
HAL Id: hal-03668551
https://amu.hal.science/hal-03668551v1

Submitted on 15 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Speed estimation for visual tracking emerges
dynamically from nonlinear frequency interactions
Andrew Meso, Nikos Gekas, Pascal Mamassian, Guillaume Masson

To cite this version:
Andrew Meso, Nikos Gekas, Pascal Mamassian, Guillaume Masson. Speed estimation for visual track-
ing emerges dynamically from nonlinear frequency interactions. eNeuro, 2022, 9 (3), pp.ENEURO.0511
- 21.2022. �10.1523/eneuro.0511-21.2022�. �hal-03668551�

https://amu.hal.science/hal-03668551v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Sensory and Motor Systems

Speed Estimation for Visual Tracking Emerges
Dynamically from Nonlinear Frequency Interactions
Andrew Isaac Meso,1,4,p Nikos Gekas,2,p Pascal Mamassian,3 and Guillaume S. Masson4

https://doi.org/10.1523/ENEURO.0511-21.2022

1Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London SE5 8AF,
United Kingdom, 2Department of Psychology, Edinburgh Napier University, Edinburgh, EH11 4BN, United Kingdom,
3Laboratoire des Systèmes Perceptifs, Département d’Études Cognitives, École Normale Supérieure, Paris Sciences et
Lettres University, Centre National de la Recherche Scientifique, Paris 75005, France, and 4Institut de Neurosciences de la
Timone, Centre National de la Recherche Scientifique and Aix-Marseille Université, Marseille 13005, France

Visual Abstract

Sensing the movement of fast objects within our visual environments is essential for controlling actions. It re-
quires online estimation of motion direction and speed. We probed human speed representation using ocular
tracking of stimuli of different statistics. First, we compared ocular responses to single drifting gratings (DGs)
with a given set of spatiotemporal frequencies to broadband motion clouds (MCs) of matched mean frequen-
cies. Motion energy distributions of gratings and clouds are point-like, and ellipses oriented along the constant
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speed axis, respectively. Sampling frequency space, MCs elicited stronger, less variable, and speed-tuned re-
sponses. DGs yielded weaker and more frequency-tuned responses. Second, we measured responses to pat-
terns made of two or three components covering a range of orientations within Fourier space. Early tracking
initiation of the patterns was best predicted by a linear combination of components before nonlinear interac-
tions emerged to shape later dynamics. Inputs are supralinearly integrated along an iso-velocity line and subli-
nearly integrated away from it. A dynamical probabilistic model characterizes these interactions as an
excitatory pooling along the iso-velocity line and inhibition along the orthogonal “scale” axis. Such crossed
patterns of interaction would appropriately integrate or segment moving objects. This study supports the novel
idea that speed estimation is better framed as a dynamic channel interaction organized along speed and scale
axes.

Key words: dynamic nonlinearities; motion clouds; naturalistic stimulation; ocular following; probabilistic model-
ling; speed estimation

Introduction
Controlling actions in a dynamic environment requires

the accurate measurement of trajectories of objects, ob-
stacles, or animals estimated from retinal image motion.
Therefore, visual systems within the animal kingdom
probably share fundamental computational principles for
measuring object direction and speed. In a cluttered envi-
ronment, such motion computation is intertwined with
another fundamental challenge of sensory processing: in-
tegrating or segmenting local information to parse the

visual scene into behaviorally-relevant entities (Nishida et
al., 2018).
The classical view is that motion information is com-

puted within a two-stage hierarchical system correspond-
ing to cortical areas V1-MT (Albright, 1984; Movshon et
al., 1985; Movshon and Newsome, 1996; Born and
Bradley, 2005). Local luminance energy is first sampled
through primary visual cortex (V1) receptive fields acting
as spatial and temporal frequency filters. Combining sev-
eral of these filters generates motion opponency of direc-
tion-tuned cells. At the second stage, direction signals are
nonlinearly combined to produce pattern direction cells
that are insensitive to the orientation, contrast and spatio-
temporal frequency properties of the image. In cortical
Middle Temporal (MT) area, and subsequently, directions
are uniformly represented (Kawano et al., 1994) and can
be quickly decoded to drive smooth pursuit eye move-
ments (Osborne et al., 2004).
While the same hierarchical network is used for human

