
HAL Id: hal-03665851
https://amu.hal.science/hal-03665851v1

Submitted on 17 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Coercivity and generalized proximal algorithms:
application-traveling around the world

Erik Alex Papa Quiroz, Antoine Soubeyran, Paulo Roberto Oliveira

To cite this version:
Erik Alex Papa Quiroz, Antoine Soubeyran, Paulo Roberto Oliveira. Coercivity and generalized
proximal algorithms: application-traveling around the world. Annals of Operations Research, 2023,
321 (1), pp.451-467. �10.1007/s10479-022-04725-0�. �hal-03665851�

https://amu.hal.science/hal-03665851v1
https://hal.archives-ouvertes.fr


Coercivity and generalized proximal algorithms:
application—traveling around the world

Erik A. Papa Quiroz1,2,3 Antoine Soubeyran4   Paulo R. Oliveira5

Abstract
We present an inexact proximal point algorithm using quasi distances to solve a minimization 
problem in the Euclidean space. This algorithm is motivated by the proximal methods intro-
duced by Attouch et al., section 4, (Math Program Ser A, 137: 91–129, 2013) and Solodov 
and Svaiter (Set Valued Anal 7:323–345, 1999). In contrast, in this paper we consider quasi 
distances, arbitrary (non necessary smooth) objective functions, scalar errors in each objec-
tive regularized approximation and vectorial errors on the residual of the regularized critical 
point, that is, we have an error on the optimality condition of the proximal subproblem at 
the new point. We obtain, under a coercivity assumption of the objective function, that all 
accumulation points of the sequence generated by the algorithm are critical points (mini-
mizer points in the convex case) of the minimization problem. As an application we consider 
a human location problem: How to travel around the world and prepare the trip of a lifetime.
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1 Introduction

The proximal pointmethod, introduced byMartinet (1970) to solve theminimization problem
min{ f (x) : x ∈ IRn} generates a sequence {xk} given by x0 ∈ IRn, and

xk ∈ argmin{ f (x) + (λk/2)||x − xk−1||2 : x ∈ IRn}, (1.1)

where λk is a certain positive parameter. It is well known, see Güler (1992), that if f is
convex in (1.1) and {λk} satisfies ∑+∞

k=1(1/λk) = +∞, then limk→∞ f (xk) = inf f ; and
if the optimal set is nonempty, we show that {xk} converges to an optimal solution of the
problem. Furthermore, if f is quasiconvex then the sequence converges to a critical point of
the problem, see (Papa Quiroz & Oliveira, 2009, 2012).

To make possible an application of the proximal point method to solve problems in
Computer Theory (Romaguera & Sanchis, 2003), Economics (consumer choice and utility
functions) (Levin, 1991), and Behavioral Sciences (Soubeyran, 2010; Janeiro, 2010; Hirschi
& Dauwalder, 2015) we need to consider in (1.1) a non convex function f and a quasi dis-
tance q(x, xk−1) instead of the Euclidan norm ||x − xk−1||. Thus, we consider the proximal
point algorithm with quasi distances given by the following iteration:

xk ∈ argmin{ f (x) + (λk/2)q
2(x, xk−1) : x ∈ IRn}. (1.2)

In 2011, Moreno et al. (2011) have been studied, for the first time, the convergence of
the sequence {xk} generated by the above iteration and proved that if f satisfies a Kurdyka-
Lojasiewicz condition on the set of critical points and {xk} is bounded then this sequence
converges to a critical point of the problem. Moreover, the authors presented an application
to habit’s formation and observed that the classical proximal algorithm of Martinet (1970)
and Rockafellar (1976) is unable to procure such an application in Economics and Social
Sciences.

In 2015, Bento and Soubeyran (2015b), motivated by the papers of Attouch et al. (2013)
and Moreno et al. (2011) presented an inexact version of the proximal point method using
quasi distance given by the following main iteration: For k = 0, 1, 2, ..., given xk ∈ IRn,

find xk+1 ∈ IRn and ϕk+1 ∈ IRn such that

f (xk+1) ≤ f (xk) − λk+1(1 − σ)�(q(xk, xk+1)) (1.3)

ϕk+1 ∈ ∂ f (xk+1) (1.4)

ψk+1 ∈ ∂q(xk, .)(xk+1) (1.5)

||ϕk+1|| ≤ b�′((q(xk, xk+1)))||ψk+1|| (1.6)

where �(.) : [0,+∞) −→ [0,+∞) satisfies some adequate conditions as definided in (2)
and (3) of Bento & Soubeyran (2015a), δ ∈ (0, 1) and ∂ f denotes the limiting subdifferential
of f .Assuming that the sequence {xk} is bounded and that f satisfies a Kurdyka-Lojasiewicz
inequality condition, the authors proved that the sequence converges to a critical point of
f , studied the rate of convergence of the sequence and introduced an application to change
dynamics in behavioral sciences. The above algorithmhas been applied to routine’s formation
with resistance to change, following worthwhile changes, see (Bento & Soubeyran, 2015a).

In this paper, motivated from the above papers and thework of Solodov and Svaiter (1999),
we introduce other inexact iteration that consider two types of errors, scalar and vectorial,
in the following way: For k = 0, 1, 2, ..., given xk ∈ IRn, find xk+1 ∈ IRn and ϕk+1 ∈ IRn

such that

f (xk+1) ≤ f (xk) − λk+1

2
q2(xk, xk+1) + εk+1 (1.7)
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ϕk+1 ∈ ∂εk+1 f (x
k+1) (1.8)

||ek+1|| ≤ σq(xk, xk+1), (1.9)

where σ > 0,

ek+1 = ϕk+1 + λk+1q(xk, xk+1)ψk+1 (1.10)

ψk+1 ∈ ∂q(xk, .)(xk+1), (1.11)

and the scalar error εk+1 satisfies:

∞∑

k=0

εk+1 < +∞. (1.12)

The error criterion (1.7) is a εk+1 sufficient-decrease condition and conditions (1.8),(1.9)
and (1.10) have been introduced by Solodov and Svaiter (1999) to find zeroes of maximal
monotone operators but considering an extragradient condition.

