

Granulocyte microvesicles with a high plasmin generation capacity promote clot lysis and improve outcome in septic shock

Sylvie Cointe, Loris Vallier, Pierre Esnault, Mathilde Dacos, Amandine Bonifay, Nicolas Macagno, Karim Harti Souab, Corinne Chareyre, Coralie Judicone, Diane Frankel, et al.

▶ To cite this version:

Sylvie Cointe, Loris Vallier, Pierre Esnault, Mathilde Dacos, Amandine Bonifay, et al.. Granulocyte microvesicles with a high plasmin generation capacity promote clot lysis and improve outcome in septic shock. Blood, 2022, 139 (15), pp.2377-2391. 10.1182/blood.2021013328. hal-03666657

HAL Id: hal-03666657 https://amu.hal.science/hal-03666657

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 Granulocyte microvesicles with a high plasmin generation capacity promote

2 clot lysis and improve outcome in septic shock

- 4 Running heads: Granulocyte MV plasmin generation in septic shock
- 5 Sylvie Cointe^{1,2,+}, Loris Vallier^{1,+}, Pierre Esnault³, Mathilde Dacos¹, Amandine Bonifay¹,
- Nicolas Macagno⁴, Karim Harti Souab⁵, Corinne Chareyre¹, Coralie Judicone⁶, Diane
- Frankel⁷, Stéphane Robert¹, Sami Hraiech⁸, Marie-Christine Alessi^{1,9}, Philippe Poncelet⁶,
- 8 Jacques Albanese⁵, Françoise Dignat-George^{1,2,*} and Romaric Lacroix^{1,2}
- 9 1. Aix-Marseille University, C2VN, INSERM 1263, INRA 1260, Marseille, France
- 2. Department of Hematology and Vascular Biology, CHU La Conception, APHM, Marseille, France
- 3. Intensive Care Unit, Sainte Anne Military Hospital, Toulon, France
- 4. Department of Pathology and Neuropathology, CHU Timone, APHM, Marseille, France
- Aix-Marseille University, INSERM, MMG, Marseille, France
- 5. Intensive Care Unit, CHU La Conception, APHM, Marseille, France
- 15 6. R and T Department, BioCytex, Marseille, France
- 7. Aix-Marseille University, APHM, INSERM, MMG, CHU Timone, APHM, Department of Cell Biology,
- Marseille, France

3

- 18 8. Intensive Care Unit, APHM, CHU Nord, Marseille, France CEReSS Center for Studies and Research on
- 19 Health Services and Quality of Life EA3279, Aix-Marseille University, France
- 9. Department of Hematology, CHU La Timone, APHM, Marseille, France
- + SC and LV contributed equally as first authors
- 22 *Corresponding author:

- Françoise Dignat-George; C2VN-UMR-INSERM 1263, INRA 1260, Faculté de Pharmacie, 27 Bd
- Jean Moulin, 13010, Marseille, France. francoise.dignat-george@univ-amu.fr
- 25 Tel: 0033(0)4 91 83 56 00; fax: 0033(0)4 91 83 56 02
- Text: 4397 words; abstract: 245 words; 7 figures, 2 tables and 73 references

KEY POINTS

2	•	Granulocyte MV from septic shock patients display a heterogeneous profile of plasmin
3		generation capacity driven by the uPA/uPAR system.
4	•	High level of PGC confers to granulocyte MVs the capacity to reduce clot formation
5		and improves survival in a mouse model of septic shock.
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

ABSTRACT

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Microvesicles (MVs) have previously been shown to exert profibrinolytic capacity, which is increased in patients with septic shock (SS) with a favorable outcome. We therefore hypothesized that the plasmin generation capacity (PGC) could confer to MVs a protective effect supported by their capacity to lyse a thrombus, and we investigated the mechanisms involved. Using a MV-PGC kinetic assay, ELISA and flow cytometry, we found that granulocyte MVs (Gran-MVs) from SS patients display a heterogeneous PGC profile driven by the uPA (urokinase)/uPAR system. In vitro, these MVs lyse a thrombus according to their MV-PGC levels in a uPA/uPAR-dependent manner, as shown in a fluorescent clot lysis test and a lysis front retraction assay. Fibrinolytic activators conveyed by MVs contribute to approximately 30% of the plasma plasminogenolytic capacity of SS patients. In a murine model of SS, the injection of high PGC Gran-MVs significantly improved mouse survival and reduced the number of thrombi in vital organs. This was associated with a modification of the mouse coagulation and fibrinolysis properties toward a more fibrinolytic profile. Interestingly, mouse survival was not improved when soluble uPA was injected. Finally, using a multiplex array on plasma from SS patients, we found that neutrophil elastase correlates with the effect of high-PGC-capacity plasma and modulates the Gran-MV plasmin generation capacity by cleaving uPA-PAI-1 complexes. In conclusion, we show that high PGC level displayed by Gran-MVs reduce thrombus formation and improve survival conferring to Gran-MVs a protective role in a murine model of sepsis.

21

22

23

24

INTRODUCTION

Septic shock (SS) is defined as a systemic response to an infection associated with vasoactive molecule-resistant hypotension and organ failure¹. SS occurs in 10 to 20% of patients in intensive care units with a high mortality rate (30-50%)². SS is characterized by intense systemic inflammation and exaggerated coagulation activation with defective fibrinolysis, ultimately leading to disseminated intravascular coagulation (DIC). SS-induced DIC results in the widespread development of fibrin clots, microvascular occlusion and reduced oxygen delivery to tissues, leading to multiple organ failure and death³. Accordingly, plasma levels of plasminogen activator inhibitor-1 (PAI-1), prothrombin/antithrombin ratio and fibrinogen have been found to be associated with SS patient outcomes⁴⁻⁶.

Cell-derived microvesicles (MVs) are subcellular particles shed by activated or apoptotic cells that participate in the hemostatic equilibrium^{7,8}. MVs share a procoagulant potential that relies on the exposure of anionic phospholipids, especially phosphatidylserine, and the presence of tissue factor (TF)⁹, according to their cellular origin. MVs also harbor molecules that regulate their procoagulant activity, such as TF pathway inhibitor¹⁰, endothelial protein C receptor¹¹ and thrombomodulin¹² found on circulating MVs^{13,14}. Consistent with the cellular activation and apoptosis in SS, elevated levels of MVs have been reported in patients with sepsis^{15–17}. These MVs play a role in tissue injury and organ dysfunction by exerting deleterious procoagulant and proinflammatory effects and inducing endothelial dysfunction^{18–21}. Converging animal and clinical studies have emphasized this deleterious procoagulant role of MVs in sepsis and SS^{22–24}, whereas a series of unexpected observations have suggested a potential beneficial effect of selected MV subpopulations^{25–29}. However, the mechanisms underlying their protective effects are not fully understood.

Previous data have shown that the plasmin activation system is carried by MVs originating from leukocytic and endothelial cells³⁰. MV-dependent Plasmin Generation

- 1 Capacity (MV-PGC) involves the binding and activation of plasminogen in plasmin by its
- 2 activator urokinase (uPA) or tissue plasminogen activator (t-PA), present at the MV surface.
- 3 The MV-PGC is measurable on circulating MVs in healthy donors and is altered in various
- 4 pathological settings³¹. We recently showed that SS patients with a higher level of MV-PGC
- 5 have a higher survival compared with patients with a lower level of MV-PGC³². We therefore
- 6 hypothesized that an increased MV-PGC could confer to MVs a protective role via the
- 7 capacity to lyse a thrombus and investigated the mechanisms involved.

8

9

10

11

12

13

14

17

18

19

20

21

22

METHODS

Blood collection and MV preparation and analysis

Blood samples were collected from patients with a diagnosis of SS according to

the guidelines of the International Sepsis Definitions Conference within the first 24 hours

after admission in intensive care unit along with age- and sex-matched healthy controls³³.

Samples were collected and processed for MV purification and analysis according to

international guidelines^{34,35}.

MVs that mimic MVs from SS patients were also generated as a model by

stimulating whole blood with lipopolysaccharide (LPS) and purifying them the same way as

the patient-derived MVs (LPS-MVs). In certain experiments, the uPA receptor (uPAR)

present on the MV surface was saturated by the addition of exogenous uPA as previously

described³⁶. Gran-MVs were also prepared from granulocytes isolated from healthy donors.

MVs were characterized using immunomagnetic separation, flow cytometry, fibrin

zymography, ELISA, and plasmin generation assays; the details are described in the

supplemental Methods.

24

23

Thrombolysis experiments

The lytic effect of MVs, isolated from the blood of SS patients or LPS-stimulated normal blood, was investigated using two different *in vitro* lysis tests: 1) a fluorescent clot was incubated in MV-free platelet-free plasma (PFP) with increasing concentrations of MVs, and the released fluorescence was monitored with a plate reader, and 2) the retraction of a fluorescent lysis front was measured by fluorescence microscopy. When needed, the euglobulin fraction was prepared by the acidification of citrated plasma, as previously described³⁷. The lytic effect of the euglobulin fraction containing or not MVs isolated from SS patients or healthy donors was evaluated by measuring the absorbance of the thrombus. The details are provided in the supplemental Methods.