and nonhuman primate speed estimation, many aspects
of speed processing remain unclear. In primates, speed
tuned neurons were first thought to be present only at the
integrative, MT stage (Perrone and Thiele, 2001; Priebe et
al., 2003), but more recent studies have reported speed
tuning in V1 complex cells (Priebe et al., 2006). Moreover,
speed tuning is strongly affected by image properties such
as contrast (Priebe et al., 2006) or spatiotemporal fre-
quency content (Priebe et al., 2003; Krekelberg et al.,
2006). Finally, retinal motion speeds are not uniformly rep-
resented in different cortical areas, with some speeds over-
represented during earlier encoding stages (Nover et al.,
2005). These properties have perceptual and behavioral

Received December 14, 2021; accepted March 11, 2022; First published April
25, 2022.
The authors declare no competing financial interests.
Author contributions: A.I.M., N.G., P.M., and G.S.M. designed research;

A.I.M. and G.S.M. performed research; A.I.M., N.G., and P.M. contributed
unpublished reagents/analytic tools; A.I.M., N.G., and G.S.M. analyzed data;
A.I.M. and G.S.M. wrote the paper.
This work was supported by Agence Nationale de la Recherche Grants

ANR-BLAN-13-SHS2-0006 (SPEED; to G.S.M. and P.M.) and ANR-18-CE37-
0019 (PredictEye) and ANR-20-CRCNS-001 (PrioSens; to G.S.M.). This work
was also supported by the Agence Nationale de la Recherche Grant ANR-17-
EURE-0017 (FrontCog; to P.M.). G.S.M. is also supported by the Fondation
pour la Recherche Médicale (Equipe FRM 2018).

Acknowledgment: We thank Claudio Simoncini, Xavier De Giovanni and
Anna Montagnini for their help and suggestions.
*A.I.M. and N.G. contributed equally and are first co-authors.
Correspondence should be addressed to Andrew Isaac Meso at andrew.

meso@kcl.ac.uk.
https://doi.org/10.1523/ENEURO.0511-21.2022

Copyright © 2022 Meso et al.

This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International license, which permits unrestricted use,
distribution and reproduction in any medium provided that the original work is
properly attributed.

Significance Statement

We presented participants with component moving luminance gratings or naturalistic moving textures with
matched mean, but not variance, spatial and temporal characteristics. Recorded eye movements depended
on stimulus type with more reliable speed estimates for naturalistic inputs. Eye responses to patterns made
of several components evolved over ;200ms from linear to nonlinear information integration. The nonli-
nearity unveiled by our modeling work suggested concurrent inhibitory and excitatory processes acting
within a motion representation that encodes stimulus speed (the ratio of temporal and spatial frequencies)
and scale (the product of temporal and spatial frequencies) as key dimensions. This speed-scale framework
recasts the classical spatiotemporal channel approaches to shed new light on motion integration and seg-
mentation computations at both neuronal and behavioral levels.
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consequences. For instance, human and monkey tracking
eye velocity and precision can be affected by first-order
(e.g., spatial frequency, Priebe et al., 2006) and second-
order (Simoncini et al., 2012; Mukherjee et al., 2015)
statistics of inputs. Similarly, perceived speed can be
biased by contrast, luminance, and frequency
(Thompson, 1982; Smith and Edgar, 1990, 1994; Thompson
et al., 2006). We recently reappraised how speed is esti-
mated with moving patterns made of components tiling the
spatiotemporal frequency space (Gekas et al., 2017).
Using speed discrimination judgements, we unveiled a
complex pattern of excitatory-inhibitory interactions be-
tween spatiotemporal frequency channels activated by the
moving stimulus. It remains unknown whether these per-
ceptual interaction patterns can be generalized to other
speed-based behaviors.
Miles and colleagues coined the term “ocular following”

