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Introduction

The proximal point method, introduced by [START_REF] Martinet | Régularisaton, d'inéquations variationelles par approximations successives[END_REF] to solve the minimization problem min{ f (x) : x ∈ IR n } generates a sequence {x k } given by x 0 ∈ IR n , and

x k ∈ arg min{ f (x) + (λ k /2)||x -x k-1 || 2 : x ∈ IR n }, (1.1)
where λ k is a certain positive parameter. It is well known, see [START_REF] Güler | New proximal point proximal algorithms for convex minimization[END_REF], that if f is convex in (1.1) and {λ k } satisfies +∞ k=1 (1/λ k ) = +∞, then lim k→∞ f (x k ) = inf f ; and if the optimal set is nonempty, we show that {x k } converges to an optimal solution of the problem. Furthermore, if f is quasiconvex then the sequence converges to a critical point of the problem, see [START_REF] Quiroz | Proximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifolds[END_REF][START_REF] Quiroz | Full convergence of the proximal point method for quasiconvex function on Hadamard manifolds[END_REF].

To make possible an application of the proximal point method to solve problems in Computer Theory [START_REF] Romaguera | Applications of utility functions defined on quasi-metric spaces[END_REF], Economics (consumer choice and utility functions) [START_REF] Levin | Some applications of set-valued mappings in mathematical economics[END_REF], and Behavioral Sciences [START_REF] Soubeyran | Variational rationality and the unsatisfied man: Routines and the course pursuit between aspirations, capabilities and beliefs[END_REF][START_REF] Janeiro | Motivational dynamics in the development of career attitudes among adolescents[END_REF][START_REF] Hirschi | Dynamics in Career development. Personal and organizational perspective[END_REF] we need to consider in (1.1) a non convex function f and a quasi distance q(x, x k-1 ) instead of the Euclidan norm ||xx k-1 ||. Thus, we consider the proximal point algorithm with quasi distances given by the following iteration:

x k ∈ arg min{ f (x) + (λ k /2)q 2 (x, x k-1 ) : x ∈ IR n }.

(1.2)

In 2011, [START_REF] Moreno | A proximal algorithm with quasi distance. Application to Habit's Formation[END_REF] have been studied, for the first time, the convergence of the sequence {x k } generated by the above iteration and proved that if f satisfies a Kurdyka-Lojasiewicz condition on the set of critical points and {x k } is bounded then this sequence converges to a critical point of the problem. Moreover, the authors presented an application to habit's formation and observed that the classical proximal algorithm of [START_REF] Martinet | Régularisaton, d'inéquations variationelles par approximations successives[END_REF] and [START_REF] Rockafellar | Monotone operations and the proximal point method[END_REF] is unable to procure such an application in Economics and Social Sciences.

In 2015, Bento and Soubeyran (2015b), motivated by the papers of [START_REF] Attouch | Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods[END_REF] and [START_REF] Moreno | A proximal algorithm with quasi distance. Application to Habit's Formation[END_REF] presented an inexact version of the proximal point method using quasi distance given by the following main iteration: For k = 0, 1, 2, ..., given x k ∈ IR n , find x k+1 ∈ IR n and ϕ k+1 ∈ IR n such that

f (x k+1 ) ≤ f (x k ) -λ k+1 (1 -σ ) (q(x k , x k+1 )) (1.3) ϕ k+1 ∈ ∂ f (x k+1 ) (1.4) ψ k+1 ∈ ∂q(x k , .)(x k+1 ) (1.5) ||ϕ k+1 || ≤ b ((q(x k , x k+1 )))||ψ k+1 || (1.6)
where (.) : [0, +∞) -→ [0, +∞) satisfies some adequate conditions as definided in ( 2) and (3) of Bento & Soubeyran (2015a), δ ∈ (0, 1) and ∂ f denotes the limiting subdifferential of f . Assuming that the sequence {x k } is bounded and that f satisfies a Kurdyka-Lojasiewicz inequality condition, the authors proved that the sequence converges to a critical point of f , studied the rate of convergence of the sequence and introduced an application to change dynamics in behavioral sciences. The above algorithm has been applied to routine's formation with resistance to change, following worthwhile changes, see (Bento & Soubeyran, 2015a).

In this paper, motivated from the above papers and the work of [START_REF] Solodov | A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator[END_REF], we introduce other inexact iteration that consider two types of errors, scalar and vectorial, in the following way: For k = 0, 1, 2, ..., given x k ∈ IR n , find x k+1 ∈ IR n and ϕ k+1 ∈ IR n such that

f (x k+1 ) ≤ f (x k ) - λ k+1 2 q 2 (x k , x k+1 ) + k+1 (1.7) ϕ k+1 ∈ ∂ k+1 f (x k+1 ) (1.8) ||e k+1 || ≤ σ q(x k , x k+1 ), (1.9)
where σ > 0,

e k+1 = ϕ k+1 + λ k+1 q(x k , x k+1 )ψ k+1 (1.10) ψ k+1 ∈ ∂q(x k , .)(x k+1 ),
(1.11)

and the scalar error k+1 satisfies:

∞ k=0 k+1 < +∞.
(1.12)

The error criterion (1.7) is a k+1 sufficient-decrease condition and conditions (1.8),(1.9) and (1.10) have been introduced by [START_REF] Solodov | A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator[END_REF] to find zeroes of maximal monotone operators but considering an extragradient condition.