Mouse sepsis model

Pathogen-free female CD-1 mice (Envigo Society France, Gannat, France) were operated (D0) and divided into three groups receiving either Gran-MVs saturated with exogenous uPA (uPA-Gran-MVs), Gran-MVs or the wash supernatant of uPA-Gran-MVs as control (SPN uPA-Gran-MVs). Sepsis was induced by cecal ligation and puncture as previously described³⁸ with some modifications. Twenty-four hours after surgery, each animal group received a daily intravenous tail injection (D1 to D4) of uPA-Gran-MVs (10⁷), Gran-MVs (10⁷) or SPN uPA-Gran-MVs. From D0 to D5, mortality was recorded, and each living animal was monitored to establish a clinical score^{39,40}. At D5, all animals were sacrificed. The kidney and lungs tissues were analyzed for fibrin deposits as described in the supplemental Methods.

1 Statistical analysis

- 2 All statistical analyses were performed with GraphPad Prism software v.5.0 (GraphPad
- 3 Software, San Diego, CA, US). The tests are detailed in the supplemental Methods.

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

RESULTS

Gran-MVs from SS patients display a heterogeneous profile of PGC driven by the

uPA/uPAR system

When the MV-PGC of SS patients (n=34) was compared to that of healthy donors (n=18), we found no significant difference; however, the range of values in SS patients was much wider than that in normal subjects, with 53% of the SS patients falling outside the normal range (10-90th percentile, [0.8-43] vs. [1.6-3.6] $A_{405 \text{ nm}} \times 10^{-3}$ /min; Figure 1A). Patients were therefore stratified according to their MV-PGC levels, as having low (<1.5 A_{405 nm}×10⁻¹ ³/min; 30th percentile; L-SS), high (>5 A_{405 nm}×10⁻³/min; 70th percentile; H-SS) or intermediate $(1.5 \text{ A}_{405 \text{ nm}} \times 10^{-3})$ min < MV-PGC< 5 A_{405 nm} $\times 10^{-3}$) capacity. These two groups of patients were not different regarding demographics, medication and source of infection. But H-MV-PGC showed as expected lower severity scores and a better outcome compared to L-MV-PGC (supplemental table 1). To investigate their cellular origin, MV subpopulations were enumerated by flow cytometry. As expected from our previous work³², Gran-MVs were significantly increased in H-SS vs. L-SS (460 [308-1336] vs. 180 [0-360] Gran-MVs/ul. p=0.01, Figure 1B) and moderately correlated with the MV-PGC (r²=0.34, p=0.05; table 1), whereas no significant difference was observed for the other subsets. In addition to this quantitative difference in Gran-MVs, we looked for an MV qualitative difference to investigate the molecular basis of this distinct PGC profile. Using flow cytometry, we compared the expression of uPA and its receptor uPAR on Gran-MVs in L- and H-SS patients compared to platelet-derived MVs used as negative controls. Gran-MVs from the H-SS patients exhibited higher surface expression of both uPA and uPAR than those from L-SS

2 patients (Figure 1C). Moreover, ELISA measurement of lyzed MVs showed higher amounts

of uPAR in MVs from H-SS vs. L-SS patients $(0.56 \pm 0.28 \text{ vs. } 0.15 \pm 0.05 \text{ ng/ml, p} < 0.05;$

Figure 1D). However, the total amount of uPA and PAI-1 levels did not differ between the

two groups, (0.09±0.04 vs. 0.1±0.07 ng/2.10⁶ MVs, p=0.8 Figure 1E; 6.3±7 vs. 8±6.2 ng/2.10⁶

6 MVs, p=0.6; Figure 1F, respectively). It suggests that the higher MV-PGC from H-SS patients

is mainly due to a higher level of uPAR which increases the capacity of the MVs to capture

uPA released into the local environment.

Gran-MVs from SS patients lyse a thrombus according to their MV-PGC level in a uPA/uPAR-dependent manner

To mimics the inflammatory conditions of SS, MVs were generated from human whole blood stimulated with LPS. In a fluorescent clot lysis test, we observed a significant dose- and time-dependent increase in the fluorescence released by LPS-MVs compared to the MV SPN used as a negative control (3520±1540 AU vs. 1050±40 AU at 5.10⁶ LPS-MVs/24 h, respectively, p<0.05; Figure 2A). This lysis effect was associated with a 44±7% (p<0.05) loss of thrombus weight (Figure 2B). These results were confirmed by those of a lysis front retraction assay (Figure 2C) showing a significant MV-dependent lysed area in the presence of LPS-MVs compared to the MV SPN (63±42% vs. 9±4% area of lysis, at 1.10⁷ LPS-MV/48 h, p<0.05, Figures 2C and 2D). Interestingly, the lytic effect was amplified when uPAR on the MV surface was saturated by the addition of exogenous uPA (uPA-LPS-MV) containing MVs from SS patients with high MV-PGC (Figures 2C upper panel and 2D). Notably, the lytic response was not always complete, and a thin layer of thrombus remained undissolved, as shown by confocal microscopy (supplemental Figure 1). The clot lysis experiments were repeated using the same amount of MVs from SS patients stratified according to their MV-

1 PGC levels. As shown in Figures 2E and 2F, the retraction of the lysis front was significantly

higher in H-SS patients compared to L-SS patients. These data indicate that clot lysis

efficiency is driven by the MV-PGC level.

To confirm the molecular partners responsible for this heterogeneous thrombolytic effect, lysis front retraction experiments were conducted with specific inhibitors. As illustrated in Figures 3A and 3B, thrombolysis was significantly reduced in the presence of α2-antiplasmin or an anti-uPA antibody. The involvement of uPAR in this MV thrombolytic effect was assessed using LPS-MVs treated with phosphatidylinositol-specific phospholipase C (PI-PLC). Under these conditions, the MV-PGC and lysis area were dramatically reduced (Figures 3C, 3D and 3E). Finally, the cellular origin of the subset of MV involved in the fibrinolytic effect was identified by showing that the depletion of CD15+MVs monitored by flow cytometry (Figure 4A) was associated with a decrease of more than 90% in both MV-PGC capacity and lysis front retraction (Figures 4B, 4C and 4D), whereas the depletion of erythrocyte and platelet subsets had no effect. The fibrinolytic effect of Gran-MVs was confirmed by a significantly larger lysed area compared to SPN (10±4% vs. 4±2% area of lysis, at 5.10⁶ Gran-MV/48 h, p<0.05, Figures 4E and 4F). Additionally, the lytic effect was observed with uPA-Gran-MVs (Gran-MVs with uPAR saturated by exogenous uPA) as early as 24h and amplified at 48h (Figures 4E and 4F). The absence of residual soluble uPA was confirmed by ELISA (supplemental Figure 2). Altogether, these data identify Gran-MVs as the MV subset that mediates the thrombolytic capacity driven by the uPA/uPAR system.

21

22

23

24

25

20

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Fibrinolytic activators carried by MVs significantly contribute to the plasma fibrinolytic

capacity of SS patients

To assess the relevance of the fibrinolytic mechanism driven by MVs, we compared the relative contributions of MV- and non-MV-derived plasma fibrinolytic capacity using a

euglobulin clot lysis assay⁴¹ to reduce the concentration of fibrinolysis inhibitors 1 (supplemental Figure 3A). We first found that most (90±1.9%) of the Gran-MVs previously 2 labeled with CD15+ and Annexin V-specific antibodies coprecipitated with fibrinolysis 3 activators (supplemental Figure 3B). Then, we used the euglobulin test with PFP and MV-free 4 PFP from SS patients with high and low MV-PGC and healthy donors, and we tested the activator fraction for its plasmin activity or for its capacity to lyse a thrombus in vitro. In 6 healthy subjects, we did not observe any significant difference in either the PGC or the time to 7 8 50% lysis between the PFP and the MV-free PFP (supplemental Figures 3C and 3D). In contrast, in H-SS patients, when MVs were removed from plasma, we measured a significant decrease in the PGC (-35±37%, p=0.048, supplemental Figure 3E) and a significant increase 10 in the time to 50% lysis (+25±15%, p=0.003, supplemental Figure 3F). Interestingly, these 11 data are not observed in SS patients with low MV-PGC (supplemental Figures 3G and 3H). These results indicate that in SS patients with high MV-PGC, fibrinolytic activators carried by MVs contribute to approximately 30% of the plasma fibrinolytic activity.