for automatic, short-latency tracking responses to visual
motion in human and nonhuman primates which reflect
properties of low-level motion computation (Miles et al.,
1986; Gellman et al.,1990). Tracking initiation is driven by
a local motion energy computation followed by contrast
normalization (Masson et al., 2001; Sheliga et al., 2005;
Barthélemy et al., 2006). Ocular following is tuned for spa-
tial and temporal frequencies (Gellman et al., 1990; Hayashi
et al., 2010) and depends on local and global spatial cen-
ter-surround integration (Barthélemy et al., 2006; Quaia et
al., 2012; Sheliga et al., 2013). Successive linear and non-
linear 2D motion integration computations performed by
MT and MST neuronal populations are reflected in its tem-
poral dynamics (Masson and Perrinet, 2012).

Our objective was to unveil dynamic patterns of interac-
tion between spatiotemporal frequency channels that
shape speed tuning. To do so we compared two types of
motion component stimuli: simple drifting gratings (DGs)
and motion clouds (MCs). Both had matched nominal
spatial and temporal frequency (Fig. 1a), and MCs are ad-
ditionally defined by their spatial and temporal frequency
Gaussian distributions oriented along a given iso-velocity
line within frequency space so that they efficiently drive
tracking responses (Sanz-Leon et al., 2012; Simoncini et
al., 2012). We unpacked the comparison in three main
stages. First, we investigated the sensitivity envelope for
each stimulus type. Next, we constructed moving pat-
terns by summing two or three single DG or MC (Fig. 1c).
We compared the tracking amplitude for patterns with a
simple linear model averaging the corresponding compo-
nent-driven responses. Last, deviations over time from
linear integration unveil the dynamical pattern of interac-
tions between spatiotemporal frequency channels (Gekas
et al., 2017).
By completing the stages highlighted above, we make

the following findings. (1) We demonstrate the importance
of using well-parametrized naturalistic inputs, like MCs, in
contrast to gratings, plaids, or random dot patterns. This
naturalistic approach can be implemented from behav-
ioral to physiological studies, in humans as well as verte-
brate and invertebrate animal models. (2) We test the
proposed novel theoretical framework, the speed-scale
space, showing that it best captures observed interac-
tions when two or three stimuli are combined into a pat-
tern. This finding paves the way for a re-evaluation of

Figure 1. Rationale for probing motion integration properties for ocular tracking. a, Motion stimuli are defined by their mean spatial
and temporal frequencies in Fourier space. A set of 15 component stimuli were generated, paving the spatiotemporal frequency
space (1 to 15 correspond to c1 to c15 detailed in Table 1). The component motion inputs were selected to cover three ranges of
spatiotemporal frequency scales (low, medium, high, with a red-green-blue color code). They were also aligned (in groups of 3)
along five different speed axes (from 11°/s to 53°/s, hue saturation code). b, Ocular tracking responses to either a component
Motion Cloud (MC, top) or a component Drifting Grating (DG, bottom) of same mean spatiotemporal frequencies and speed (stimu-
lus c1 in panel a). Gray curves are all single trials. Green curves are average across ;150 valid trials, for participant S01. c, Pattern
stimuli were generated by summing several (2 or 3) of these components. For instance, a triplet can be oriented along the iso-veloc-
ity line or along the scale axis. Components were built from either component DG or component MC. Notice that both pattern stimu-
li have the same mean spatial and temporal frequency as well as the mean speed (here 24°/s). d, Individual and mean eye velocity
profiles of tracking responses to either pattern stimulus. Continuous blue/orange lines are the observed mean eye velocity profiles.
Broken lines correspond to the linear prediction, computed as the mean of the responses to each component.
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visual motion segmentation and integration rules, as sig-
naled in a recent review on visual motion computation
(Nishida et al., 2018). (3) To complement the findings of
Gekas et al. (2017), we show for the first time the generic
applicability of this approach: perception and action (ocu-
lomotor) use the same nonlinear rules, albeit with the im-
portant elaboration of different excitation/inhibition kernels
which in the present case emerge dynamically over the
400-ms stimulus presentation.