We should compare the two algorithms: Observe that condition (1.3) in the algorithm of Bento and Soubeyran (2015b) has not a scalar error condition and so their inequality is not inexact compared with (1.7) of the proposed algorithm. Also, we consider -subdifferentials in (1.8). The condition (1.6) of Bento & Soubeyran (2015a) is more general but it does not include condition (1.10) of the proposed algorithm. However, sufficient conditions such that equation (1.10) satisfies equation (1.6) are λ k ||ψ k+1 || ≥ 1, σ < 1 and {λ k } bounded. In fact, from (1.10) and (1.9) we have

||e k+1 || 2 ≤ σ 2 q(x k , x k+1 ) 2 ≤ σ 2 (||ϕ k+1 || 2 + ||λ k+1 q(x k , x k+1 )ψ k+1 || 2 ).
As σ < 1. Then, applying Lemma 4.1 of [START_REF] Attouch | Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods[END_REF] we obtain that ||ϕ k+1 || ≤ Mλ k+1 q(x k , x k+1 )||ψ k+1 ||. Due that {λ k } is bounded then, we obtain (1.6). Thus, we may conclude that the inexact algorithm proposed by Bento & Soubeyran (2015a) and the inexact algorithm proposed in this paper are, in general, different.

In this paper we are interested in the analysis of convergence of the proposed algorithm when f is an arbitrary coercive function (may be nonconvex, nonsmooth), that is, that does not need to satisfy the Kurdyka-Lojasiewicz property studied by Bento and Soubeyran (2015b). Observe even that a convex function does not need to satisfy the Kurdyka-Lojasiewicks condition, see for example Theorem 36 of [START_REF] Bolte | Characterizations of Lojasiewicz inequalities: Subgradient flows, talweg, convexity[END_REF]. On the other hand, we are also interested in the application of the proposed algorithm to Behavioral Sciences, in particular we study an application to traveler problem in the context of a recent theory of stay and changes human dynamics called variational rationality approach.

This paper examines the convergence of the proposed algorithm. In fact, assuming that f is a proper lower semicontinuous and coercive function we prove that the sequence generated by the proposed algorithm is well defined, bounded and if, furthermore, f is continuous on dom( f ), then all accumulation points of the sequence are generalized limiting critical points of the problem. If f is locally Lipschitz on IR n we prove that the accumulation points are Clarke critical points of the problem and if f is convex then these accumulation points are minimal points of the minimization problem.

The paper is organized as follows. In Sect. 2 we presnt the basic aspects on subdifferential and quasi distances. In Sect. 3 we present the problem and introduced the assumptions.

In Sect. 4 we analyze the convergence of the proposed algorithm for lower semicontinuous functions. In Sect. 5 we study the convergence of the algorithm for locally Lipschitz functions.

In Sect. 6 we analyze the convergence when the function is convex. In Sect. 7 we consider, as an application of the proposed algorithm, a traveler problem, in the context of a recent theory of stays and changes human dynamics, i.e., continue, stop and start doing things in behavioral sciences. That is, the variational rationality approach. Finally in Sect. 8 we give some conclusions.

Basic facts

Fréchet and limiting subdifferentials

Definition 2.1 Let f : IR n → IR ∪ {+∞} be a proper function.

(a) For each x ∈ dom( f ), the set of regular subgradients (also called Fréchet subdifferential) of f at x, denoted by ∂ f (x), is the set of vectors v ∈ IR n such that

f (y) ≥ f (x) + v, y -x + o( y -x ), where lim y→x o( y -x ) y -x = 0. Or equivalently, ∂ f (x) := v ∈ IR n : lim inf y =x, y→x f (y)-f (x)-v,y-x ||y-x|| ≥ 0 . If x / ∈ dom( f ) then ∂ f (x) = ∅. (b)
The set of general subgradients (also called limiting subdifferential) of f at x ∈ IR n , denoted by ∂ f (x), is defined as follows:

∂ f (x) := v ∈ IR n : ∃ x l → x, f (x l ) → f (x), v l ∈ ∂ f (x l ) and v l → v .
(c) For each x ∈ dom( f ), the set of -regular subgradients (also called -Fréchet subdifferential) of f at x, denoted by ∂ f (x), is the set of vectors v ∈ IR n such that

f (y) ≥ f (x) + v, y -x -+ o( y -x ), where lim y→x o( y -x ) y -x = 0. Or equivalently, ∂ f (x) := v ∈ IR n : lim inf y =x, y→x f (y)-f (x)-v,y-x ||y-x|| ≥ -. If x / ∈ dom( f ) then ∂ f (x) = ∅. (d)
The set of -general subgradients (also called -limiting subdifferential) of f at x ∈ IR n , denoted by ∂ f (x), is defined as follows:

∂ f (x) := v ∈ IR n : ∃ x l → x, f (x l ) → f (x), v l ∈ ∂ f (x l ) and v l → v .
(e) The set of generalized limiting subdifferential of f at x ∈ IR n , denoted by ∂ f (x), is defined as follows: 

∂ f (x) := v ∈ IR n : ∃ x l → x, f (x l ) → f (x), v l ∈ ∂ l f (x l ), v l → v,
∂( f + g)( x) ⊂ ∂ f ( x) + ∂ g( x)
Proof See [START_REF] Mordukhovich | Variational analysis and generalized differentiation I: Basic theory[END_REF], Theorem 2.33.

Quasi distances

In this section we give the definition of quasidistance and present some properties which will be used in the following section.

Definition 2.2 [START_REF] Stojmirović | Quasi-metric spaces with measure[END_REF] Let X be a set. A mapping q : X × X → I R + is called a quasi distance if for all x, y, z ∈ X , 1. q(x, y) = q(y, x) = 0 ⇔ x = y, 2. q(x, z) ≤ q(x, y) + q(y, z).

From Definition 2.2, if q is also symmetric, that is, for all x, y ∈ X , q(x, y) = q(y, x), then q is a distance. Therefore the concept of quasi distance generalizes the concept of a distance.