We should compare the two algorithms: Observe that condition (1.3) in the algorithm of
Bento and Soubeyran (2015b) has not a scalar error condition and so their inequality is not
inexact compared with (1.7) of the proposed algorithm. Also, we consider ε−subdifferentials
in (1.8). The condition (1.6) of Bento & Soubeyran (2015a) is more general but it does not
include condition (1.10) of the proposed algorithm. However, sufficient conditions such that
equation (1.10) satisfies equation (1.6) are λk ||ψk+1|| ≥ 1, σ < 1 and {λk} bounded. In fact,
from (1.10) and (1.9) we have

||ek+1||2 ≤ σ 2q(xk, xk+1)2 ≤ σ 2(||ϕk+1||2 + ||λk+1q(xk, xk+1)ψk+1||2).
As σ < 1. Then, applying Lemma 4.1 of Attouch et al. (2013) we obtain that ||ϕk+1|| ≤
Mλk+1q(xk, xk+1)||ψk+1||. Due that {λk} is bounded then, we obtain (1.6). Thus, we may
conclude that the inexact algorithm proposed by Bento & Soubeyran (2015a) and the inexact
algorithm proposed in this paper are, in general, different.

In this paper we are interested in the analysis of convergence of the proposed algorithm
when f is an arbitrary coercive function (may be nonconvex, nonsmooth), that is, that does not
need to satisfy the Kurdyka–Lojasiewicz property studied by Bento and Soubeyran (2015b).
Observe even that a convex function does not need to satisfy the Kurdyka–Lojasiewicks
condition, see for example Theorem 36 of Bolte et al. (2010). On the other hand, we are also
interested in the application of the proposed algorithm to Behavioral Sciences, in particular
we study an application to traveler problem in the context of a recent theory of stay and
changes human dynamics called variational rationality approach.

This paper examines the convergence of the proposed algorithm. In fact, assuming that f
is a proper lower semicontinuous and coercive function we prove that the sequence generated
by the proposed algorithm is well defined, bounded and if, furthermore, f is continuous on
dom( f ), then all accumulation points of the sequence are generalized limiting critical points
of the problem. If f is locally Lipschitz on IRn we prove that the accumulation points are
Clarke critical points of the problem and if f is convex then these accumulation points are
minimal points of the minimization problem.

The paper is organized as follows. In Sect. 2 we presnt the basic aspects on subdifferential
and quasi distances. In Sect. 3 we present the problem and introduced the assumptions.
In Sect. 4 we analyze the convergence of the proposed algorithm for lower semicontinuous
functions. In Sect. 5we study the convergence of the algorithm for locally Lipschitz functions.
In Sect. 6 we analyze the convergence when the function is convex. In Sect. 7 we consider,
as an application of the proposed algorithm, a traveler problem, in the context of a recent
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theory of stays and changes human dynamics, i.e., continue, stop and start doing things in
behavioral sciences. That is, the variational rationality approach. Finally in Sect. 8 we give
some conclusions.

2 Basic facts

2.1 Fréchet and limiting subdifferentials

Definition 2.1 Let f : IRn → IR ∪ {+∞} be a proper function.
(a) For each x ∈ dom( f ), the set of regular subgradients (also called Fréchet subdifferential)

of f at x , denoted by ∂̂ f (x), is the set of vectors v ∈ IRn such that

f (y) ≥ f (x) + 〈v, y − x〉 + o(‖y − x‖), where lim
y→x

o(‖y − x‖)
‖y − x‖ = 0.

Or equivalently, ∂̂ f (x) :=
{

v ∈ IRn : lim inf
y �=x, y→x

f (y)− f (x)−〈v,y−x〉
||y−x || ≥ 0

}

. If x /∈ dom( f )

then ∂̂ f (x) = ∅.
(b) The set of general subgradients (also called limiting subdifferential) of f at x ∈ IRn ,

denoted by ∂ f (x), is defined as follows:

∂ f (x) :=
{
v ∈ IRn : ∃ xl → x, f (xl) → f (x), vl ∈ ∂̂ f (xl) and vl → v

}
.

(c) For each x ∈ dom( f ), the set of ε-regular subgradients (also called ε-Fréchet subdiffer-
ential) of f at x , denoted by ∂̂ε f (x), is the set of vectors v ∈ IRn such that

f (y) ≥ f (x) + 〈v, y − x〉 − ε + o(‖y − x‖), where lim
y→x

o(‖y − x‖)
‖y − x‖ = 0.

Or equivalently, ∂̂ε f (x) :=
{

v ∈ IRn : lim inf
y �=x, y→x

f (y)− f (x)−〈v,y−x〉
||y−x || ≥ −ε

}

. If x /∈
dom( f ) then ∂̂ f (x) = ∅.

(d) The set of ε-general subgradients (also called ε-limiting subdifferential) of f at x ∈ IRn ,
denoted by ∂ε f (x), is defined as follows:

∂ε f (x) :=
{
v ∈ IRn : ∃ xl → x, f (xl) → f (x), vl ∈ ∂̂ε f (x

l) and vl → v
}

.