Materials and Methods
Participants
All experiments were conducted on six healthy vol-

unteers (age M = 35.7, SD = 10.7, two females), four of
whom were naive regarding the purpose of the study.
Participants were free of neurologic and neuro-oph-
thalmological disorders, and all had normal or cor-
rected-to-normal vision. The study was approved by
the Aix-Marseille University Ethics Committee (Project
SPEED, Ref 2014-12-3-06) and conducted in accord-
ance with the principles of the declaration of Helsinki.
Participants gave their informed consent before begin-
ning the first session.

Visual stimuli
Visual stimuli were computer generated offline with

bespoke scripts in the MATLAB environment and
stored as display matrices of 400-ms duration. Movies
were displayed on an LCD display (CRS Display11,
1920 � 1080 pixels) at 100 Hz over a gray background
of the same mean luminance (120 cd/m2). Stimulus
presentation, eye movement recordings and online be-
havioral control were done on a Mac Pro computer
running the PsychToolbox video libraries (Pelli, 1997)
under the MATLAB environment. Two types of moving
stimuli were used: broadband dynamic luminance
noise MCs (Sanz-Leon et al., 2012; Gekas et al., 2017;
Vacher et al., 2018) and drifting luminance gratings,
DG which served as a narrowband (point in frequency
space) control.

MC stimulus generative model
MCs were used to systematically probe how lumi-

nance information which spans a range of spatiotem-
poral scales is integrated by the human visual system.
MCs provide a generative model of naturalistic scenes
constructed by a Primary Visual Cortex inspired basis
set of dense localized drifting Gabor elements Gi para-
meterized by characteristics Ci (i.e., orientation u i,
spatial frequency sfi, and speed vi with corresponding
temporal frequency tfi). These Gabor elements are lin-
early combined with randomized phases w i to remove
hard edges. An envelope distribution E is then applied
to the characteristics of the elements Ci in Fourier
space to constrain the stimulus spread to an ellipse
within the spatiotemporal frequency plane, see Figures
1. The resulting stimuli have a precise bandwidth con-
trolled by parametric vectors M and U over orientation,
spatial frequency, and speed:

M ¼ u 0; sf0; v0½ � (1)

U ¼ Du ;Bsf;Bv½ �: (2)

WhereM in Equation 1 sets the center of the distribution
of characteristics and U in Equation 2 their spread, the en-
velope distribution E is given by,

E ¼ P M;U½ �: (3)

Which is a set of probability distribution functions para-
meterized by M and U. Orientation is defined by a Von
Mises distribution, while spatial frequency and speed are
Log Normal distributions. The characteristics Ci of the
Gabor’s Gi are obtained by densely sampling the distribu-
tion E.

Ci ¼ u i; sfi; tfi; vi½ �: (4)

Each temporal frequency tfi is computed as the
product of the spatial frequency sfi and the speed vi.
To generate the two dimensional time varying stimulus
I(x,y,t), a large finite number N of vector elements Gi

are each centered on image locations uniformly dis-
tributed across p[px, py] and defined by characteristics
Ci. The phase of each Gi, f i is uniformly distributed
over [0, 2p ]. The elements are all summed and scaled
by an amplitude coefficient ao to control contrast and
this generates an MC defined by its luminance I at
each spatial location (x,y) over time t.

Iðx; y; tÞ ¼ aoI x; y; tð Þ ¼ a0

XN

i¼1

Gi pi; f i 1 t;Cið Þ: (5)