Example 2.1 [START_REF] Concilio | Quasi-metric spaces and point-free geometry[END_REF] The function q

: I R × I R → I R + defined by q(x, y) = 0 if x ≤ y, 1 otherwise.
generates a quasi distance on I R.

Example 2.2 (Example 3.3 of [START_REF] Moreno | A proximal algorithm with quasi distance. Application to Habit's Formation[END_REF] For each i = 1, ..., n, we consider c - i , c + i > 0 and the function q i : I R × I R → I R + defined by

q i (x i , y i ) = c + i (y i -x i ) if y i -x i > 0, c - i (x i -y i ) if y i -x i ≤ 0, which is a quasi distance on I R. Therefore, q(x, y) = n i=1 q i (x i , y i ) is a quasi distance on I R n . On the other hand, for each z ∈ I R n it holds q(x, z) = n i=1 q i (x i , z i ) = n i=1 max c + i (z i -x i ), c - i (x i -z i ) , x ∈ I R n , Thus q( • , z) is a convex function. By the same reasoning, q(z, • ) is convex.
Consider the following condition on the quasi distance q(., .): there is a positive constant β such that

q(x, y) ≤ β||x -y||, ∀ x, y ∈ IR n . (2.1)
We note that the quasi distances of Example 2.2 verifies (2.1).

The next results are important for our study.

Proposition 2.4 Let q : IR n × IR n → IR + be a quasi distance that verifies (2.1). Then for each z ∈ IR n the functions q(z, • ) and q( • , z) are Lipschitz continuous.

Proof See Proposition 3.6 of [START_REF] Moreno | A proximal algorithm with quasi distance. Application to Habit's Formation[END_REF].

Proposition 2.5 Let z ∈ IR n . If q verifies (2.1) then q 2 (z, • ) and q 2 ( • , z) are locally Lipschitz continuous functions on IR n .

Proof See Proposition 3.7 of [START_REF] Moreno | A proximal algorithm with quasi distance. Application to Habit's Formation[END_REF].

The problem

Consider the optimization problem:

min{ f (x) : x ∈ IR n } (3.1)
where f : IR n → IR ∪ {±∞} is a extended proper function satisfying the following assumptions:

(H 1 ) f is a proper lower semicontinuous function (H 2 ) f is coercive, that is, lim ||x||→+∞ f (x) = +∞ (H 3 ) q : IR n × IR n → IR + is a quasi distance satisfying: there exists β > 0 such that q(x, y) ≤ β||x -y||. (3.2)
Observe that the main justification for using coercive functions, assumption (H2), instead of functions satisfying the Kurdyka-Lojasiewicz property is that in behavioral sciences we need global solutions and not only local solutions as for Kurdyka-Lojasiewicz functions. Furthermore, the Kurdyka-Lojasiewicz hypothesis can be very difficult to verify.

Inexact proximal algorithm with quasi distance (IPAQ) for lower semicontinous functions

IPAQ Initialization: Choose a quasi distance q(., .) defined on IR n , an initial point x 0 ∈ IR n , a real number σ > 0 and two positive real sequences {λ k+1 } and { k+1 } such that

+∞ k=0 k+1 < +∞. (4.1) Main Step: For k = 0, 1, 2, ..., given x k ∈ IR n , find x k+1 ∈ IR n and ϕ k+1 ∈ IR n such that f (x k+1 ) ≤ f (x k ) - λ k+1 2 q 2 (x k , x k+1 ) + k+1 (4.2) ϕ k+1 ∈ ∂ k+1 f (x k+1 ) (4.3) ||e k+1 || ≤ σ q(x k , x k+1 ) (4.4)
where

e k+1 = ϕ k+1 + λ k+1 q(x k , x k+1 )ψ k+1 , (4.5) ψ k+1 ∈ ∂q(x k , .)(x k+1 ), ∂ k+1 f is given by Definition 2.1, (d). Stop Criterion: If x k+1 = x k or 0 ∈ ∂ f (x k+1 ), then stop. Otherwise, do k ← k + 1 and
return to Main Step.

Theorem 4.1 Under assumptions (H 1 )-(H 3 ), for each k, there exists (x k+1 ,ϕ k+1 ) satisfying (4.2), (4.3) and (4.4), that is, the (IPAQ) is well defined.

Proof Given x k ∈ IR n , consider the problem min{ f (x) + λ k+1 2 q 2 (x k , x) : x ∈ IR n }.
From the lower semicontinuity of f and q 2 (x k , .) and coercivity of f , there exists x k+1 such that

f (x k+1 ) + λ k+1 2 q 2 (x k , x k+1 ) ≤ f (x) + λ k+1 2 q 2 (x k , x),
for all x ∈ IR n . Taking x = x k we get (4.2). On the other hand, from the optimality condition, see Proposition 2.2, we have

0 ∈ ∂ f (.) + λ k+1 2 q 2 (x k , .) (x k+1 )
Due to Proposition 2.1 and Proposition 2.3 we have (4.3) and (4.5) with e k+1 = 0.

Remark 4.1 The result of the above theorem is also true if we substitute the condition (3.2) in assumption (H 3 ) by the assumption that q(x, .) :

IR n → IR + is lower semicontinuous for each x ∈ IR n .
Lemma 4.1 Let {v k },{γ k }, and {β k } be nonnegative sequences of real numbers satisfying

v k+1 ≤ (1 + γ k ) v k + β k and such that ∞ k=1 β k < ∞, ∞ k=1 γ k < ∞.Then, the sequence {v k } converges.
Proof See Lemma 2, pp. 44, of [START_REF] Polyak | Introduction to optimization[END_REF].