(e) The set of generalized limiting subdifferential of f at x ∈ IRn , denoted by ∂̄ f (x), is
defined as follows:

∂̄ f (x) :=
{
v ∈ IRn : ∃ xl → x, f (xl) → f (x), vl ∈ ∂εl f (x

l), vl → v, and εl → 0
}

.

Proposition 2.1 For a function f : IRn → IR ∪ {+∞} and a point x̄ ∈ dom( f ), the
subgradient sets ∂ f (x̄) and ∂̂ f (x̄) are closed, with ∂̂ f (x̄) convex and ∂̂ f (x̄) ⊂ ∂ f (x̄).

Proof See Rockafellar & Wets (1990), Theorem 8.6. ��
Proposition 2.2 If a proper function f : IRn → IR∪{+∞} has a local minimum at the point
x̄ ∈ dom( f ), then 0 ∈ ∂̂ f (x̄).

Proof See Rockafellar & Wets (1990), Theorem 10.1. ��
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Proposition 2.3 Let f , g : IRn → IR ∪ {+∞} be proper functions such that f is locally
Lipschitz at x̄ ∈ dom( f ) ∩ dom(g) and g is a lower semicontinuous function at x̄ . Then,

∂( f + g)(x̄) ⊂ ∂ f (x̄) + ∂g(x̄)

Proof See Mordukhovich (2006), Theorem 2.33. ��

2.2 Quasi distances

In this section we give the definition of quasidistance and present some properties which will
be used in the following section.

Definition 2.2 Stojmirović (2004) Let X be a set. A mapping q : X × X → IR+ is called a
quasi distance if for all x, y, z ∈ X ,

1. q(x, y) = q(y, x) = 0 ⇔ x = y,
2. q(x, z) ≤ q(x, y) + q(y, z).

From Definition 2.2, if q is also symmetric, that is, for all x, y ∈ X , q(x, y) = q(y, x), then
q is a distance. Therefore the concept of quasi distance generalizes the concept of a distance.

Example 2.1 Concilio & Gerla (2006) The function q : IR × IR → IR+ defined by

q(x, y) =
{
0 if x ≤ y,
1 otherwise.

generates a quasi distance on IR.

Example 2.2 (Example 3.3 ofMoreno et al. 2011) For each i = 1, ..., n, we consider c−
i , c+

i >

0 and the function qi : IR × IR → IR+ defined by

qi (xi , yi ) =
{
c+
i (yi − xi ) if yi − xi > 0,
c−
i (xi − yi ) if yi − xi ≤ 0,

which is a quasi distance on IR. Therefore, q(x, y) = ∑n
i=1 qi (xi , yi ) is a quasi distance on

IRn . On the other hand, for each z ∈ IRn it holds

q(x, z) =
n∑

i=1

qi (xi , zi ) =
n∑

i=1

max
{
c+
i (zi − xi ), c

−
i (xi − zi )

}
, x ∈ IRn,

Thus q( · , z) is a convex function. By the same reasoning, q(z, · ) is convex.
Consider the following condition on the quasi distance q(., .): there is a positive constant β
such that

q(x, y) ≤ β||x − y||, ∀ x, y ∈ IRn . (2.1)

We note that the quasi distances of Example 2.2 verifies (2.1).
The next results are important for our study.

Proposition 2.4 Let q : IRn × IRn → IR+ be a quasi distance that verifies (2.1). Then for
each z ∈ IRn the functions q(z, · ) and q( · , z) are Lipschitz continuous.
Proof See Proposition 3.6 of Moreno et al. (2011). ��
Proposition 2.5 Let z ∈ IRn. If q verifies (2.1) then q2(z, · ) and q2( · , z) are locally Lipschitz
continuous functions on IRn.

Proof See Proposition 3.7 of Moreno et al. (2011). ��
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3 The problem

Consider the optimization problem:

min{ f (x) : x ∈ IRn} (3.1)

where f : IRn → IR∪{±∞} is a extended proper function satisfying the following assump-
tions:

(H1) f is a proper lower semicontinuous function
(H2) f is coercive, that is, lim||x ||→+∞ f (x) = +∞
(H3) q : IRn × IRn → IR+ is a quasi distance satisfying: there exists β > 0 such that

q(x, y) ≤ β||x − y||. (3.2)

Observe that the main justification for using coercive functions, assumption (H2), instead
of functions satisfying the Kurdyka-Lojasiewicz property is that in behavioral sciences we
need global solutions and not only local solutions as for Kurdyka-Lojasiewicz functions.
Furthermore, the Kurdyka–Lojasiewicz hypothesis can be very difficult to verify.

4 Inexact proximal algorithmwith quasi distance (IPAQ) for lower
semicontinous functions

IPAQ

Initialization: Choose a quasi distance q(., .) defined on IRn, an initial point x0 ∈ IRn, a
real number σ > 0 and two positive real sequences {λk+1} and {εk+1} such
that

+∞∑

k=0

εk+1 < +∞. (4.1)

Main Step: For k = 0, 1, 2, ..., given xk ∈ IRn, find xk+1 ∈ IRn and ϕk+1 ∈ IRn such
that

f (xk+1) ≤ f (xk) − λk+1

2
q2(xk, xk+1) + εk+1 (4.2)

ϕk+1 ∈ ∂εk+1 f (x
k+1) (4.3)

||ek+1|| ≤ σq(xk, xk+1) (4.4)

where

ek+1 = ϕk+1 + λk+1q(xk, xk+1)ψk+1, (4.5)

ψk+1 ∈ ∂q(xk, .)(xk+1), ∂εk+1 f is given by Definition 2.1, (d).
Stop Criterion: If xk+1 = xk or 0 ∈ ∂ f (xk+1), then stop. Otherwise, do k ← k + 1 and

return to Main Step.