Equation 5 is implemented by an autoregressive AR2
process detailed in previous work, which is used to pre-
generate the stimuli (Vacher et al., 2018). MCs used had
five fixed parameters: H0 = 90° (vertically oriented), DH0 =
15°, Bsf=1 octave (full width at half max; FWHM), Btf = 1
octave (also FWHM) and RMS contrast = 60%. The vari-
able parameters were the central spatial frequency sf0
and temporal frequency tf0. which together determined
the speed v0 = tf0/sf0.
Fifteen individual MC stimuli were generated with as-

signed numbers c1 to c15 arranged within the spatio-
temporal frequency space as illustrated in Figures 1–3.
These had a range of nine unique sf0 values {0.13,
0.22, 0.29, 0.38, 0.50, 0.66, 0.87, 1.15, 2.00}c/° and 15
tf0 values within the range [4.15, 34.69] Hz. These val-
ues were logarithmically spaced within the frequency
plane to sample an obliquely oriented rectangular
space of four octave range along the spatial frequency
axis and three octaves along the temporal frequency
axis, with each of the points arranged along one of five
parallel oblique speed lines v0 {10.96, 16.22, 24, 35.52,
52.58}°/s. Each MC stimulus was designed to target a
distinct population of motion sensitive neurons, corre-
sponding to a spatiotemporal/speed channel, which
are limited in their frequency bands of sensitivity. The
stimulus parameters for these 15 MCs are given in
Table 1.
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Control DGs generative model
Fifteen drifting luminance grating stimuli were used as

comparison and control stimuli with the same spatiotem-
poral parameters as the MCs given listed in Table 1.
These are parametrized using M in Equation 1 effectively
implemented with zero valued distribution parameters U
in Equation 2, generating a Dirac d function at each point
in the spatiotemporal plane. The orientation is the same
as the MCs: H0 = 90°. Each grating in which the phase is
randomized by U0 is given by L defined at each spatial lo-
cation (x,y) and over time t.

L x; y; tð Þ ¼ A0sin sf0:
x
2
:p 1 f 0 1 v0:t

� �
: (6)

The luminance contrast is scaled by the term Ao and the
spatial frequency sfo and speed vo for each individual
component is given in Table 1.

Composite stimuli: pattern MCs and pattern gratings
Dynamic eye responses to the 15 single stimuli (MCs

and DGs) were measured. To understand the rules be-
hind the visual system’s combination of individual
components of different distances and orientations
relative to the center of the spatiotemporal frequency
space, we generated a set of nine pattern stimuli made
up of three (or two) superimposed components from
the set of 15 MCs and DGs. We linearly combined sets
of such single stimuli into each of the patterns by add-
ing components from Equations 5, 6 and then scaling
them appropriately to get F.

Fðx; y; tÞ ¼ b
XP

j¼1

Ij: (7)

The summation of the P single stimuli uses I for each to
generate pattern MCs (pMC) F as given in Equation 7 or
alternatively uses L in place of I to generate F for the case
of pattern DGs (pDG). Following summation, the result in
each case is scaled by a coefficient b which like ao in
Equation 5 adjusts the contrast to 60% ensuring all stimu-
lus cases have a controlled perceived contrast. The nine
patterns are identified by letters (a) to (i) and have parame-
ters given in Table 2.

Eyemovement recordings and behavioral paradigm
Horizontal and vertical positions of the right eye were

recorded with an EyeLink 1000 video-eye-tracker. Head
movements were minimized by using a forehead and chin
rest. Eye position signals were calibrated at the beginning
of each block of 400 trials. Participants ran between three
and eight blocks per day and data collection lasted sev-
eral days. Experimental sessions were divided in two se-
ries, separating MCs and DGs stimuli. However, for each
type of motion stimuli, all 15 components, nine patterns
and a blank case were fully interleaved into blocks of 25
conditions. Experiments were ended after 10 blocks if
about ;150 valid trials were collected on each condition
to ensure good signal-to-noise ratio and a sufficient

sampling of eye velocity distributions for each condition.
Overall, ;8000 trials were collected on each participant
(4000 each for MC and DG; 10 blocks of 400 trials).
We used the classical ocular following paradigm where