Proposition 4.1 Under assumptions (H 1 ), (H 2 ), (H 3 ) and the sequence {x k }, generated by the (IPAQ), satisfies:

(i) { f (x k )} converges; (ii) If λ -< λ k+1 , for some λ -> 0, then q(x k , x k+1 ) converges to zero; (iii) {x k } is bounded; (iv) If λ -< λ k+1
, for some λ -> 0, and {x k j } converges to x, then {x k j +1 } converges to

x.

Proof (i) From (4.2) we have

f (x k+1 ) ≤ f (x k ) - λ k+1 2 q 2 (x k , x k+1 ) + k+1 (4.6) Lemma 4.1 and (4.1) imply that { f (x k )} converges. (ii) From (4.6) and λ -< λ k+1 , we have q 2 (x k , x k+1 ) ≤ 2 λ -f (x k ) -f (x k+1 ) + k+1 . Given that { f (x k )} converges and { k+1 } converges to zero, then taking k → +∞ we obtain the result. (iii) From (4.6) we have f (x k ) ≤ f (x 0 ) + k-1 l=0 k+1 ≤ f (x 0 ) + +∞ l=0 k+1 < +∞. This implies that x k ∈ L f (α 0 ) := {x ∈ IR n : f (x) ≤ α 0 } where α 0 = f (x 0 ) + +∞ l=0 k+1 . As L f (α 0 ) is bounded (because f is coercive) then {x k } is bounded.
(iv) From the triangular inequality property we obtain

||x k j +1 -x|| ≤ ||x k j +1 -x k j || + ||x k j -x|| ≤ βq(x k j , x k j +1 ) + ||x k j -x||,
where the last inequality is due to (3.2). As q(x k j +1 , x k j ) converges to zero the result follows.

Remark 4.2

The results (i), (ii) and (iii) of the above proposition are also true if we substitute the condition (3.2) in assumption (H 3 ) by the assumption that q(x, .) : IR n → IR + is lower semicontinuous for each x ∈ IR n . However, to obtain the item (iv) is necessary the condition (3.2). Now, define the foollowing set

U := {x ∈ IR n : f (x) ≤ lim k→+∞ f (x k )}.
Observe that due to assumptions (H 1 )-(H 2 ) this set is nonempty closed and bounded. Theorem 4.2 Under assumptions (H 1 )-(H 3 ), each accumulation point of the sequence {x k }, generated by the (IPAQ), belongs to U .

Proof Let x ∈ IR n be an accumulation point of {x k }, then there exists {x k j } such that x k j → x. As f is lower semicontinuous and

{ f (x k )} converges then f ( x) ≤ lim j→∞ f (x k j ) = lim k→∞ f (x k ). That is, x ∈ U .
Remark 4.3 The result of the above theorem is also true if we substitute the condition (3.2) in assumption (H 3 ) by the assumption that q(x, .) :

IR n → IR + is lower semicontinuous for each x ∈ IR n .
Consider the following assumption:

(H 1 ) f : IR n → IR ∪ {±∞} is proper lower semicontinuous and continuous on dom( f ).

Observe that there are functions that are continuous on their domain but are not lower semicontinuous on IR n , consider for example the function f (x) = 3, for x ∈ (1, 2] and +∞, otherwise.

Theorem 4.3 Under assumptions (H 1 ) , (H 2 ), (H 3 ), and that 0 < λ -< λ k < λ + , each accumulation point of the sequence {x k }, generated by the (IPAQ), is a generalized limiting critical point of the problem (3.1).

Proof Let x ∈ IR n be an accumulation point of {x k }, then there exists {x k j } such that x k j → x and due to Proposition 4.1, (iv), x k j +1 → x. From (4.5) and the triangular inequality we have

||ϕ k j +1 || ≤ ||e k j +1 || + λ k j +1 q(x k j , x k j +1 )||ψ k j +1 || ≤ σ + λ k j +1 ||ψ k j +1 || q(x k j , x k j +1 ) (4.7)
where the last inequality comes from (4.4). As q(x k , .) is locally Lipschitz in IR n then ∂q(x k , .) is locally bounded, see Proposition 9.13 of [START_REF] Rockafellar | Variational analysis[END_REF], then from Lemma 5.1 of [START_REF] Moreno | A proximal algorithm with quasi distance. Application to Habit's Formation[END_REF], there exists M > 0 such that ||ψ k j +1 || ≤ M, ∀ j. Thus, the above inequality (4.7) implies that ||ϕ k j +1 || ≤ (σ + λ + M) q(x k j , x k j +1 ). Therefore, there exists

x k j +1 → x, with f (x k j +1 ) → f ( x) and ϕ k j +1 → 0 with ϕ k j +1 ∈ ∂ k j +1 f (x k j +1 ), then from Definition 2.1, 0 ∈ ∂ f ( x).

Inexact proximal algorithm with quasi distance (IPAQ) for lower semicontinous and locally lipschitz functions

In this section we assume that the function f :

IR n → IR ∪ {±∞} is locally Lipschitz on IR n , thus dom( f ) is open. We consider the -Clarke subdifferential ∂ • f (x) := w ∈: IR n : f • (x, v) ≥ w, v -, ∀ v ∈ IR n , (5.1)
where

f • (x, v) = lim sup t↓0 y→x f (y + tv) -f (y) t .
Now, we consider a variant of the (IPAQ). We will only present the main step and the stop criterion because the initialization step is the same as in the (IPAQ). IPAQ2

Main

Step: For k = 0, 1, 2, ..., given x k ∈ IR n , find x k+1 ∈ IR n and ϕ k+1 ∈ IR n such that

f (x k+1 ) ≤ f (x k ) - λ k+1 2 q 2 (x k , x k+1 ) + k+1 (5.2) ϕ k+1 ∈ ∂ • k+1 f (x k+1 ) (5.3) ||e k+1 || ≤ σ q(x k , x k+1 ), ( 5.4) 
where

e k+1 = ϕ k+1 + λ k+1 q(x k , x k+1 )ψ k+1 (5.5)
where

ψ k+1 ∈ ∂ • q(x k , .)(x k+1 ), ∂ • k+1 f is given by (5.1). Stop Criterion: If x k+1 = x k or 0 ∈ ∂ • f (x k+1
), then stop. Otherwise, do k ← k + 1 and return to Main Step.