15

16

17

18

19

20

21

22

23

24

25

12

13

14

5

9

Injection of MVs with a high level of PGC improves survival and reduces clot formation in a murine model of sepsis

To investigate whether the fibrinolytic potential of MVs is protective in vivo, we used a murine sepsis model⁴² with a daily intravenous caudal injection (D1 to D4) of uPA-Gran-MVs, Gran-MVs derived from granulocytes of human healthy donors or the SPN of the uPA-Gran-MVs (SPN uPA-Gran-MVs) as a negative control (Figure 5A). The MV-PGC values were 4±6 and 1±1 A_{405 nm}×10⁻³/min for uPA-Gran-MVs and Gran-MVs, corresponding to the capacity of H-SS and L-SS patients, respectively. The severity of sepsis was similar between the groups before the first injection, as shown by similar temperature variations (Figure 5B) and clinical scores (Figure 5C). The plasmin generation capacity of uPA-Gran-MVs was

significantly higher than that of Gran-MVs (7.9 +/- 0.6 vs. 1.9 +/- 0.2 A₄₀₅ nm×10⁻³/min, 1 respectively, p=0.0008) and predominant compared to the procoagulant activity, which could 2 be considered negligible (MV-TF= 14.7 +/- 6.5 fM) by reference to the procoagulant activity 3 of Mono-MVs (MV-TF= 353 +/- 311 fM) (Figure 5D). Consequently, the injection of uPA-4 Gran-MVs compared to Gran-MVs or SPN uPA-Gran-MVs significantly improved the 5 survival rate of SS mice at D5 (92% vs. 50% and 58%, respectively, Gehan-Breslow-6 Wilcoxon test p=0.05 and p=0.02, respectively, Figure 5E). Moreover, fibrin clot staining 7 revealed a significant reduction in the number of thrombi in the kidneys of mice injected with 8 uPA-Gran-MVs compared to the two other types (3.7±0.9 vs. 7.7±1.9 thrombi/2.4 mm² 9 p=0.001; and 6.9±2.5 thrombi/2.4 mm², p=0.015, respectively, Figures 5Fab). This 10 observation was confirmed in lung tissues (Figures 5Fcd). Complementary experiments using 11 fibrin/fibrinogen immunolabeling (supplemental Figure 4) confirmed that the fibrin-positive 12 13 areas (supplemental Figure 4A) are superimposed with the lacquered blue stained areas with PTAH (supplemental Figure 4B) and demonstrates that the material in the vessels contains 14 15 fibrins. Measurement of plasmatic parameters in surviving mice, including AST, ALT, 16 creatinine, and LDH, did not show a significant difference between the three groups of mice. The survival benefit is maintained at day 10 with no additional death with or without MVs 17 injection between day 5 and day 10. The injection of three different levels of uPA-Gran-MVs 18 19 $(5-10-20.10^6)$ for 5 days showed no significant difference between the groups. These data indicated that a daily 5.10⁶ dose is sufficient to observe a survival benefit after injection of 20 fibrinolytic MVs with no additional benefit from higher doses. Taken together, these data 21 22 show that the elevated PGC of Gran-MVs improves sustainably survival and reduces the number of thrombi in the vital organs in a mouse sepsis model. Interestingly, the survival 23 benefit was not observed when an equivalent amount (25 pg) of soluble uPA was injected for 24 five days compared to the injection of uPA-Gran-MVs, indicating that conveying of uPA by 25

MVs is essential for the protective effect of uPA in sepsis (Figure 5G). To better understand the protection afforded to septic mice injected with uPA-Gran-MVs, we measured the impact of the MV injection on the mouse hemostatic balance (Figure 6A). As illustrated in Figure 6Bb, we observed a significant increase in PAP at D2 in the group injected with uPA-Gran-MVs compared to the other groups (124 +/- 24 ng/ml vs. 55 +/- 27 ng/ml, p = 0.034 and 51.5 +/- 25.8 ng/ml, p= 0.036). This was followed by a lesser decrease in MV-PGC at D5 in this group, compared to the groups injected with Gran-MVs and SPN uPA-Gran-MVs (5.9 +/- 0.6 vs. 3.2 +/- 0.5, p= 0.0016 and 3.4 +/- 0.4 $A_{405 \text{ nm}} \times 10^{-3}$ /min, p= 0.0016, respectively) (Figure 6Cc). On the other hand, the injection of MVs did not significantly modify the mouse procoagulant activity. Indeed, as illustrated in Figures 6D and 6E, TAT and MV-TF levels were not different between the septic mice at D1 and D3 but were increased compared to nonseptic mice (control). Interestingly, the D-Dimers normalized at D5 only in the uPA-Gran-MV group (Figure 6F). Altogether, these data indicate that the injection of fibrinolytic MVs (uPA-Gran-MVs) modified the hemostatic balance of mice toward a more fibrinolytic profile.

Soluble molecules from SS patient plasma modulate Gran-MV plasmin generation capacity in SS

To better understand how the plasma environment can modulate Gran-MV PGC capacity, we investigated the potential role of the surrounding plasma factors. To this end, we performed incubation assays using granulocytes from healthy donors and plasma (depleted or not of MVs) from L-SS and H-SS patients (Figure 7A). MVs generated by granulocytes were called "Gran-induced MVs" (Gran-iMVs). We observed that the quantities of Gran-iMVs were not significantly different between the L-SS and H-SS patients. In contrast, the Gran-iMV-PGC was significantly increased by stimulation with plasma from H-SS patients compared to plasma from L-SS patients (1.36±0.84 *vs.* 0.85±0.60 A_{405 nm}×10⁻³/min, for 4.10⁵

Gran-iMV, p=0.02; Figure 7B). Interestingly, this result remained similar when the stimulation was performed with MV-free plasma (Figure 7C), suggesting the presence of soluble factors triggering distinct MV-PGC profiles in patients.

To identify these factors, SS plasma was screened by a multiplex array for 23 different molecules known to modulate the uPA/uPAR system (supplemental table 2). A correlation analysis identified that among these factors, human neutrophil elastase (NE), CD40L, PDGF-AB/BB and TGF-α were the ones most associated with the Gran-iMV-PGC (r²=0.6, 0.56, 0.48 and 0.46, respectively, table 2, supplemental figure 5). When granulocytes were directly incubated with these factors, no significant difference in the Gran-iMV-PGC was observed with CD40L, PDGF-AB/BB and TGF-α. In contrast, the effect of NE was demonstrated first by a significant decrease in the MV-PGC by blocking NE with the addition of a specific inhibitory antibody to the plasma (Figure 7D) and second by a significant increase in the Gran-iMV-PGC after the supplementation of L-SS plasma with 0.3 nM NE (no increase was found in the H-SS plasma; +101%, p=0.02, Figure 7E). Altogether, these data identify NE as an MV-PGC modulator present in the plasma of SS patients.

To further decipher the role of NE, we measured the impact of a range of NE concentrations on the PGC of Gran-MVs isolated from the plasma of LPS-treated blood by CD15-IMS. As shown in Figure 7F, NE concentrations of 0.04 nM and above significantly increased the MV-PGC. Because neither direct cleavage of the plasmin substrate nor direct plasminogen activation by NE were observed³², these data demonstrate that NE indirectly acts on the MV-PGC. Because plasminogen activator inhibitor (PAI-1) is a known target of NE^{43,44}, we hypothesized that the MV-PGC might be regulated by NE in a PAI-1-dependent manner. First zymography confirmed (Figure 7G) that the uPA/PAI-1 complex was significantly reduced in the presence of NE without any impact on the uPA bands (Supplemental Figure 6). Second, if Gran-MVs incubated with PAI-1 in the absence or

- 1 presence of NE, we observed a significant decrease in the MV-PGC after incubation with
- 2 PAI-1, which was partially restored by the presence of 0.3 nM NE (Figure 7H). Collectively,
- 3 these data demonstrate that NE is one of the components of the plasma environment of SS
- 4 patients which modulates the Gran-MV-PGC in a PAI-1-dependent manner.

DISCUSSION

7 In this study, we demonstrate that MVs from SS patients display a heterogeneous

8 pattern of PGC driven by the uPA/uPAR system carried by MVs of granulocytic origin.

Interestingly, Gran-MVs with a high PGC reduce clot formation via a mechanism involving

elastase and improve survival in a mouse model of SS. These data demonstrate that high MV-

PGC levels confers to MV a fibrinolytic protective response that may counterbalance the

procoagulant state associated with SS.

As described in the literature, MV-dependent hemostatic activities (their procoagulant and fibrinolytic activities) can be modulated depending on the stimuli triggering their formation and their cellular origin^{45,46}. Converging animal and clinical studies have emphasized the deleterious role procoagulant MVs play in sepsis and SS^{15,47-51}, whereas a series of unexpected observations indicate a potential beneficial effect of select MV subpopulations^{25,27,28,52-56}. Accordingly, in severe sepsis, in some studies, elevated levels of Gran-MVs were found to be associated with a more favorable outcome, as shown by reduced mortality rates and organ dysfunction^{27,53}. Consistent with these data, in patients with acute respiratory distress syndrome, Gran-MVs were the unique subset whose level in bronchoalveolar lavages was associated with an improved prognosis²⁵. In a mouse sepsis model, Gran-MVs enriched in α 2-macroglobulin were shown to improve the resolution of infection by enhancing bacterial clearance²⁷. Moreover, the dissemination of anti-inflammatory or antibacterial molecules such as TGF β , annexin-1 or endothelial protein C

receptor by Gran-MVs has also been reported^{28,52,54-56}. In the present work, we propose a new protective mechanism based on MV-associated high fibrinolytic capacity driven by the uPA/uPAR system through which Gran-MVs from SS patients impact survival in a mouse

model of sepsis and reduce thrombus formation both in vitro and in vivo.