Theorem 4.1 Under assumptions (H1)-(H3), for each k, there exists (xk+1, ϕk+1) satisfying 
(4.2), (4.3) and (4.4), that is, the (IPAQ) is well defined.
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Proof Given xk ∈ IRn, consider the problem min{ f (x) + λk+1
2 q2(xk, x) : x ∈ IRn}. From

the lower semicontinuity of f and q2(xk, .) and coercivity of f , there exists xk+1 such that

f (xk+1) + λk+1

2
q2(xk, xk+1) ≤ f (x) + λk+1

2
q2(xk, x),

for all x ∈ IRn .Taking x = xk we get (4.2). On the other hand, from the optimality condition,
see Proposition 2.2, we have

0 ∈ ∂̂

(

f (.) + λk+1

2
q2(xk, .)

)

(xk+1)

Due to Proposition 2.1 and Proposition 2.3 we have (4.3) and (4.5) with ek+1 = 0. ��
Remark 4.1 The result of the above theorem is also true if we substitute the condition (3.2)
in assumption (H3) by the assumption that q(x, .) : IRn → IR+ is lower semicontinuous for
each x ∈ IRn .

Lemma 4.1 Let {vk},{γk}, and {βk} be nonnegative sequences of real numbers satisfying
vk+1 ≤ (1 + γk) vk + βk and such that

∑∞
k=1 βk < ∞,

∑∞
k=1 γk < ∞.Then, the sequence

{vk} converges.
Proof See Lemma 2, pp. 44, of Polyak (1987). ��
Proposition 4.1 Under assumptions (H1), (H2), (H3) and the sequence {xk}, generated by
the (IPAQ), satisfies:

(i) { f (xk)} converges;
(ii) If λ− < λk+1, for some λ− > 0, then q(xk, xk+1) converges to zero;
(iii) {xk} is bounded;
(iv) If λ− < λk+1, for some λ− > 0, and {xk j } converges to x̄, then {xk j+1} converges to

x̄ .

Proof (i) From (4.2) we have

f (xk+1) ≤ f (xk) − λk+1

2
q2(xk, xk+1) + εk+1 (4.6)

Lemma 4.1 and (4.1) imply that { f (xk)} converges.
(ii) From (4.6) and λ− < λk+1, we have q2(xk, xk+1) ≤ 2

λ−
(
f (xk) − f (xk+1) + εk+1

)
.

Given that { f (xk)} converges and {εk+1} converges to zero, then taking k → +∞ we obtain
the result.
(iii) From (4.6) we have f (xk) ≤ f (x0) + ∑k−1

l=0 εk+1 ≤ f (x0) + ∑+∞
l=0 εk+1 < +∞. This

implies that xk ∈ L f (α0) := {x ∈ IRn : f (x) ≤ α0} where α0 = f (x0) + ∑+∞
l=0 εk+1. As

L f (α0) is bounded (because f is coercive) then {xk} is bounded.
(iv) From the triangular inequality property we obtain

||xk j+1 − x̄ || ≤ ||xk j+1 − xk j || + ||xk j − x̄ || ≤ βq(xk j , xk j+1) + ||xk j − x̄ ||,
where the last inequality is due to (3.2). As q(xk j+1, xk j ) converges to zero the result follows.

��
Remark 4.2 The results (i), (ii) and (iii) of the above proposition are also true if we substitute
the condition (3.2) in assumption (H3) by the assumption that q(x, .) : IRn → IR+ is lower
semicontinuous for each x ∈ IRn . However, to obtain the item (iv) is necessary the condition
(3.2).
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Now, define the foollowing set

U := {x ∈ IRn : f (x) ≤ lim
k→+∞ f (xk)}.

Observe that due to assumptions (H1)-(H2) this set is nonempty closed and bounded.

Theorem 4.2 Under assumptions (H1)-(H3), each accumulation point of the sequence {xk},
generated by the (IPAQ), belongs to U .

Proof Let x̄ ∈ IRn be an accumulation point of {xk}, then there exists {xk j } such that xk j →
x̄ . As f is lower semicontinuous and { f (xk)} converges then f (x̄) ≤ lim j→∞ f (xk j ) =
limk→∞ f (xk). That is, x̄ ∈ U . ��
Remark 4.3 The result of the above theorem is also true if we substitute the condition (3.2)
in assumption (H3) by the assumption that q(x, .) : IRn → IR+ is lower semicontinuous for
each x ∈ IRn .

Consider the following assumption:

(H1)
′ f : IRn → IR ∪ {±∞} is proper lower semicontinuous and continuous on dom( f ).

Observe that there are functions that are continuous on their domain but are not lower semi-
continuous on IRn, consider for example the function f (x) = 3, for x ∈ (1, 2] and +∞,

otherwise.

Theorem 4.3 Under assumptions (H1)
′, (H2), (H3), and that 0 < λ− < λk < λ+, each

accumulation point of the sequence {xk}, generated by the (IPAQ), is a generalized limiting
critical point of the problem (3.1).