We assume the following assumption:

(H 1 ) f : IR n → IR ∪ {±∞} is proper lower semicontinuous and locally Lipschitz on dom( f ).

Observe that under the assumptions (H 1 ) , (H 2 ), (H 3 ), the results of Theorem 4.1, Proposition 4.1 and Theorem 4.2 are maintained.

Theorem 5.1 Under assumptions (H 1 ) , (H 2 ), (H 3 ), and 0 < λ -< λ k < λ + , each accumulation point of the sequence {x k }, generated by the (IPAQ2), is a Clarke critical point of the problem (3.1).

Proof From (5.5), e k+1 -λ k+1 q(x k , x k+1 )ψ k+1 ∈ ∂

• k+1 f (x k+1 ), so f • (x k+1 , v) ≥ e k+1 , v -λ k+1 q(x k , x k+1 ) ψ k+1 , v -k+1 , ∀v ∈ IR n .
Let x be a limit of {x k j }, which implies that {x k j +1 } converges to x. Then,

f • (x k j +1 , v) ≥ e k j +1 , v -λ k j +1 q(x k j , x k j +1 )M||v|| -k j +1 ,
where M satisfies ||ψ k j +1 || ≤ M. Taking lim sup in the above inequality and using the property that f

• (., .) is upper semicontinuous we obtain that f • ( x, v) ≥ lim sup j→+∞ f • (x k j +1 , v) ≥ 0. It follows that 0 ∈ ∂ • f ( x).
Remark 5.1 If f is a proper, lower semicontinuous and convex function and dom( f ) is open, then f satisfies the assumption (H 1 ) and thus, from Theorem 5.1, we obatin that each accumulation point of the sequence {x k }, generated by the (IPAQ2), is a minimum point of problem (3.1). However, if dom( f ) is not open then we should search another way to obtain that result.

Remark 5.2

We should observe that if f is convex and differentiable then,

∂ • f (x) ⊂ ∂ F f (x) = ∇ f (x) + B(x, 0), where ∂ F f is the Fenchel -subdifferential: ∂ F f (x) = {s ∈ IR n : f (y) ≥ f (x) + s, y -x -, for all y ∈ IR n }.
(5.6)

That is, for the convex and differentiable case, the Fenchel -subdifferential includes the Clarke -subdifferential defined in (5.1).

The above remarks motive us to study the (IPAQ) considering the Fenchel -subdifferential when f is a proper lower semicontinuous convex function.

Inexact proximal algorithm with quasi distance (IPAQ) for lower semicontinous convex functions

In this section, we complete the convergence of the method for arbitrary proper lower semicontinous convex functions. For that, we assume the following condition:

(H 1 ) f is a proper lower semicontinuous and convex function.

As in the previous section, we will only present the main step and the stop criterion because the initialization step is the same as in the (IPAQ). IPAQ3

Main

Step: For k = 0, 1, 2, ..., given x k ∈ IR n , find x k+1 ∈ IR n and ϕ k+1 ∈ IR n such that

f (x k+1 ) ≤ f (x k ) - λ k+1 2 q 2 (x k , x k+1 ) + k+1 (6.1) ϕ k+1 ∈ ∂ F k+1 f (x k+1 ) (6.2) ||e k+1 || ≤ σ q(x k , x k+1 ) (6.3)
where e k+1 = ϕ k+1 + λ k+1 q(x k , x k+1 )ψ k+1 (6.4)

ψ k+1 ∈ ∂ • q(x k , .)(x k+1 ), ∂ F k+1 f is given in (5.6). Stop Criterion: If x k+1 = x k or 0 ∈ ∂ F f (x k+1
), then stop. Otherwise, do k ← k + 1 and return to Main Step.

Theorem 6.1 Under assumptions (H 1 ) , (H 2 ), (H 3 ) and that {λ k } is bounded, each accumulation point of the sequence {x k }, generated by the (IPAQ3), is an optimal solution of the problem (3.1).

Proof Let x ∈ IR n be an accumulation point of {x k }, then there exists {x k j } such that

x k j → x. As f is lower semicontinuous and { f (x k )} converges then f ( x) ≤ lim k→∞ f (x k ).
On the other hand, as f is convex, then for each x ∈ IR n we have

f (x) ≥ f (x k+1 ) + s k+1 , x -x k+1 -k+1 (6.5) for all s k+1 ∈ ∂ F k+1 f (x k+1 ). From (6.4) e k+1 -λ k+1 q(x k , x k+1 )ψ k+1 ∈ ∂ F k+1 f (x k+1 ) (6.6)
where ψ k j +1 ∈ ∂ • q(x k , .)(x k+1 ). From (6.6) and (6.5) we have

f (x) ≥ f (x k+1 ) + e k+1 , x -x k+1 -λ k+1 q(x k , x k+1 ) ψ k+1 , x -x k+1 -k+1 .(6.7)
As q(x k ,.) is locally Lipschitz in IR n then ∂q(x k ,.) is locally bounded, see Proposition 5.15 from [START_REF] Rockafellar | Variational analysis[END_REF], then from Lemma 5.1 of [START_REF] Moreno | A proximal algorithm with quasi distance. Application to Habit's Formation[END_REF], there exists M > 0 such that ||ψ k+1 || ≤ M, ∀k. Using the above fact in (6.7) and considering that {x k } and {λ k } are bounded and q(x k , x k+1 ) → 0, we have f (x) ≥ lim k→∞ f (x k+1 ) ≥ f (x¯).