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

In SS, fibrinolysis is classically described as being dramatically impaired, thus leading to a procoagulant state responsible for widespread fibrin deposition³. In fact, this inhibition is heterogeneous among patients according to the levels of PAI-1⁵⁷ and the levels of cell- or MV-PGC³². However, whether this capacity is indirectly associated with survival or may be a significant contributor to a rescue mechanism is unknown. Here, we identified the uPA/uPAR system as the key plasminogen activator involved in this mechanism. The critical involvement of uPAR was demonstrated by the suppression of the fibrinolytic effect when uPAR was enzymatically removed from the MV surface and its enhancement when uPAR was saturated with exogenous uPA. To our knowledge, apart from matrix metalloproteinase (MMP)-17 and MMP-25, uPAR is the only GPI-anchored protein described to be involved in the fibrinolysis system^{58,59}. Because of their substrate profiles, MMP-17 and MMP-25 are unlikely to be involved in the MV-PGC. In addition, we found that circulating Gran-MVs contribute to the plasma fibrinolysis in H-SS patients by carrying a significant proportion of the fibrinolysis activators in addition to their soluble fraction, in contrast to L-SS patients or healthy donors. Based on these results, we propose a protective mechanism that may counterbalance the procoagulant state associated with sepsis by contributing to the removal of microthrombies. This hypothesis is supported by our results in the murine SS model, where the injection of Gran-MVs enriched with uPA was associated with a more fibrinolytic profile (increase PAP and MV-PGC), without inducing a change of MV-TF that is considered as a risk factor of thrombus formation neither in TAT that reflect the activation of the coagulation cascade. More importantly, these hemostatic changes were associated with a decreased thrombus

formation in vital organs and an increased mouse survival. The absence of a beneficial effect from soluble uPA compared to uPA vectorized by MVs may reflect a better protection against physiological inhibitors or a better targeting of the thrombi when uPA is associated with the

vesicular membrane.

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

4

These data identify granulocytes or, more specifically, neutrophils as the key actors in this protective mechanism because they are the source of both the fibrinolytic MVs and the NE. This mechanism remains to be demonstrated *in vivo*. In sepsis, neutrophils are considered to play a paradoxical role, both protective and deleterious. By facilitating the recognition, entrapment and disposal of pathogens, neutrophils protect the host without inducing major collateral damage, as long as they function properly. However, when these reactions occur systemically and are sustained for a long period, they can lead to DIC followed by multiorgan failure and even death^{60,61}. Through the formation of neutrophil extracellular traps and their components (DNA, histones and granules), neutrophils can propagate prothrombotic effects^{62,63}. However, in subsequent stages, neutrophils seem to restrict thrombus growth by releasing fibrinolytic proteases such as NE^{64,65}. The release of fibrinolytic MVs by granulocytes in SS patients may therefore represent an additional regulatory mechanism contributing to the maintenance of a vascular hemostasis equilibrium favorable to organ perfusion. A similar duality can be seen for NE. Following bacterial infection, the recruitment of vast numbers of neutrophils is associated with the extracellular release of NE, which is recognized as a key factor in the granulocyte anti-infection arsenal. Indeed, the absence of NE in mouse models of sepsis worsens the prognosis^{66,67}. However, at the same time, NE propagates persistent neutrophilic inflammation by accelerating proinflammatory cytokine production, encouraging the development of anti-NE inhibitors as a therapeutic strategy in sepsis^{68–70}. At the same time, NE propagates persistent neutrophil inflammation by

accelerating proinflammatory cytokine production, encouraging the development of anti-NE inhibitors as a therapeutic strategy in sepsis. Similarly, NE generated by activated neutrophils may contribute to thrombus formation via inactivation of TFPI⁶². However, this procoagulant activity is balanced by other studies showing that cleavage of active PAI-1 by NE also supports a fibrinolytic activity⁴³, which is in agreement with the *ex vivo* observations of the

present work.

Our data illustrate that heterogeneous populations of Gran-MVs, can be generated in response to distinct inducers of vesiculation. As illustrated in the present study we identified NE as an inducer able to promote the formation of Gran-MVs with a high MV-PGC. Additionally, we showed that the fibrinolytic and procoagulant activities are modulated depending on the inducers triggering on MVs derived from a myelocyte cell line (HL-60) (supplemental Figure 7). In agreement, other studies in the literature have provided evidence that different stimuli induced granulocyte to release MVs with different biological properties. Accordingly, neutrophilic granulocytes stimulated with opsonized particles produced MVs that are able to impair bacterial growth⁵⁵. More recently, using a set of 14 distinct inducers, neutrophils were found to generate different subtypes of extracellular vesicles: neutrophilderived trails (NDTRs) generated by neutrophil migrating towards inflammatory foci, whereas neutrophil- derived macrovesicles (NDMVs) were generated by neutrophils that have arrived at the inflammatory foci. NDTRs contains proinflamatory miRNAs, induce proinflammatory macrophages polarization, and showed protective effects in murine models of acute and chronic inflammation⁷¹.

One of the key features of our data is the heterogeneous profile of MV-PGC driven by the qualitative differences in the Gran-MVs among SS patients, in line with the heterogeneous 1 profile of sepsis patients⁷². Indeed, sepsis patients have wide variations in their genetic

background, age, gender, accompanying diseases, chronically prescribed medications, source

of infection, pathogens involved and the sites of infection. This heterogeneity has been one of

the major hindrances in sepsis research, particularly affecting the development of therapies.

5 Because MVs are a miniature version of cells reflecting the fluctuating status of patients⁷³,

they form a complex signature reflecting the multifaceted responses of patients driven by their

septic environment. Accordingly, as shown by the sepsis literature, MVs can have both

protective and detrimental effects, either locally or at distant sites, and can take the shape of

either a friend or a foe according to the cellular origin and/or the cargo they carry. Our data

suggest that patients who are able to produce MVs with high PGC potential are better

protected from this lethal complication. Thus, a number of promising speculations can be

drawn, proposing MVs as multifaceted mediators useful in patient-tailored therapy.

13

14

15

16

17

18

19

3

4

6

7

8

9

10

11

12

In conclusion, this work demonstrates that Gran-MVs from SS patients convey an uPA-

dependent MV-PGC that promotes clot lysis. This mechanism indicates that fibrinolytic MVs

are key players in the thrombolytic process and an efficient protective response that may

counterbalance the procoagulant state associated with sepsis. Thus, this "bloodborne

fibrinolytic capacity of Gran-MVs" may be a new subcellular mechanism that could play a

key role in the outcome of SS patients.

20

21

23

ACKNOWLEDGMENTS

We wish to thank Pr. J. Sampol and Dr. G. Contant for scientific advice.

We thank Genentech Inc. (San Francisco, CA, USA) how kindly provided the rat anti-mouse

24 TF monoclonal antibody (1H1).

AUTHOR CONTRIBUTIONS

2	S. C. and L. V. performed the research, analyzed and interpreted the data and write the
3	manuscript. T. B., C. J., S. R., D. F., C. C., M. D., S. H., N. M., and A. B. performed the
4	research, collected the data and analyzed and interpreted the data. MC.A., P. P. and J. A.
5	designed the research and reviewed the manuscript; F DG. supervised the work and helped
6	write the manuscript, and R. L. designed the research, analyzed and interpreted the data and
7	helped write the manuscript.

DISCLOSURE OF CONFLICTS OF INTEREST

We disclose as a conflict of interest that this work received financial support from Stago Company who has an exclusive license (patent N°07/04060). to the above-mentioned patent, and C. J. and P. P. are full-time employees of BioCytex, a Stago group company.

