypes of M. bovis and
one new genotype in Algeria compared to 12 genotypes reported by Loiseau et al. (Figure 2,
Table S1) [13]. We detected two isolates exhibiting a closely related WGS pattern, suggesting
these two isolates, Q1132 and Q1133, were issued from the same M. bovis clone. These two
isolates were isolated from the same slaughterhouse (Mouzaia in Blida).

Unsurprisingly, these data illustrate the cross-border spread of M. bovis and the fact
that Algeria regularly imports live cattle from Europe, notably from France and Spain,
each supplying 40,000 heads of cattle per year [20,21]. These data indicate that part of
the epidemiology of bovine tuberculosis in cattle in Algeria is driven by the cross-border
movement of animals.

However, limited information about slaughtered animals, such as their origin and
movements, limits the possibility of carrying out a spatial epidemiological study on the
distribution of bovine tuberculosis. Illegal slaughter further complicates the establishment
of such a bovine tuberculosis map. Additionally, only 13 M. bovis isolates were available
for this first ever WGS analysis of animal M. bovis in Algeria. Such a small sample is
likely to underestimate pathogen diversity in Algeria and is therefore unlikely to ascertain
epidemiological linkages between cases.

Finally, despite the above-reported limitations, this founding WGS-based study in
Algeria indicates the contribution of WGS to tracing animal M. bovis isolates in that country.
This study suggests that it would be of interest to establish an Algerian national M. bovis
WGS database for tracing sources of infection, including the potential role of cross-border
importation and of wild fauna, as reported in other countries such as the UK [22,23], and
the cross-transmission in farms. Further comparisons between human [15] and animal
isolates would also help to trace sources of zoonotic M. bovis tuberculosis in patients from
a medical prevention perspective.

Given such a small number of isolates, this analysis could be very skewed, and a larger
number of studied isolates may provide similarities with other locations. This indicates
that continued research in this area is required.

Despite this limitation, we did find similarities with European nations, which is
consistent with cattle being imported into Algeria from Europe and the historical links
between these regions

4. Materials and Methods
4.1. Study Area and Sample Collection

The study was conducted during different periods of 2017 and 2018 in five slaugh-
terhouses in Algeria, namely the slaughterhouses in Bgayet (January–May 2018), Sétif
(January–May 2018), Médéa (December 2016–April 2017), Mouzaia (March–May 2017) and
the slaughterhouses in Boufarik, which are in the department of Blida (Figure 1) (March–
May 2018). The distance between each slaughterhouse was estimated to be between 27 km
(Mouzaia–Boufarik) and 315 km (Sétif–Mouzaia). In detail, these 13 isolates were obtained
from three slaughterhouses, namely the Mouzaia slaughterhouse in Blida (Q1128, Q1129,
Q1131, Q1132 and Q1133), the Médéa slaughterhouse (Q1134, Q1135 and Q1136) and the
Boufarik slaughterhouse in Blida (Q1138, Q1139, Q1140, Q1141 and Q1142). The choice
of these slaughterhouses was justified by their accessibility and their relative size in the
region in terms of cattle slaughter. Cattle slaughtered in these slaughterhouses came from
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the neighboring regions or sometimes from remote regions. An information sheet was
systematically established for each animal slaughtered, including sex, age, breed, body
score and origin. During the study period, lesions of suspected tuberculosis were collected
from slaughtered cattle and conserved for 11–15 months at −20 ◦C until further processing.