Application to location theory: traveling around the world

This section provides an application to location theory in behavioral sciences (economics, decision theory, management sciences, psychology, sociology,....).

Location theory This discipline makes a clear distinction between, i) transportation problems where goods are transported from a given location (source) to another one (target) to satisfy human needs in the target location with, ii) translocation problems where individuals (not goods) move from one location to an other one to better satisfy their needs.

In mathematics and management sciences, a transportation problem is a special type of linear programming problem where the objective is to minimize the cost of distributing a product from a number of sources or origins to a number of destinations.

In economics a translocation problem can be a migration problem where an individual moves from living in one country to live in an other one, or a changing job problem where a worker moves from doing a given job in a given city to do the same or a different job in an other city, or a tourism problem when an individual or a family visits a region of his country, a city, a landscape, a foreign country.....

The variational rationality approach Our application will be examined in the context of the (VR) variational rationality approach of stop, continue and go human dynamics where, each period, individuals constantly navigate (life and move) between stays, i.e., continue to do, and changes, i.e., stop and start to do different situated activities [START_REF] Soubeyran | Variational rationality, a theory of individual stability and change: worthwhile and ambidextry behaviors[END_REF][START_REF] Soubeyran | Variational rationality and the unsatisfied man: Routines and the course pursuit between aspirations, capabilities and beliefs[END_REF][START_REF] Soubeyran | Variational rationality. A theory of worthwhile stay and change approach-avoidance transitions ending in traps[END_REF](Soubeyran, , 2021a, b, c, d), b, c, d). A situated activity, i.e., an action, being an activity done in a given context = environment. The VR approach is a spatial way to model stay and change human dynamics.

The traveler model The central picture of the VR approach is the psychological traveler model that makes a clear distinction between two aspects of human dynamics: weak and strong resistance to move. It offers a very general solution to the Lewin's celebrated tentative, i.e., to build a topological approach of psychology [START_REF] Lewin | A dynamic theory of personality[END_REF][START_REF] Lewin | Principles of topological psychology[END_REF][START_REF] Lewin | The conceptual representation and measurement of psychological forces[END_REF][START_REF] Lewin | Intention, will and need[END_REF]). Lewin's model of human dynamics is a psychological translocation model of how to move and live in a psychological life space. This life space includes, for each individual, his internal environment (needs, goals that help to choose how much of each need to satisfy each period, thoughts and emotions) and his external environment (landscape, objects, and persons that help or forbid to satisfy his needs).

Our application: traveling around the world Our application is a simple translocation model. It poses the question: "How to travel around the world and prepare the trip of a lifetime". It represents a special instance of the traveler model in the context of weak resistance to move (cf, the proximal algorithm). See, for instance, [START_REF] Moreno | A proximal algorithm with quasi distance. Application to Habit's Formation[END_REF], Bento and Soubeyran (2015a;2015b). This application can be contrasted with other applications of the VR approach (changing jobs, see [START_REF] Bao | Variational principles in set optimization with domination structures and application to changing jobs[END_REF]), improving the work-life balance [START_REF] Alfuraidan | Ekeland variational principle on quasi-weighted graphs. Improving the work-family balance[END_REF], transit in migration problems [START_REF] Fakhar | Variational rationality, variational principles and the existence of traps in a changing environment[END_REF] in the context of strong resistance to move (i.e., the Ekeland variational principle).

A variational rationality "world tour" model

For simplification our application concerns a tourist who wants to make a "world tour", visiting successively different countries until ending his "world tour" in a given country and decides, eventually, to live there. The problem is: when does he will stop to visit a new country.

A simple world tour model For simplification, consider an individual that wants to visit successively different locations x, y... ∈ X , one location each period. To economize notations, the space of locations will be a straight line X = IR. Consider two successive periods. Suppose that, in the previous period, this individual has visited location x ∈ X . Then, to become able to visit location y ∈ X in the current period, that is, to get access to what he wants to visit, he must travel from x to y at the beginning of the current period. That is, he must do the move m = x y. Suppose also that, as does each simplified version of the VR model, (i) the utility of visiting a location z for the first time is g(z) ∈ IR. To economize notations, this utility is net of costs to visit location z. For simplification we suppose that the utility of visiting a location for the first and second times are equal. The opposite case, which is much more realistic, has been examined in Soubeyran (2021b, c, d). (ii) the physical distance between location x and location y is d(x, y) = yx . (iii) travel costs of moving from having visited location x ∈ X in the previous period to become able to visit location y ∈ X in the current period are T (x, y) ∈ IR + . We suppose that these travel costs can be modeled as a quasi distance T (x, y) = t r (yx), y ≥ x t l (xy), y < x , where t r , t l > 0 model per unit of distance costs to travel from the right and from the left, depending of the relative position of x and y. If y = x; travelling costs are zero: T (x, x) = 0. (iv) the disutility (x, y) = T (x, y) 2 of bearing travel costs increases strongly (quadratically for simplification) with travel costs.

Payoffs to move (change, or stay).