1 REFERENCES

- 2 1. Cohen J. The immunopathogenesis of sepsis. Nature. 2002;420(6917):885–891.
- Brun-Buisson C, Meshaka P, Pinton P, Vallet B, EPISEPSIS Study Group. EPISEPSIS: a reappraisal of
 the epidemiology and outcome of severe sepsis in French intensive care units. *Intensive Care Med.* 2004;30(4):580–588.
- 3. Gando S. Microvascular thrombosis and multiple organ dysfunction syndrome. *Crit. Care Med.* 2010;38(2 Suppl):S35-42.
- 4. Lissalde-Lavigne G, Combescure C, Muller L, et al. Simple coagulation tests improve survival prediction in patients with septic shock. *J. Thromb. Haemost. JTH*. 2008;6(4):645–653.
- 5. Madoiwa S, Nunomiya S, Ono T, et al. Plasminogen activator inhibitor 1 promotes a poor prognosis in sepsis-induced disseminated intravascular coagulation. *Int. J. Hematol.* 2006;84(5):398–405.
- 6. Pralong G, Calandra T, Glauser MP, et al. Plasminogen activator inhibitor 1: a new prognostic marker in septic shock. *Thromb. Haemost.* 1989;61(3):459–462.
- 7. Lacroix R, Dubois C, Leroyer AS, Sabatier F, Dignat-George F. Revisited role of microparticles in arterial and venous thrombosis. *J. Thromb. Haemost. JTH*. 2013;11 Suppl 1:24–35.
- 17 8. Owens AP, Mackman N. Microparticles in hemostasis and thrombosis. *Circ. Res.* 2011;108(10):1284–1297.
- 9. Morel O, Toti F, Hugel B, et al. Procoagulant microparticles: disrupting the vascular homeostasis equation? *Arterioscler. Thromb. Vasc. Biol.* 2006;26(12):2594–2604.
- 21 10. Aharon A, Tamari T, Brenner B. Monocyte-derived microparticles and exosomes induce procoagulant and apoptotic effects on endothelial cells. *Thromb. Haemost.* 2008;100(5):878–885.
- 23 11. Pérez-Casal M, Downey C, Fukudome K, Marx G, Toh CH. Activated protein C induces the release of microparticle-associated endothelial protein C receptor. *Blood*. 2005;105(4):1515–1522.
- Satta N, Freyssinet JM, Toti F. The significance of human monocyte thrombomodulin during
 membrane vesiculation and after stimulation by lipopolysaccharide. *Br. J. Haematol.* 1997;96(3):534–542.
- 28 13. Steppich B, Mattisek C, Sobczyk D, et al. Tissue factor pathway inhibitor on circulating microparticles in acute myocardial infarction. *Thromb. Haemost.* 2005;93(1):35–39.
- 30 14. Tsimerman G, Roguin A, Bachar A, et al. Involvement of microparticles in diabetic vascular complications. *Thromb. Haemost.* 2011;106(2):310–321.
- 32 15. Nieuwland R, Berckmans RJ, McGregor S, et al. Cellular origin and procoagulant properties of microparticles in meningococcal sepsis. *Blood*. 2000;95(3):930–935.
- 34 16. Reid VL, Webster NR. Role of microparticles in sepsis. Br. J. Anaesth. 2012;109(4):503–513.
- 35 17. Ogura H, Tanaka H, Koh T, et al. Enhanced production of endothelial microparticles with increased binding to leukocytes in patients with severe systemic inflammatory response syndrome. *J. Trauma*. 2004;56(4):823–830; discussion 830-831.
- 38 18. Aras O, Shet A, Bach RR, et al. Induction of microparticle- and cell-associated intravascular tissue factor in human endotoxemia. *Blood*. 2004;103(12):4545–4553.
- 40 19. Fujimi S, Ogura H, Tanaka H, et al. Increased production of leukocyte microparticles with enhanced expression of adhesion molecules from activated polymorphonuclear leukocytes in severely injured patients. *J. Trauma*. 2003;54(1):114–119; discussion 119-120.
- 43 20. Mortaza S, Martinez MC, Baron-Menguy C, et al. Detrimental hemodynamic and 44 inflammatory effects of microparticles originating from septic rats. *Crit. Care Med.* 45 2009;37(6):2045–2050.
- 46 21. Mastronardi ML, Mostefai HA, Meziani F, et al. Circulating microparticles from septic shock 47 patients exert differential tissue expression of enzymes related to inflammation and oxidative 48 stress. *Crit. Care Med.* 2011;39(7):1739–1748.

- 1 22. Midura EF, Prakash PS, Johnson BL, et al. Impact of Caspase-8 and PKA in regulating neutrophil-derived microparticle generation. *Biochem. Biophys. Res. Commun.* 2016;469(4):917–922.
- 4 23. Johnson BL, Midura EF, Prakash PS, et al. Neutrophil derived microparticles increase mortality and the counter-inflammatory response in a murine model of sepsis. *Biochim. Biophys. Acta.* 2017;1863(10 Pt B):2554–2563.
- 7 24. Danesh A, Inglis HC, Abdel-Mohsen M, et al. Granulocyte-Derived Extracellular Vesicles 8 Activate Monocytes and Are Associated With Mortality in Intensive Care Unit Patients. *Front. Immunol.* 2018;9:956.
- 25. Guervilly C, Lacroix R, Forel J-M, et al. High levels of circulating leukocyte microparticles are associated with better outcome in acute respiratory distress syndrome. *Crit. Care Lond. Engl.* 2011;15(1):R31.
- 13 26. Chirinos JA, Heresi GA, Velasquez H, et al. Elevation of endothelial microparticles, platelets, and leukocyte activation in patients with venous thromboembolism. *J. Am. Coll. Cardiol.* 2005;45(9):1467–1471.
- 16 27. Mostefai HA, Meziani F, Mastronardi ML, et al. Circulating microparticles from patients with septic shock exert protective role in vascular function. *Am. J. Respir. Crit. Care Med.* 2008;178(11):1148–1155.
- 28. Dalli J, Norling LV, Renshaw D, et al. Annexin 1 mediates the rapid anti-inflammatory effects of neutrophil-derived microparticles. *Blood*. 2008;112(6):2512–2519.
- 29. Youn Y-J, Shrestha S, Kim J-K, et al. Neutrophil-derived extracellular vesicles: proinflammatory trails and anti-inflammatory microvesicles. *bioRxiv*. 2019;583435.
- 23 30. Lacroix R, Sabatier F, Mialhe A, et al. Activation of plasminogen into plasmin at the surface of endothelial microparticles: a mechanism that modulates angiogenic properties of endothelial progenitor cells in vitro. *Blood*. 2007;110(7):2432–2439.
- 26 31. Lacroix R, Plawinski L, Robert S, et al. Leukocyte- and endothelial-derived microparticles: a circulating source for fibrinolysis. *Haematologica*. 2012;97(12):1864–1872.
- 28 32. Cointe S, Harti Souab K, Bouriche T, et al. A new assay to evaluate microvesicle plasmin generation capacity: validation in disease with fibrinolysis imbalance. *J. Extracell. Vesicles*. 30 2018;7(1):.
- 33. Levy MM, Fink MP, Marshall JC, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. *Crit. Care Med.* 2003;31(4):1250–1256.
- 33 34. Coumans FAW, Brisson AR, Buzas EI, et al. Methodological Guidelines to Study Extracellular Vesicles. *Circ. Res.* 2017;120(10):1632–1648.
- 35. Lacroix R, Judicone C, Mooberry M, et al. Standardization of pre-analytical variables in plasma
 36 microparticle determination: results of the International Society on Thrombosis and Haemostasis
 37 SSC Collaborative workshop. *J. Thromb. Haemost. JTH.* 2013;
- 36. Plesner T, Ploug M, Ellis V, et al. The receptor for urokinase-type plasminogen activator and urokinase is translocated from two distinct intracellular compartments to the plasma membrane on stimulation of human neutrophils. *Blood*. 1994;83(3):808–815.
- 41 37. Von Kaulla KN, Schultz RL. Methods for the evaluation of human fibrinolysis; studies with two combined technics. *Am. J. Clin. Pathol.* 1958;29(2):104–112.
- 43 38. Rittirsch D, Huber-Lang MS, Flierl MA, Ward PA. Immunodesign of experimental sepsis by cecal ligation and puncture. *Nat. Protoc.* 2009;4(1):31–36.
- 45 39. Langford DJ, Bailey AL, Chanda ML, et al. Coding of facial expressions of pain in the laboratory mouse. *Nat. Methods*. 2010;7(6):447–449.
- 47 40. Shrum B, Anantha RV, Xu SX, et al. A robust scoring system to evaluate sepsis severity in an animal model. *BMC Res. Notes*. 2014;7:233.
- 49 41. Smith AA, Jacobson LJ, Miller BI, Hathaway WE, Manco-Johnson MJ. A new euglobulin clot lysis assay for global fibrinolysis. *Thromb. Res.* 2003;112(5–6):329–337.