Proof Let x̄ ∈ IRn be an accumulation point of {xk}, then there exists {xk j } such that xk j → x̄
and due to Proposition 4.1, (iv), xk j+1 → x̄ . From (4.5) and the triangular inequality we
have

||ϕk j+1|| ≤ ||ek j+1|| + λk j+1q(xk j , xk j+1)||ψk j+1|| ≤
(
σ + λk j+1||ψk j+1||

)
q(xk j , xk j+1)

(4.7)

where the last inequality comes from (4.4). As q(xk, .) is locally Lipschitz in IRn then
∂q(xk, .) is locally bounded, see Proposition 9.13 of Rockafellar & Wets (1990), then from
Lemma 5.1 of Moreno et al. (2011), there exists M > 0 such that ||ψk j+1|| ≤ M,∀ j .
Thus, the above inequality (4.7) implies that ||ϕk j+1|| ≤ (σ + λ+M) q(xk j , xk j+1). There-
fore, there exists xk j+1 → x̄, with f (xk j+1) → f (x̄) and ϕk j+1 → 0 with ϕk j+1 ∈
∂εk j+1 f (x

k j+1), then from Definition 2.1, 0 ∈ ∂̄ f (x̄). ��

5 Inexact proximal algorithmwith quasi distance (IPAQ) for lower
semicontinous and locally lipschitz functions

In this section we assume that the function f : IRn → IR ∪ {±∞} is locally Lipschitz on
IRn, thus dom( f ) is open. We consider the ε−Clarke subdifferential

∂◦
ε f (x) := {

w ∈: IRn : f ◦(x, v) ≥ 〈w, v〉 − ε,∀ v ∈ IRn}, (5.1)

where

f ◦(x, v) = lim sup
t↓0 y→x

f (y + tv) − f (y)

t
.
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Now, we consider a variant of the (IPAQ). We will only present the main step and the stop
criterion because the initialization step is the same as in the (IPAQ).
IPAQ2

Main Step: For k = 0, 1, 2, ..., given xk ∈ IRn, find xk+1 ∈ IRn and ϕk+1 ∈ IRn such
that

f (xk+1) ≤ f (xk) − λk+1

2
q2(xk, xk+1) + εk+1 (5.2)

ϕk+1 ∈ ∂◦
εk+1

f (xk+1) (5.3)

||ek+1|| ≤ σq(xk, xk+1), (5.4)

where

ek+1 = ϕk+1 + λk+1q(xk, xk+1)ψk+1 (5.5)

where ψk+1 ∈ ∂◦q(xk, .)(xk+1), ∂◦
εk+1

f is given by (5.1).

Stop Criterion: If xk+1 = xk or 0 ∈ ∂◦ f (xk+1), then stop. Otherwise, do k ← k + 1 and
return to Main Step.

We assume the following assumption:

(H1)
′′ f : IRn → IR ∪ {±∞} is proper lower semicontinuous and locally Lipschitz on
dom( f ).

Observe that under the assumptions (H1)
′′, (H2), (H3), the results of Theorem 4.1, Propo-

sition 4.1 and Theorem 4.2 are maintained.

Theorem 5.1 Under assumptions (H1)
′′, (H2), (H3), and 0 < λ− < λk < λ+, each accu-

mulation point of the sequence {xk}, generated by the (IPAQ2), is a Clarke critical point of
the problem (3.1).

Proof From (5.5), ek+1 − λk+1q(xk, xk+1)ψk+1 ∈ ∂◦
εk+1

f (xk+1), so

f ◦(xk+1, v) ≥ 〈ek+1, v〉 − λk+1q(xk, xk+1)〈ψk+1, v〉 − εk+1, ∀v ∈ IRn .

Let x̄ be a limit of {xk j }, which implies that {xk j+1} converges to x̄ . Then,

f ◦(xk j+1, v) ≥ 〈ek j+1, v〉 − λk j+1q(xk j , xk j+1)M ||v|| − εk j+1,

where M satisfies ||ψk j+1|| ≤ M . Taking lim sup in the above inequality and using the prop-
erty that f ◦(., .) is upper semicontinuous we obtain that f ◦(x̄,
v) ≥ lim sup j→+∞ f ◦(xk j+1, v) ≥ 0. It follows that 0 ∈ ∂◦ f (x̄). ��
Remark 5.1 If f is a proper, lower semicontinuous and convex function and dom( f ) is open,
then f satisfies the assumption (H1)

′′ and thus, from Theorem 5.1, we obatin that each
accumulation point of the sequence {xk}, generated by the (IPAQ2), is a minimum point of
problem (3.1). However, if dom( f ) is not open then we should search another way to obtain
that result.

Remark 5.2 We should observe that if f is convex and differentiable then, ∂◦
ε f (x) ⊂

∂F
ε f (x) = ∇ f (x) + εB(x, 0), where ∂F

ε f is the Fenchel ε−subdifferential:

∂F
ε f (x) = {s ∈ IRn : f (y) ≥ f (x) + 〈s, y − x〉 − ε, for all y ∈ IRn}. (5.6)

That is, for the convex and differentiable case, the Fenchel ε−subdifferential includes the
Clarke ε−subdifferential defined in (5.1).
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The above remarks motive us to study the (IPAQ) considering the Fenchel ε−subdifferential
when f is a proper lower semicontinuous convex function.

6 Inexact proximal algorithmwith quasi distance (IPAQ) for lower
semicontinous convex functions

In this section, we complete the convergence of the method for arbitrary proper lower semi-
continous convex functions. For that, we assume the following condition:

(H1)
′′′ f is a proper lower semicontinuous and convex function.

As in the previous section, we will only present the main step and the stop criterion because
the initialization step is the same as in the (IPAQ).
IPAQ3

Main Step: For k = 0, 1, 2, ..., given xk ∈ IRn, find xk+1 ∈ IRn and ϕk+1 ∈ IRn such
that

f (xk+1) ≤ f (xk) − λk+1

2
q2(xk, xk+1) + εk+1 (6.1)

ϕk+1 ∈ ∂F
εk+1

f (xk+1) (6.2)

||ek+1|| ≤ σq(xk, xk+1) (6.3)

where

ek+1 = ϕk+1 + λk+1q(xk, xk+1)ψk+1 (6.4)

ψk+1 ∈ ∂◦q(xk, .)(xk+1), ∂F
εk+1

f is given in (5.6).