A payoff to change P(y/x) = g(y) -ξ T (x, y) 2 , ξ > 0 models a traveler who, (i) starts from having visited for the first time a location x in the previous period; (ii) travels, in the current period, from location x to reach a different location y = x and, (iii) visits for the first time location y at the end of the current period.

A payoff to stay P(x/x) = g(x)-ξ T (x, x) 2 = g(x) models a traveler who visits location x for the second time in the current period. The term ξ > 0 measures the importance given to the disutility of travel costs. It depends strongly of the personality of the traveler.

When to start, continue or stop visiting: the VR approach

The main question we pose is: should the traveler stays, or should he changes. Thus, the following definition.

A worthwhile balance The VR approach models the difference between a payoff to change and a payoff to stay. That is, B(y/x) = P(y/x) -P(x/x) = g(y)g(x) -ξ T (x, y) 2 .

In this simple context, (i) the difference A(y/x) = g(y)g(x) provides a simple formulation of advantages to move (change rather than stay). (ii) travel costs define inconveniences to move, I (y/x) = T (x, y). Then, in this setting, a worthwhile balance is the difference between advantages to move and the disutility of inconveniences to move. That is, B(y/x) = A(y/x) -ξ I (y/x) 2 .

We come back, in this simple context, to the general VR formulation of a worthwhile balance, as the weighted difference between motivation and resistance to move:

B(y/x) = M(y/x) -ξ R(y/x).
Stop and go dynamics They represent a succession of moves over a succession of periods (stays or changes). Each period, a move m = x y can be,

(1) improving, if A(y/x) ≥ 0;

(2) improving enough (satisficing), if A(y/x) ≥ γ > 0;

(3) worthwhile if B(y/x) ≥ 0, worthwhile enough if B(y/x) ≥ γ > 0;

(4) not advantageous, if A(y/x) ≤ 0; A position x is, (5) a desired end x = x * , if A(y/x * ) = g(y)g(x * ) ≤ 0 for all y ∈ X . That is, if x * is a maximum of g(.). (6) a critical point x • of a differentiable utility function g(.), if ∇g(x • ) = 0; (7) an approximate critical point if ∇g(x • ) ≤ δ, δ > 0.

Two other concepts played a major role in the VR approach: (8) a stationary trap x = x * , if B(y/x * ) ≤ 0 for all y ∈ X ; (9) a variational trap x * relative to x 0 , if, i) B(x * /x 0 ) ≥ 0 and, ii) B(z/x * ) ≤ 0 for all z ∈ X .

That is, if, i) it is worthwhile to reach x * from x 0 and if, ii) it is not worthwhile to leave x * .

To save space, these two concepts will be examined elsewhere in the context of coercivity hypothesis.

Remark 1

The status of travel costs. They represent, within the VR approach, capability costs to do something. In the traveler example, they model capability costs to visit. They are spend ex ante (before visiting, as fixed costs). Being able to visit y requires to know what to visit at location y (what are the most beautiful landscapes to contemplate, what are the more interesting museums to visit) and how to visit y (what kind of quick and cheap locomotion to use to visit y, where to eat tasty food,...).

Remark 2

The status of execution costs. They represent, in this paper, costs to visit a location. They have been included in the utility function.

A VR formulation of an exact/inexact proximal algorithm

Exact proximal algorithms

An exact proximal algorithm [START_REF] Martinet | Régularisaton, d'inéquations variationelles par approximations successives[END_REF] defined proximal payoffs (y/x) = f (y) + ξ yx 2 , where f (.) : y ∈ X = IR n -→ f (y) ∈ IR is an objective function to be minimized and ξ = λ/2. The algorithm follows a succession of stages k, k + 1, ... The current stage k +1 solves the problem arg min k+1 (y/x) = f (y) + ξ k+1 yx 2 : y ∈ X , where x = x k ∈ X is the given status quo in the current stage k + 1.

The VR approach (Soubeyran, 2021a, b, c, d) makes easily a direct link between a payoff to move and a proximal payoff as follow. Given an utilty function g(.) : y ∈ X -→ g(y) ∈ IR, g * = sup {g(y) : y ∈ X } < +∞ defines an aspiration utility level. It is the maximun utility level an individual can hope to reach. In contrast, f (y) = g *g(y) ≥ 0 represents the disutility of the frustration level that an individual feels if he does not reach his best when he performs y ∈ X . Then, in the simple context of the present paper, given that inconveniences to move I (y/x) can be identified to travel costs T (x, y) (if costs to move are symmetric, equal to the Euclidean distance) a proximal payoff models a payoff to move, i.e., Q(y/x) = (y/x) = f (y) + ξ T (x, y) 2 .

Then, each current period k + 1, a proximal algorithm minimizes the total cost of moving, i.e., the sum of the disutility of travel costs T (x, y) 2 plus the disutility of frustration feelings f (y) = g *g(y) ≥ 0 coming from not having done his best at the end of the move.

Interpretation of the results of this paper

Interpretation of our new inexact proximal algorithm

Our new (IPAQ) poses two main conditions, each period k + 1 :

(i) Weak worthwhile moves. Inequality (4.18) can be written

f (x k ) -f (x k+1 ) ≥ (λ k+1 /2)q(x k , x k+1 ) 2 -k+1 ,
with k+1 > 0 and +∞ k=0 k+1 < +∞. This means that each move m k+1 = x k x k+1 must be, a) almost worthwhile ( k+1 > 0), b) and more and more worthwhile ( +∞ k=0 k+1 < +∞ implies k+1 → 0). (ii) Vanishing marginal total disutilty to move. That is, given that e k+1 = ϕ k+1 + λ k+1 q(x k , x k+1 )ψ k+1 , given in (4.5), represents the marginal total disutility to move, such marginal total disutility must be lower enough relative to costs to move, i.e., e k+1 ≤ σ q(x k , x k+1 ), (4.4).