- 1 42. Park SY, Shrestha S, Youn Y-J, et al. Autophagy Primes Neutrophils for Neutrophil Extracellular Trap Formation during Sepsis. *Am. J. Respir. Crit. Care Med.* 2017;196(5):577–589.
- 3 43. Wu K, Urano T, Ihara H, et al. The cleavage and inactivation of plasminogen activator inhibitor type 1 by neutrophil elastase: the evaluation of its physiologic relevance in fibrinolysis. *Blood*. 1995;86(3):1056–1061.
- 44. Urano T, Wu K, Ihara H, Takada Y, Takada A. Novel mechanism to enhance tPA-induced
 fibrinolysis: effect of limited proteolysis of PAI-1 by neutrophil elastase. *Pol. J. Pharmacol.* 1996;48(2):209–213.
- 9 45. Vallier L, Cointe S, Lacroix R, et al. Microparticles and Fibrinolysis. *Semin. Thromb. Hemost.* 2016;43(2):129.
- 146. Lacroix R, Dignat-George F. Microparticles as a circulating source of procoagulant and fibrinolytic activities in the circulation. *Thromb. Res.* 2012;129:S27–S29.
- 47. Wang J-G, Manly D, Kirchhofer D, Pawlinski R, Mackman N. Levels of microparticle tissue factor activity correlate with coagulation activation in endotoxemic mice. *J. Thromb. Haemost.* JTH. 2009;7(7):1092–1098.
- 48. Zafrani L, Gerotziafas G, Byrnes C, et al. Calpastatin controls polymicrobial sepsis by limiting procoagulant microparticle release. *Am. J. Respir. Crit. Care Med.* 2012;185(7):744–755.
- Thang Y, Meng H, Ma R, et al. Circulating Microparticles, Blood Cells, and Endothelium Induce
 Procoagulant Activity in Sepsis Through Phosphatidylserine Exposure. Shock. 2016;45(3):299–307.
- 50. Mu X, Wang X, Huang W, et al. Circulating Exosomes Isolated from Septic Mice Induce
 Cardiovascular Hyperpermeability Through Promoting Podosome Cluster Formation. Shock
 Augusta Ga. 2018;49(4):429–441.
- Danesh A, Inglis HC, Abdel-Mohsen M, et al. Granulocyte-Derived Extracellular Vesicles
 Activate Monocytes and Are Associated With Mortality in Intensive Care Unit Patients. Front.
 Immunol. 2018;9:956.
- Dalli J, Norling LV, Montero-Melendez T, et al. Microparticle alpha-2-macroglobulin enhances pro-resolving responses and promotes survival in sepsis. *EMBO Mol. Med.* 2014;6(1):27–42.
- Soriano AO, Jy W, Chirinos JA, et al. Levels of endothelial and platelet microparticles and their interactions with leukocytes negatively correlate with organ dysfunction and predict mortality in severe sepsis. *Crit. Care Med.* 2005;33(11):2540–2546.
- 54. Pérez-Casal M, Downey C, Cutillas-Moreno B, et al. Microparticle-associated endothelial protein C receptor and the induction of cytoprotective and anti-inflammatory effects. Haematologica. 2009;94(3):387–394.
- 55. Timár CI, Lorincz AM, Csépányi-Kömi R, et al. Antibacterial effect of microvesicles released from human neutrophilic granulocytes. *Blood*. 2013;121(3):510–518.
- 36 56. Gasser O, Schifferli JA. Activated polymorphonuclear neutrophils disseminate anti-37 inflammatory microparticles by ectocytosis. *Blood*. 2004;104(8):2543–2548.
- 38 57. Mesters RM, Flörke N, Ostermann H, Kienast J. Increase of plasminogen activator inhibitor 39 levels predicts outcome of leukocytopenic patients with sepsis. *Thromb. Haemost.* 40 1996;75(6):902–907.
- 58. Rijken DC, Lijnen HR. New insights into the molecular mechanisms of the fibrinolytic system.

 J. Thromb. Haemost. JTH. 2009;7(1):4–13.
- 43 59. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. *Nat. Rev. Mol. Cell Biol.* 2007;8(3):221–233.
- 45 60. Sônego F, Castanheira FVES, Ferreira RG, et al. Paradoxical Roles of the Neutrophil in Sepsis: 46 Protective and Deleterious. *Front. Immunol.* 2016;7:155.
- 47 61. Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. *Nat. Rev. Immunol.* 2013;13(1):34–45.
- 49 62. Massberg S, Grahl L, von Bruehl M-L, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. *Nat. Med.* 2010;16(8):887–896.

- 1 63. Fuchs TA, Brill A, Duerschmied D, et al. Extracellular DNA traps promote thrombosis. *Proc. Natl. Acad. Sci. U. S. A.* 2010;107(36):15880–15885.
- 3 64. Kolev K, Komorowicz E, Owen WG, Machovich R. Quantitative comparison of fibrin degradation with plasmin, miniplasmin, neurophil leukocyte elastase and cathepsin G. *Thromb. Haemost.* 1996;75(1):140–146.
 - 65. Rábai G, Szilágyi N, Sótonyi P, et al. Contribution of neutrophil elastase to the lysis of obliterative thrombi in the context of their platelet and fibrin content. *Thromb. Res.* 2010;126(2):e94-101.
- 9 66. Belaaouaj A, McCarthy R, Baumann M, et al. Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis. *Nat. Med.* 1998;4(5):615–618.

6

7

8

15

16

17

- 11 67. Belaaouaj A, Kim KS, Shapiro SD. Degradation of outer membrane protein A in Escherichia coli killing by neutrophil elastase. *Science*. 2000;289(5482):1185–1188.
- 13 68. Suda K, Takeuchi H, Hagiwara T, et al. Neutrophil elastase inhibitor improves survival of rats with clinically relevant sepsis. *Shock Augusta Ga*. 2010;33(5):526–531.
 - 69. Suzuki K, Okada H, Takemura G, et al. Neutrophil Elastase Damages the Pulmonary Endothelial Glycocalyx in Lipopolysaccharide-Induced Experimental Endotoxemia. *Am. J. Pathol.* 2019;189(8):1526–1535.
- 18 70. Li G, Jia J, Ji K, et al. The neutrophil elastase inhibitor, sivelestat, attenuates sepsis-related kidney injury in rats. *Int. J. Mol. Med.* 2016;38(3):767–775.
- 71. Youn Y-J, Shrestha S, Lee Y-B, et al. Neutrophil-derived trail is a proinflammatory subtype of neutrophil-derived extracellular vesicles. *Theranostics*. 2021;11(6):2770–2787.
- van der Poll T, van de Veerdonk FL, Scicluna BP, Netea MG. The immunopathology of sepsis and potential therapeutic targets. *Nat. Rev. Immunol.* 2017;17(7):407–420.
- 73. Dignat-George F, Boulanger CM. The many faces of endothelial microparticles. *Arterioscler. Thromb. Vasc. Biol.* 2011;31(1):27–33.

	r (Spearman)	p-value
AnnV+ MVs	0.43	0.01
Gran-MVs (AnnV/CD15)	0.34	0.05
P-MVs (AnnV/CD41)	0.16	0.5
Ery-MVs (AnnV/CD235a)	0.08	0.7
E-MVs (AnnV/CD146)	0.03	0.9

AnnV+ MVs=annexin V+ microvesicles; Gran-MVs=granulocyte-derived MVs; P-MVs=platelet-derived MVs; Ery-MVs=erythrocyte-derived MVs; E-MVs=endothelial-derived MVs. $p \le 0.05$ was considered a significant nonparametric correlation (Spearman's correlation).

Table 1. Correlations between the MV-PGC and MV subsets

Soluble molecule	r (Spearman)	p-value
Elastase	0.6	0.005
sCD40L	0.56	0.01
PDGF-AB/BB	0.48	0.03
TGF-α	0.46	0.04
TSP-1	0.28	0.23
FGF-2	0.21	0.37
IL-10	0.17	0.48
Resistin	0.15	0.53
TNF-α	0.1	0.66
IL-8	-0.04	0.84
G-CSF	0.03	0.88
IL-6	0.03	0.91

 $p \le 0.05$ was considered a significant nonparametric correlation (Spearman's correlation). Only significant correlations were included in the table.

Table 2. Correlations between the MV-PGC and SS patient plasma inflammatory molecule concentrations.

FIGURE LEGENDS

1

2 Figure 1: Gran-MVs from SS patients display a heterogeneous profile of PGC driven by the uPA/uPAR system. A. The microvesicle-dependent plasmin generation capacity (MV-3 PGC) of MVs isolated from SS patient platelet-free plasma, with a low MV-PGC (black 4 circle), an intermediate MV-PGC (white circle) and a high MV-PGC (circle with a cross), 5 compared to the MV-PGC of MVs isolated from healthy donor plasma (n=18, white square). 6 Each patient and healthy control were evaluated in duplicate. B. Counts of Gran-MVs 7 (AnnV/CD15), P-MVs (AnnV/CD41), Ery-MVs (AnnV/CD235a) E-MVs 8 and (AnnV/CD146) by flow cytometry in PFP from SS patients with low (<1.5 A_{405 nm}×10⁻³/min, 9 n=12, white square) or high (>5 A_{405 nm}×10⁻³/min, n=10; black square) MV-PGC values. Data 10 are mean+/-SEM. C. Flow cytometric detection of uPA (upper graphs) and uPAR (lower 11 graphs) on the surface of CD15+ MVs from SS patients with low (L-SS-MV) or high (H-SS-12 13 MV) PGC values (black traces). The expression of uPA or uPAR on CD41+ platelet derived MV was used as a negative control (gray traces). D/E/F. Detection by ELISA of uPAR, uPA, 14 15 and PAI-1 on purified total MVs from SS patients (SS-MVs) divided into two groups: patients with low ($<1.5 \text{ A}_{405 \text{ nm}} \times 10^{-3}$ /min, n=11, L-SS-MV, black circle) and high ($>5 \text{ A}_{405 \text{ nm}} \times 10^{-3}$ /min, 16 n=11, H-SS-MV, circle with a cross) MV-PGC values. NS: not significant; * p<0.05. 17

18

19

20

21

22

23

24

25

Figure 2: MVs from SS patients lyse a thrombus according to their MV-PGC level. A/B.

MVs purified from blood stimulated with LPS (LPS-MVs) lyse a fluorescent human thrombus suspended in plasma in a dose-dependent manner (5-0.3×10⁶ MVs). Thrombolysis was monitored by measuring the fluorescence released in the thrombus supernatant at 1, 2, 4 and 24 h (A) and the loss of thrombus weight after 48 h (B). The results are expressed as the percentage of fluorescence increase and weight loss compared to their initial values at T0 (n=5). C/D. Thrombolysis mediated by LPS-MVs (10⁷ MVs) in a lysis front retraction model.