Stop Criterion: If xk+1 = xk or 0 ∈ ∂F f (xk+1), then stop. Otherwise, do k ← k + 1 and
return to Main Step.

Theorem 6.1 Under assumptions (H1)
′′′, (H2), (H3) and that {λk} is bounded, each accu-

mulation point of the sequence {xk}, generated by the (IPAQ3), is an optimal solution of the
problem (3.1).

Proof Let x̄ ∈ IRn be an accumulation point of {xk}, then there exists {xk j } such that
xk j → x̄ .As f is lower semicontinuous and { f (xk)} converges then f (x̄) ≤ limk→∞ f (xk).
On the other hand, as f is convex, then for each x ∈ IRn we have

f (x) ≥ f (xk+1) + 〈sk+1, x − xk+1〉 − εk+1 (6.5)

for all sk+1 ∈ ∂F
εk+1

f (xk+1). From (6.4)

ek+1 − λk+1q(xk, xk+1)ψk+1 ∈ ∂F
εk+1

f (xk+1) (6.6)

where ψk j+1 ∈ ∂◦q(xk, .)(xk+1). From (6.6) and (6.5) we have

f (x) ≥ f (xk+1) + 〈ek+1, x − xk+1〉 − λk+1q(xk, xk+1)〈ψk+1, x − xk+1〉 − εk+1.(6.7)

As q(xk , .)  is locally Lipschitz in IRn then ∂q(xk , .)  is locally bounded, see Proposition 5.15 
from Rockafellar & Wets (1990), then from Lemma 5.1 of Moreno et al. (2011), there exists 
M > 0 such that ||ψk+1|| ≤ M, ∀k. Using the above fact in (6.7) and considering that {xk } 
and {λk } are bounded and q(xk , xk+1) → 0, we have f (x) ≥ limk→∞ f (xk+1) ≥ f (x̄). ��

10



7 Application to location theory: traveling around the world

This section provides an application to location theory in behavioral sciences (economics,
decision theory, management sciences, psychology, sociology,....).

Location theory This discipline makes a clear distinction between, i) transportation prob-
lems where goods are transported from a given location (source) to another one (target) to
satisfy human needs in the target location with, ii) translocation problems where individuals
(not goods) move from one location to an other one to better satisfy their needs.

In mathematics and management sciences, a transportation problem is a special type of
linear programming problem where the objective is to minimize the cost of distributing a
product from a number of sources or origins to a number of destinations.

In economics a translocation problem can be a migration problem where an individual
moves from living in one country to live in an other one, or a changing job problem where a
worker moves from doing a given job in a given city to do the same or a different job in an
other city, or a tourism problem when an individual or a family visits a region of his country,
a city, a landscape, a foreign country.....

The variational rationality approach Our application will be examined in the context of
the (VR) variational rationality approach of stop, continue and go human dynamics where,
each period, individuals constantly navigate (life and move) between stays, i.e., continue
to do, and changes, i.e., stop and start to do different situated activities (Soubeyran, 2009,
2010, 2016, 2021a, b, c, d). A situated activity, i.e., an action, being an activity done in a
given context = environment. The VR approach is a spatial way to model stay and change
human dynamics.

The traveler model The central picture of the VR approach is the psychological traveler
model that makes a clear distinction between two aspects of human dynamics: weak and
strong resistance to move. It offers a very general solution to the Lewin’s celebrated tentative,
i.e., to build a topological approach of psychology (Lewin, 1935, 1936, 1938, 1951). Lewin’s
model of human dynamics is a psychological translocationmodel of how tomove and live in a
psychological life space. This life space includes, for each individual, his internal environment
(needs, goals that help to choose how much of each need to satisfy each period, thoughts and
emotions) and his external environment (landscape, objects, and persons that help or forbid
to satisfy his needs).

Our application: traveling around the world Our application is a simple translocation
model. It poses the question: "How to travel around the world and prepare the trip of a
lifetime". It represents a special instance of the travelermodel in the context ofweak resistance
to move (cf, the proximal algorithm). See, for instance, Moreno et al. (2011), Bento and
Soubeyran (2015a; 2015b). This application can be contrasted with other applications of
the VR approach (changing jobs, see (Bao & Soubeyran, 2019)), improving the work-life
balance (Alfuraidan et al., 2020), transit in migration problems (Fakhar et al., 2020) in the
context of strong resistance to move (i.e., the Ekeland variational principle).

7.1 A variational rationality "world tour" model

For simplification our application concerns a tourist who wants to make a "world tour",
visiting successively different countries until ending his "world tour" in a given country and
decides, eventually, to live there. The problem is: when does he will stop to visit a new
country.
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A simple world tour model For simplification, consider an individual that wants to visit
successively different locations x, y... ∈ X , one location each period. To economize nota-
tions, the space of locations will be a straight line X = IR. Consider two successive periods.
Suppose that, in the previous period, this individual has visited location x ∈ X . Then, to
become able to visit location y ∈ X in the current period, that is, to get access to what he
wants to visit, he must travel from x to y at the beginning of the current period. That is, he
must do the move m = x � y. Suppose also that, as does each simplified version of the VR
model,

(i) the utility of visiting a location z for the first time is g(z) ∈ IR. To economize notations,
this utility is net of costs to visit location z. For simplification we suppose that the utility
of visiting a location for the first and second times are equal. The opposite case, which
is much more realistic, has been examined in Soubeyran (2021b, c, d).

(ii) the physical distance between location x and location y is d(x, y) = ‖y − x‖ .