Importance of coercivity.

An almost finite world. The coercivity hypothesis (H2) (infinity at infinity) done in this paper ( f (.) = g * -g(.) coercive) means that the utility g(y) = g *f (y) to visit a location y ∈ X far away of the origin (initial location) in the space X = IR n (n = 1, in the example) becomes strongly negative. This models a finite world with boundaries. This is a very realistic hypothesis in behavioral sciences. The quasi distance hypothesis models, within the VR approach, asymmetric costs of moving (see also the present example with traveling costs). Hypothesis (H3) means that costs to move are not too asymmetric. Hypothesis (H1)', i.e., upper semicontinuity, prevents downward jumps of the utility function g(.), but allows upward jumps.

Results: Ending in "almost zero" or zero motivation to move . This paper shows that, under the list of hypothesis given in Theorem 4.3, (H1)', (H2), (H3), each accumulation point of the sequence {x k }, generated by the (IPAQ) is a generalized limiting critical point of the problem (3.1). That is, in behavioral terms, in the context of the VR approach, a succession of almost worthwhile moves converges to a critical point where the marginal utility to move ∇g(x * ) (when g is differentiable) is zero. Thus, ending in a zero, or almost zero, motivation to move.

Interpretations of theorems 5.1 and 6.1 are similar. However, in theorem 6.1, the end point x * maximizes the utility function, given its concavity.

Conclusions

We present a general inexact proximal algorithm using quasi distances, called (IPAQ), to find critical points and minimizer points of convergent subsequences generated by the algorithm. Under the assumption of coercivity of the objective function, we analyze the cases of lower semicontinuous, locally lipschitz and convex functions and show that all accumulation points of the sequence generated by the (IPAQ) algorithm are critical points (minimizer points for the convex case) of the minimization problem.

If we consider (IPAQ) with k+1 = 0, for all k = 0, 1, ... and the algorithm does not finish (that is, x k+1 = x k for all k = 1, 2, 3, ... ) then x k+ j = x k for all j = 1, 2, 3, ... and this mean that, in our model, for the asymptotic case the tourist cannot visit the same place twice. On the other hand, if the scalar error k+1 > 0, for some k = 0, 1, ... then, for the asymptotic case, it is possible to have x k+ j 0 = x k , for some j 0 then, it is easy to prove that the point x k is an accumulation point of the sequence {x k } and therefore a critical point (minimum in the convex case) of the problem (3.1). If the algorithm finishes in a finite number of iterations, the actual point is a critical point (minimum in the convex case) of the function or an approximate critical point (approximate minimum in the convex case), that is, e k+1 ∈ ∂ k f (x k+1 ).

Coercivity is very important for two points of view, theoretical and applied: At the mathematical level, a coercitivity assumption implies that for each c ∈ IR, the level set {x : f (x) ≤ c} is bounded and, therefore, the sequence generated by any descent algorithm (in particular the proximal point algorithm) is bounded. On the other hand, to obtain convergence results using a Kurdyka-Lojasiewicz (KL) inequality it is needed, see for example [START_REF] Attouch | Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods[END_REF]Bento & Soubeyran, 2015a, b;[START_REF] Moreno | A proximal algorithm with quasi distance. Application to Habit's Formation[END_REF], to take the sequence generated by the algorithm to be bounded. Then, coercivity is a condition that helps the KL condition to obtain global convergence results.

At the moment, it is not known if in the absence of (3.2), but under the assumption that the function satisfies the Kurdyka-Lojasiewic property on the set of accumulation points, is possible to obtain the same results of convergence. This may be a future work for our research. However, a result in this direction was given in the paper authored by [START_REF] Soubeyran | Generalized descent metod using w-distance. Application to emergence of habits following worthwhile moves[END_REF]. The authors, using a w-distance (and in the absence of the hypotheses (3.2)) as regularized term, proved the convergence of bounded sequences generated by a general descent method proposed by [START_REF] Attouch | Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods[END_REF].

In this paper, we introduce two new subdifferentials, the generalized limiting subdifferential ∂ f (x), see Definition 2.1,(e), and the -Clarke subdifferential in (5.1) which is different between all the -Clarke subdifferential introduced by other authors. In this sense, the study of the properties of these subdifferentials are welcome.

  Motivation to move refers to the utility of advantages to move M(y/x) = U [A(y/x)] , where U [.] : A ∈ IR + -→ U [A] ∈ IR + is strictly increasing. Resistance to move is the disutility of inconveniences to move R(y/x) = D [I (y/x)] , where D [.] : I ∈ IR + -→ D [I ] ∈ IR + is strictly increasing. In a simple linear quadratic translocation model with weak resistance to move, U [A] = A and D [I ] = I 2 .

  and l → 0 . Let f , g : IR n → IR ∪ {+∞} be proper functions such that f is locally Lipschitz at x ∈ dom( f ) ∩ dom(g) and g is a lower semicontinuous function at x. Then,

	Proposition 2.3
	Proposition 2.1 For a function f : IR n → IR ∪ {+∞} and a point x ∈ dom( f ), the subgradient sets ∂ f ( x) and ∂ f ( x) are closed, with ∂ f ( x) convex and ∂ f ( x) ⊂ ∂ f ( x).
	Proof See Rockafellar & Wets (1990), Theorem 8.6.
	Proposition 2.2 If a proper function f : IR Proof See Rockafellar & Wets (1990), Theorem 10.1.

n → IR ∪ {+∞} has a local minimum at the point x ∈ dom( f ), then 0 ∈ ∂ f ( x).
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