Lysis is amplified by the saturation of uPAR with exogenous uPA (uPA-LPS-MVs) on the 1 MV surface. Representative fluorescence microscopy images (C) display the retraction of the 2 lysis front (white arrows) at 0, 6, 24 and 48 h; black bar = $1000 \mu m$. The lysis area (D) was 3 calculated considering the whole thrombus surface (4.3 mm²) using ImageJ software. uPA-4 LPS-MV: black circle; LPS-MV: grey circle and SPN: white circle, E/F. Thrombolysis 5 mediated by MVs from SS patients in a lysis front retraction model. Representative 6 fluorescence microscopy images (E) display thrombolysis in the presence of SS-MVs (2.10⁷ 7 MVs) purified from a pool of SS patients with low ($<1.5 \text{ A}_{405 \text{ nm}} \times 10^{-3}/\text{min}$, L-SS-MV) or high 8 (>5 A_{405 nm}×10⁻³/min, H-SS-MV) MV-PGC; n=3. For each experiment, the negative control 9 10 was represented by the last MV wash supernatant (SPN). black bar = $500 \mu m$. The lysis area (F) was calculated considering the whole thrombus surface (4.3 mm²) using ImageJ software. 11 Low-SS-PGC: black circle, high-SS-PGC: circle with a cross) and SPN: white circle. 12

13

Figure 3: MVs lyse a thrombus in a uPA/uPAR-dependent manner. A/B. Lysis front 14 15 retraction experiments were performed with MVs purified from blood and stimulated with 16 LPS (LPS-MVs, 2.10^7) in the presence or absence of α 2-antiplasmin (A2AP) at 0.5 μ M, an inhibitory anti-uPA antibody at 50 µg/ml and an isotype control (IgG) at 50 µg/ml; n=9. 17 Representative images for each time point (0 h, 24 h and 48 h) are displayed in A; black bar = 18 1000 µm. The lysis area was calculated at 48 h, considering the entire thrombus surface (4.3 19 mm²) using ImageJ software (B). The negative control was represented by the SPN. C/D/E. 20 LPS-MVs were treated with phosphatidylinositol-specific phospholipase C (PI-PLC; 2 21 22 IU/ml). The MV-PGC of the PI-PLC-treated LPS-MVs (PI-PLC-LPS-MVs) was compared to that of the untreated LPS-MVs (2.5×10⁶ MVs) (C). The thrombolytic effect of both types of 23 LPS-MVs was evaluated in the lysis front retraction model at 0, 24 and 48 h in the presence of 24

1 10⁷ MVs (D). The lysis area was calculated at 48 h, considering the entire thrombus surface

2 (4.3 mm^2) , using ImageJ software (E); n= 6.

3

Figure 4: Gran-MVs are the MV subset that mediate the thrombolytic activity. A. Flow 4 cytometric monitoring of MVs after selective depletion of MV subsets: platelet- derived MVs 5 (P-MVs), erythrocyte-derived MVs (ery-MVs) and granulocyte-derived MVs (Gran-MVs). 6 Immunomagnetic separation was performed using beads coated either with CD41 (black 7 circle) or CD235a (black square) or CD15 (black rhombus). Negative control experiments 8 were performed in parallel using beads coated with an irrelevant antibody (IgG, clear 9 symbols); n=3. B. The MV-PGC test was performed on MVs after the selective depletion of 10 CD41+, CD235a+ or CD15+ MV subpopulations or after a control IMS (IgG); n=3, CD41: 11 black circle, CD235a: black square, CD15: black rhombus and IgG: white circle. C. The 12 13 thrombolytic effect of MVs depleted of CD15-MVs or those subjected to a control IMS depletion (IgG) was evaluated in the lysis front retraction model at 0 h, 24 h and 48 h in the 14 presence of 10⁷ MVs. D. The lysis area was calculated at 48 h, considering the entire 15 16 thrombus surface (4.3 mm²), using ImageJ software. * p<0.05; ** p<0.01. E/F. Thrombolysis mediated by Gran-MVs (5.10⁶ MVs) in a lysis front retraction model. Lysis is amplified by 17 the saturation of uPAR with exogenous uPA (uPA-Gran-MVs) on the MV surface. 18 Representative fluorescence microscopy images (E) display the retraction of the lysis front 19 (white arrows) at 0, 6, 24 and 48 h; black bar = $1000 \mu m$. The lysis area (F) was calculated 20 considering the whole thrombus surface (150 mm²) using ImageJ software; uPA-Gran-MV: 21

23

24

25

22

Figure 5: Injection of MVs with a high level of PGC improves survival and reduces clot

black circle; Gran-MV: grey circle; SPN: white circle. n=5

formation in a murine model of sepsis. A. Cecal ligation was performed on CD-1 mice

(n=36 animals). Each group of animals received a daily intravenous tail injection (D1 to D4) 1 2 of uPA-Gran-MVs or Gran-MVs or SPN uPA-Gran-MVs from D1 (24 h after surgery). Once sepsis was established, mice were observed daily to assess spontaneous mortality and 3 monitored to measure their heart rate, oxygen saturation, breathing rate, and body 4 temperature. The animals were sacrificed at D5. B/C. Temperature amplitude at D1 (°C) and 5 the clinical score of three groups of animals injected with uPA-Gran-MVs, Gran-MVs or SPN 6 uPA-Gran-MVs (n=12 animals/group). Data are mean+/-SEM. D. Coagulolytic balance (MV-7 PGC and MV-TF) of uPA-Gran-MVs (10⁷), Gran-MVs (10⁷) and supernatant (SPN-uPA-8 Gran-MVs) and Mono-MVs (10⁷) (n=3). E. Survival curve of animals (n=12 in each group). 9 10 The results are presented as the percent survival. F. a/c Count of microthrombi in kidney and lung tissues after hematoxylin-eosin and phosphotungstic acid-hematoxylin staining (PTAH; 11 uPA-Gran-MVs n=10; Gran-MVs n=6; SPN uPA-Gran-MVs n=7). Data are mean+/-SEM. 12 13 b/d Histopathology of lung and kidney tissue samples from different groups of mice. Injected with uPA-Gran-MVs (n=11); injected with Gran-MVs (n=6); control group injected with SPN 14 15 uPA-Gran-MVs (n=6). Microthrombi are indicated by black arrows; black bar=100 μm. G. 16 Survival curve of animals injected in uPA-Gran-MVs (10⁷), soluble uPA or SPN-uPA-Gran-MVs (n=12 in each group). The results are presented as the percent survival. 17

18

19

20

21

22

23

24

25

Figure 6: Impact of the MV injection on the mouse hemostatic balance. A. Cecal ligation was performed on CD-1 mice on three kinetic, D1: 24 h after sepsis induction; D2: 48 h after sepsis induction; D5: 5 days after sepsis induction, n=36/group). Each group of animals received a daily intravenous tail injection of uPA-Gran-MVs or Gran-MVs or SPN uPA-Gran-MVs from D1 (24h after surgery). Once sepsis was established, the mice were observed daily to assess spontaneous mortality and monitored to measure their heart rate, oxygen saturation, breathing rate, and body temperature. In according to the kinetic, the animals were

- sacrificed at D1, D2 or D5. B/C/D/E/F. Measure of fibrinolytic and procoagulant parameters
- at D1, D2 and D5: plasmin-anti-plasmin complex (PAP), MV dependent plasmin generation
- 3 capacity (MV-PGC), thrombin-anti-thrombin complex (TAT), MV dependent tissue factor
- 4 activity (MV-TF) and D-dimer, respectively. Data are mean+/-SEM. NS: not significant; *
- 5 p<0.05; ** p<0.01; *** p<0.001.