4.2. Tissue Preparation and Culture

Some of these samples were processed at the Institut Pasteur d’Algérie in Algiers, and
the rest were processed in the biosafety level 3 laboratory (BSL3) at the Institut Hospital-
ier Universitaire, Méditerranée Infection in Marseille. At the Institut Pasteur d’Algérie,
gross visible lesions were thawed, dissected and crushed using a sterile pestle and mortar.
Crushed tissues were decontaminated by adding 4 mL of 4% NaOH [24] and washed with
sterile distilled water. Pellets were inoculated in a Löwenstein–Jensen culture medium
containing glycerol (three tubes) and were incubated at 37 ◦C for 12 weeks. At the Institut
Hospitalier Universitaire, gross visible lesions were thawed, and aliquots were decontami-
nated into a triple volume of 1% chlorhexidine (chlorhexidine digluconate, Sigma-Aldrich,
St. Louis, MO, USA) [25] incubated for 30 min at room temperature with manual agitation
every five minutes. After eliminating chlorhexidine, 10 mL of a neutralizing solution
(1000 mL sterile phosphate buffered saline (PBS), 3 g egg lecithin and 10 mL Tween 80)
were added, and the mixture was left at room temperature for 10 min with agitation to
inactivate the remaining chlorhexidine. After three sterile PBS washes, the decontami-
nated tissue was finely crushed using Potter’s crusher and inoculated in four types of
culture media including Middlebrook 7H10 solid medium containing 10% (v/v) oleic acid,
albumin, dextrose and catalase (OADC) (Becton Dickinson, Sparks, MD, USA) and 0.5%
(v/v) glycerol (Euromedex, Souffelweyersheim, France); 10% OADC-Middlebrook 7H10
solid medium containing sodium pyruvate (4.16 mg/mL) (Sigma-Aldrich) [26,27]; 10%
OADC-Middlebrook 7H9 liquid medium (Becton Dickinson), containing 0.05% Tween
80 (Sigma-Aldrich) [28]; and Coletsos medium (Bio-Rad, Marnes-la-Coquette, France).
Cultures were incubated at 37 ◦C for 12 weeks with a 10-day follow-up of colony growth.

4.3. Isolate Identification

Any culture growing on any of the solid media was dissolved in 200 µL PBS and
inactivated at 100 ◦C for one hour before further handling in the biosafety level 2 (BSL2)
laboratory. Total DNA was extracted by vortexing the suspension with glass powder
(Sigma-Aldrich) using the FastPrep apparatus (MP Biomedicals, Santa Ana, CA, USA)
and extracting DNA using a Qiagen kit (Qiagen, Courtaboeuf, France), as previously
described [29]. Partial rpoB gene PCR-sequencing was then performed to confirm the M.
tuberculosis complex, as previously described [30].

4.4. Genome Sequence Analyses

As for whole genome sequence (WGS) experiments, DNA was extracted using the
InstaGene™ Matrix (Bio-Rad, Marnes-la-Coquette, France) and quantified using a Qubit
assay with the high sensitivity kit (Life technologies, Carlsbad, CA, USA). A total of
0.2 µg/µL of DNA was then sequenced by Illumina MiSeq runs (Illumina Inc., San Diego,
USA). DNA was fragmented and amplified by limited PCR (12 cycles), introducing dual-
index barcodes and sequencing adapters. After purification on AMPure XP beads (Beckman
Coulter Inc., Fullerton, USA), the libraries were normalized and pooled for sequencing on
the MiSeq. Paired-end sequencing and automated cluster generation with dual indexed 2 ×
250-bp reads were performed. Output sequencing reads were analyzed using MTBseq [31]
to identify species, lineages and sub-lineages and to calculate the SNP distance between
study strains. MTBseq was used also to extract and align the SNPs between the genome
studies. Identification results were supported by other tools such as TB Profiler and
Mykrobe Predictor-TB [32,33]. A phylogenetic tree based on extracted SNPs between 105
M. bovis genomes was generated using PhyML 3.0 online tools (http://phylogeny.lirmm.
fr/phylo_cgi/one_task.cgi?task_type=phyml; accessed on 1 October 2020).

http://phylogeny.lirmm.fr/phylo_cgi/one_task.cgi?task_type=phyml
http://phylogeny.lirmm.fr/phylo_cgi/one_task.cgi?task_type=phyml
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4.5. Statistical Analysis

The data collected were analyzed using SPSS (Statistical Package for Social Sciences,
version 23.0) and Microsoft Office Excel software programs. As a criterion, reliability
difference indicators used the profile p < 0.05. Statistical analyses were performed using Chi-
square tests to compare the presence of risk factors between suspected cases of tuberculosis
(Table 1) and to compare the proportions of M. bovis genotypes, among other genotypes in
different geographic regions/countries. We delineated four groups of data: Group 1, all
countries in the 3364-isolates database; Group 2, all African countries from the database;
Group 3, all American countries; and Group 4, all European countries.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pathogens10070802/s1, Table S1: Statistical genomes data of study strains extracted using
MTBseq. Table S2: SNPs distance between study strains using MTBseq. Table S3: Published data of
several M. bovis genotypes detected in Algeria.
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