(iii) travel costs of moving from having visited location x ∈ X in the previous period
to become able to visit location y ∈ X in the current period are T (x, y) ∈ IR+.
We suppose that these travel costs can be modeled as a quasi distance T (x, y) =[
tr (y − x), y ≥ x
tl(x − y), y < x

]

, where tr , tl > 0 model per unit of distance costs to travel from

the right and from the left, depending of the relative position of x and y. If y = x;
travelling costs are zero: T (x, x) = 0.

(iv) the disutility (x, y) = T (x, y)2 of bearing travel costs increases strongly (quadrati-
cally for simplification) with travel costs.

Payoffs to move (change, or stay). A payoff to change P(y/x) = g(y)−ξT (x, y)2, ξ > 0
models a traveler who,

(i) starts from having visited for the first time a location x in the previous period;
(ii) travels, in the current period, from location x to reach a different location y �= x and,
(iii) visits for the first time location y at the end of the current period.

A payoff to stay P(x/x) = g(x)−ξT (x, x)2 = g(x)models a traveler who visits location
x for the second time in the current period. The term ξ > 0 measures the importance given
to the disutility of travel costs. It depends strongly of the personality of the traveler.

7.2 When to start, continue or stop visiting: the VR approach

The main question we pose is: should the traveler stays, or should he changes. Thus, the
following definition.

Aworthwhile balanceTheVR approachmodels the difference between a payoff to change
and a payoff to stay. That is, B(y/x) = P(y/x) − P(x/x) = g(y) − g(x) − ξT (x, y)2.

In this simple context,

(i) the difference A(y/x) = g(y) − g(x) provides a simple formulation of advantages to
move (change rather than stay).

(ii) travel costs define inconveniences to move, I (y/x) = T (x, y).

Motivation to move refers to the utility of advantages to move M(y/x) = U [A(y/x)] ,
where U [.] : A ∈ IR+ �−→ U [A] ∈ IR+ is strictly increasing.

Resistance to move is the disutility of inconveniences to move R(y/x) = D [I (y/x)] , 
where D [.] : I ∈ IR+ �−→ D [I ] ∈ IR+ is strictly increasing.
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In a simple linear quadratic translocation model with weak resistance to move,U [A] = A
and D [I ] = I 2.

Then, in this setting, a worthwhile balance is the difference between advantages to move
and the disutility of inconveniences to move. That is, B(y/x) = A(y/x) − ξ I (y/x)2.

We come back, in this simple context, to the general VR formulation of a worthwhile
balance, as the weighted difference between motivation and resistance to move:

B(y/x) = M(y/x) − ξ R(y/x).

Stop and go dynamics They represent a succession of moves over a succession of periods
(stays or changes). Each period, a move m = x � y can be,

(1) improving, if A(y/x) ≥ 0;
(2) improving enough (satisficing), if A(y/x) ≥ γ > 0;
(3) worthwhile if B(y/x) ≥ 0, worthwhile enough if B(y/x) ≥ γ > 0;
(4) not advantageous, if A(y/x) ≤ 0;

A position x is,
(5) a desired end x = x∗, if A(y/x∗) = g(y) − g(x∗) ≤ 0 for all y ∈ X . That is, if x∗ is a

maximum of g(.).
(6) a critical point x• of a differentiable utility function g(.), if ∇g(x•) = 0;
(7) an approximate critical point if ‖∇g(x•)‖ ≤ δ, δ > 0.

Two other concepts played a major role in the VR approach:
(8) a stationary trap x = x∗, if B(y/x∗) ≤ 0 for all y ∈ X;
(9) a variational trap x∗ relative to x0, if, i) B(x∗/x0) ≥ 0 and, ii) B(z/x∗) ≤ 0 for all z ∈ X .

That is, if, i) it is worthwhile to reach x∗ from x0 and if, ii) it is not worthwhile to leave
x∗.
To save space, these two concepts will be examined elsewhere in the context of coercivity

hypothesis.

Remark 1 The status of travel costs.They represent, within the VR approach, capability costs
to do something. In the traveler example, they model capability costs to visit. They are spend
ex ante (before visiting, as fixed costs). Being able to visit y requires to know what to visit
at location y (what are the most beautiful landscapes to contemplate, what are the more
interesting museums to visit) and how to visit y (what kind of quick and cheap locomotion
to use to visit y, where to eat tasty food,...).

Remark 2 The status of execution costs. They represent, in this paper, costs to visit a location.
They have been included in the utility function.

7.3 AVR formulation of an exact/inexact proximal algorithm

7.3.1 Exact proximal algorithms

An exact proximal algorithm (Martinet, 1970) defined proximal payoffs �(y/x) = f (y) +
ξ ‖y − x‖2 , where f (.) : y ∈ X = IRn �−→ f (y) ∈ IR is an objective function to be
minimized and ξ = λ/2. The algorithm follows a succession of stages k, k + 1, ... The cur-
rent stage k+1 solves the problem argmin

{
�k+1(y/x) = f (y) + ξk+1 ‖y − x‖2 : y ∈ X

}
,

where x = xk ∈ X is the given status quo in the current stage k + 1.
TheVR approach (Soubeyran, 2021a, b, c, d)makes easily a direct link between a payoff to

move and a proximal payoff as follow. Given an utilty function g(.) : y ∈ X �−→ g(y) ∈ IR,
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g∗ = sup {g(y) : y ∈ X} < +∞ defines an aspiration utility level. It is the maximun utility
level an individual can hope to reach. In contrast, f (y) = g∗ − g(y) ≥ 0 represents
the disutility of the frustration level that an individual feels if he does not reach his best
when he performs y ∈ X . Then, in the simple context of the present paper, given that
inconveniences to move I (y/x) can be identified to travel costs T (x, y) (if costs to move are
symmetric, equal to the Euclidean distance) a proximal payoff models a payoff to move, i.e.,
Q(y/x) = �(y/x) = f (y) + ξT (x, y)2.