6

7

8

9

10

11

12

13

14

15

16

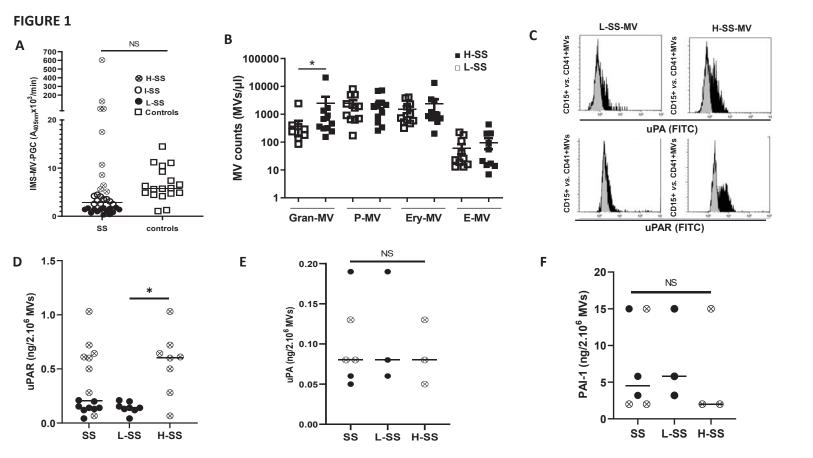
17

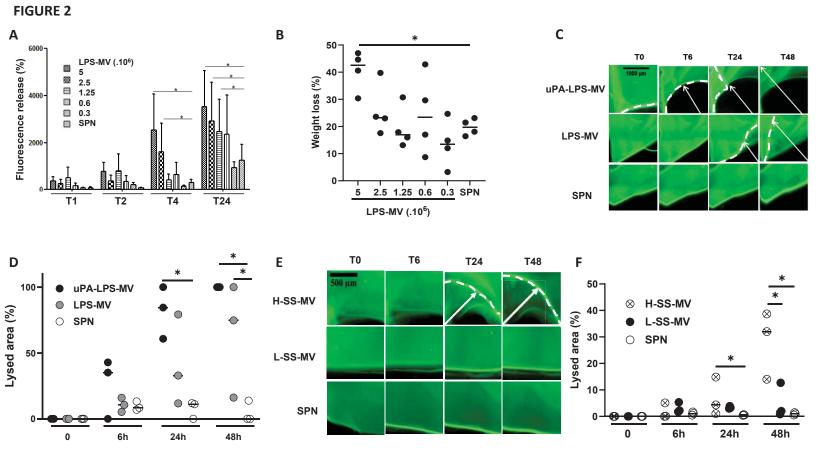
18

19

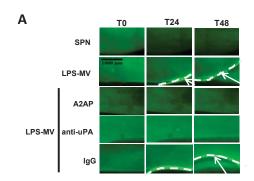
20

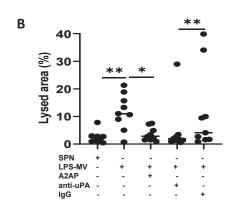
21

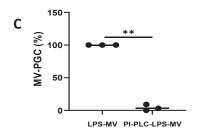

22

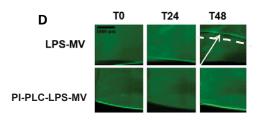

23

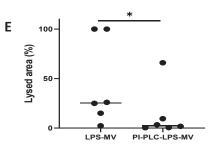
24

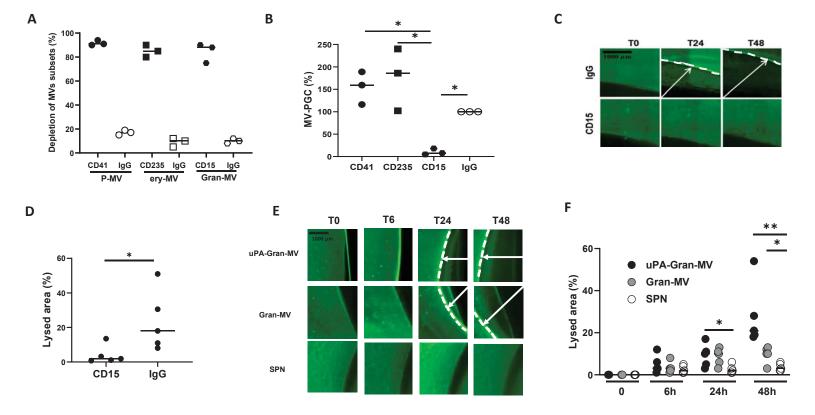

Figure 7: Soluble molecules from SS patient plasma modulate Gran-MV plasmin generation capacity in SS. A. Granulocytes (Gran) were purified from healthy individuals and then incubated with complete or MV-depleted plasma (PFP or MVFP) from SS patients with low (L-SS) or high (H-SS) plasmin capacity. Then, "Gran-induced MVs" (Gran-iMVs) were purified by ultracentrifugation and quantified by flow cytometry, and plasmin generation capacity was measured. B. MV-PGC of Gran-iMVs (4.10⁵) after stimulation with PFP from selected SS patients with low ($<1.5 \text{ A}_{405 \text{ nm}} \times 10^{-3}/\text{min}$, n=11, L) or high ($>5 \text{ A}_{405 \text{ nm}} \times 10^{-3}/\text{min}$, n=10, H). C. MV-PGC of Gran-iMVs (4.10⁵) after stimulation with MVFP from selected SS patients with low ($<1.5 \text{ A}_{405 \text{ nm}} \times 10^{-3} / \text{min}$, n=11, L) or high ($>5 \text{ A}_{405 \text{ nm}} \times 10^{-3} / \text{min}$, n=10, H). D. MV-PGC of Gran-iMVs (4.10⁵) after stimulation with MV-depleted plasma from SS plasma treated with a human neutrophil elastase (NE) blocking antibody or isotype control (n=11). E. MV-PGC of Gran-iMVs (4.10⁵) after stimulation with MV-depleted plasma enriched with NE (at a concentration range of 0.008-0.3 nM), from selected L-SS patient MV-PGC values (n=11). Data are mean+/-SEM. F. PGC of MVs extract with CD15 immuno-magnetic beads (IMS-MV-PGC) from LPS-treated blood spiked with a range of NE concentrations (0.008-0.3 nM; n=4). Data are mean+/-SEM. G. Effect of a range of NE concentrations (0.008-0.3 nM) on the uPA/PAI-1 complex (95 kDa and 110 kDa) by zymography (n=3; lytic zone in %, image digitally inverted). Data are mean+/-SEM. H. Effect of a range of NE concentrations

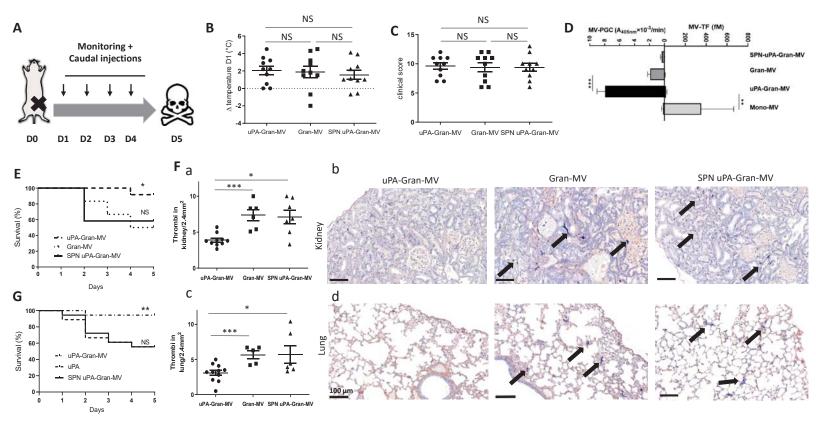

- 1 (0.008-0.3 nM) in the presence of PAI-1 (440 ng/ml) on the MV-PGC of purified Gran-MVs
- 2 (2.10⁶; n=6). Data are mean+/-SEM. NS: not significant; * p<0.05; ** p<0.01.

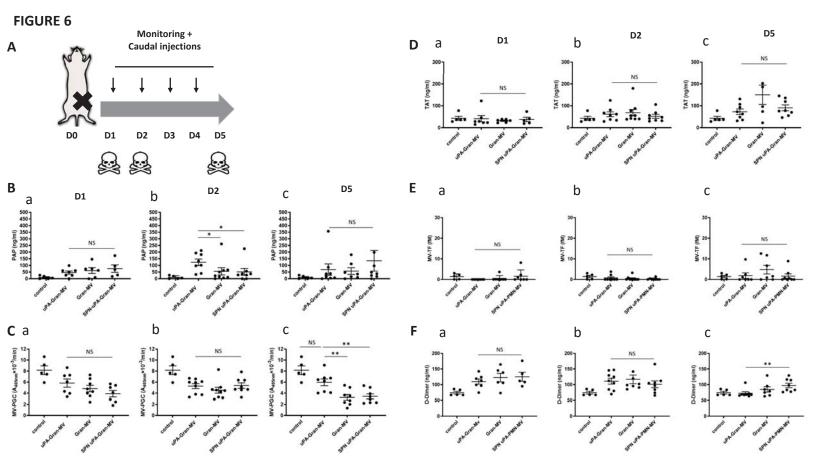





FIGURE 3







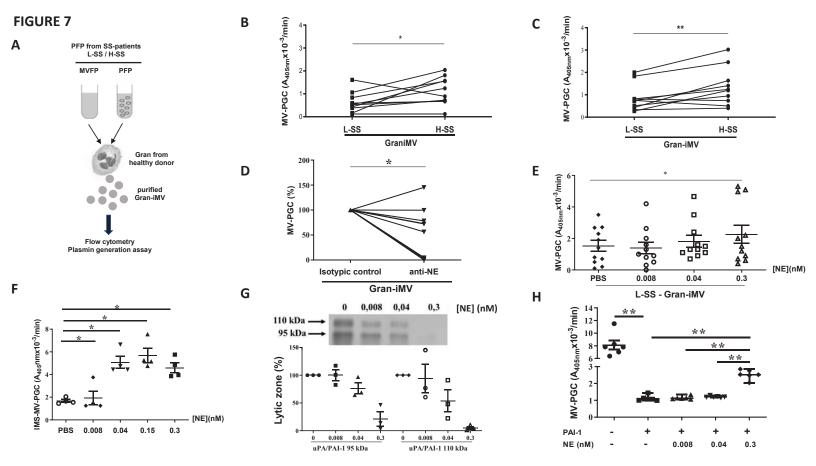

FIGURE 4

FIGURE 5