Then, each current period k+1, a proximal algorithmminimizes the total cost of moving,
i.e., the sum of the disutility of travel costs T (x, y)2 plus the disutility of frustration feelings
f (y) = g∗ − g(y) ≥ 0 coming from not having done his best at the end of the move.

7.4 Interpretation of the results of this paper

7.4.1 Interpretation of our new inexact proximal algorithm

Our new (IPAQ) poses two main conditions, each period k + 1 :
(i) Weak worthwhile moves. Inequality (4.18) can be written

f (xk) − f (xk+1) ≥ (λk+1/2)q(xk, xk+1)2 − εk+1,

with εk+1 > 0 and �+∞
k=0 εk+1 < +∞. This means that each move mk+1 = xk � xk+1

must be, a) almost worthwhile (εk+1 > 0), b) and more and more worthwhile (�+∞
k=0

εk+1 < +∞ implies εk+1 → 0).
(ii) Vanishing marginal total disutilty to move. That is, given that

ek+1 = ϕk+1 + λk+1q(xk, xk+1)ψk+1,

given in (4.5), represents the marginal total disutility to move, such marginal total disu-
tility must be lower enough relative to costs to move, i.e.,

∥
∥ek+1

∥
∥ ≤ σq(xk, xk+1),

(4.4).

Importance of coercivity. An almost finite world. The coercivity hypothesis (H2) (infinity at 
infinity) done in this paper ( f (.) = g∗−g(.) coercive) means that the utility g(y) = g∗− f (y) 
to visit a location y ∈ X far away of the origin (initial location) in the space X = IRn (n = 1, 
in the example) becomes strongly negative. This models a finite world with boundaries. 
This is a very realistic hypothesis in behavioral sciences. The quasi distance hypothesis 
models, within the VR approach, asymmetric costs of moving (see also the present example 
with traveling costs). Hypothesis (H3) means that costs to move are not too asymmetric. 
Hypothesis (H1)’, i.e., upper semicontinuity, prevents downward jumps of the utility function 
g(.), but allows upward jumps.

Results: Ending in "almost zero" or zero motivation to move . This paper shows that, under 
the list of hypothesis given in Theorem 4.3, (H1)’, (H2), (H3), each accumulation point of 
the sequence {xk }, generated by the (IPAQ) is a generalized limiting critical point of the 
problem (3.1). That is, in behavioral terms, in the context of the VR approach, a succession 
of almost worthwhile moves converges to a critical point where the marginal utility to move 
∇g(x∗) (when g is differentiable) is zero. Thus, ending in a zero, or almost zero, motivation 
to move.

Interpretations of theorems 5.1 and 6.1 are similar. However, in theorem 6.1, the end point 
x∗ maximizes the utility function, given its concavity.
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8 Conclusions

We present a general inexact proximal algorithm using quasi distances, called (IPAQ), to find
critical points and minimizer points of convergent subsequences generated by the algorithm.
Under the assumption of coercivity of the objective function, we analyze the cases of lower
semicontinuous, locally lipschitz and convex functions and show that all accumulation points
of the sequence generated by the (IPAQ) algorithm are critical points (minimizer points for
the convex case) of the minimization problem.

If we consider (IPAQ) with εk+1 = 0, for all k = 0, 1, ... and the algorithm does not
finish (that is, xk+1 �= xk for all k = 1, 2, 3, ... ) then xk+ j �= xk for all j = 1, 2, 3, ...
and this mean that, in our model, for the asymptotic case the tourist cannot visit the same
place twice. On the other hand, if the scalar error εk+1 > 0, for some k = 0, 1, ... then,
for the asymptotic case, it is possible to have xk+ j0 = xk, for some j0 then, it is easy to
prove that the point xk is an accumulation point of the sequence {xk} and therefore a critical
point (minimum in the convex case) of the problem (3.1). If the algorithm finishes in a finite
number of iterations, the actual point is a critical point (minimum in the convex case) of the
function or an approximate critical point (approximate minimum in the convex case), that is,
ek+1 ∈ ∂εk f (x

k+1).

Coercivity is very important for two points of view, theoretical and applied: At the
mathematical level, a coercitivity assumption implies that for each c ∈ IR, the level set
{x : f (x) ≤ c} is bounded and, therefore, the sequence generated by any descent algorithm
(in particular the proximal point algorithm) is bounded. On the other hand, to obtain con-
vergence results using a Kurdyka-Lojasiewicz (KL) inequality it is needed, see for example
(Attouch et al., 2013; Bento&Soubeyran, 2015a, b;Moreno et al., 2011), to take the sequence
generated by the algorithm to be bounded. Then, coercivity is a condition that helps the KL
condition to obtain global convergence results.

At the moment, it is not known if in the absence of (3.2), but under the assumption that
the function satisfies the Kurdyka–Lojasiewic property on the set of accumulation points,
is possible to obtain the same results of convergence. This may be a future work for our
research. However, a result in this direction was given in the paper authored by Soubeyran
and Souza (2020). The authors, using a w-distance (and in the absence of the hypotheses
(3.2)) as regularized term, proved the convergence of bounded sequences generated by a
general descent method proposed by Attouch et al. (2013).

In this paper, we introduce two new subdifferentials, the generalized limiting subdifferen-
tial ∂̄ f (x), see Definition 2.1,(e), and the ε−Clarke subdifferential in (5.1) which is different
between all the ε−Clarke subdifferential introduced by other authors. In this sense, the study
of the properties of these subdifferentials are welcome.
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