motion stimulus directions were both unpredictable and
presented in the wake of a centering saccade. This para-
digm has been extensively used in both nonhuman (Miles
et al., 1986; Masson et al., 1997) and human (Gellman
et al., 1990; Masson and Castet, 2002; Simoncini et al.,
2012) primates. A gray background was continuously pre-
sented to avoid large luminance fluctuations over the
course of a block. At the beginning of a trial, a small, dark
fixation target was presented at 11.6° eccentricity in the
right hemifield, along the horizontal axis. Participants
were required to fixate it within a 1° � 1° accuracy win-
dow. Once fixation was both accurate and steady for
100–200 ms, the fixation spot was turned off and a central
fixation target was flashed. Participants had to make the
11.6°, leftward centering saccade to acquire it. The cen-
tral target was turned off during the saccadic flight.
Accuracy of the centering saccade was checked with an
electronic window (2°� 2°). The moving stimulus was pre-
sented within a square patch (side: 18.6°) for 400ms,
starting 120ms after the end of the centering saccade. At
the end of the stimulus presentation, a gray background
was displayed. The reappearance of the eccentric target
indicated the start of a new trial. We interrupted on-line
the trials where the centering saccade landed outside of
the fixation window or when a second, corrective saccade
was elicited. A blank trial was interleaved, where no visual
motion was presented at the end of the saccade. It was
used to subtract any postsaccadic drift that could con-
taminate eye velocity profiles. Motion stimulus trial condi-
tions had the same probability as the blank. To avoid
anticipatory tracking eye movements, both rightward and
leftward motion directions were used, with the equal
probability.
As explained, this centering saccade procedure has

several advantages when investigating visual motion
processing and reflexive tracking. First, the conditioning
saccade guarantees that gaze will also be directed to the
same location and therefore the retinal image will always
be centered at stimulus motion onset. Second, visual mo-
tion sensitivity is boosted immediately after a saccade
(Kawano and Miles, 1986; Gellman et al., 1990), a phe-
nomenon called postsaccadic enhancement. Third, atten-
tion is most probably engaged at that central gaze location
location and the fixation system disengaged given both the
disappearance of the central fixation target and the short
delay between saccade end and motion onset, similar to
the classical gap paradigm (Krauzlis and Miles, 1996).
Ocular following responses (OFRs) are reflexive, machine-
like tracking responses that are elicited at short-latency
(;90 ms) by visual motion under these conditions. They
are observed without specific instruction to the partici-
pants, beyond the instructed centering saccade.

Data preprocessing and data analysis
Each block started after linearizing the right eye position

with a nine-point calibration procedure. Rightward and
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leftward eye positions are given positive and negative val-
ues, respectively. Angular eye position signals were then
filtered using a fifth-order Butterworth filter with a cut off
at 40Hz (3 dB) with a spline-interpolation to counter trace
discontinuities. Velocity components were calculated by
differentiating the filtered positions using a central differ-
ence method with position samples 10ms apart to esti-
mate a response every millisecond. Velocity was further
filtered with a similar Butterworth filter with a cut off at
30Hz. Rightward and leftward trials were aligned by in-
verting the sign of ocular responses to leftward visual mo-
tion trials. These eye data filtering and transforming
procedures have been fully described elsewhere (Meso
et al., 2016).
Eye velocity profiles of all trials were visually inspected

using an interactive display and those with blinks, sac-
cades and large oscillations within the 400ms from stimu-
lus onset of interest were removed. The frequency of
these outliers varied across participants averaging ;8%
(4–16 exclusions per 160). The mean eye velocity of the
blank trials was subtracted from the eye velocity profile of
each selected trial to remove any residual postsaccadic
drift (Gellman et al., 1990). For each condition, we com-
puted the mean eye velocity profile to illustrate the dy-
namics of the ocular responses.

Experimental design
The experiment had a multivariate and multifactorial re-

peated measures design with OFRs providing the main
dynamic matrix of the dependent variables. OFR was ana-
lyzed either as high resolution pseudo-continuous traces
with samples between 1ms and 400ms from onset at a
1ms resolution or alternatively as binned responses over
five successive 50-ms time windows between 50ms and
300ms. The first of these windows ran from [51–100 ms],
covering the preresponse which can be used to estimate
instrumental noise as a baseline. The next two were [101–
150 ms] and [151–200 ms] covering the open-loop phase
of tracking responses. The last two windows ([200–250
ms] and [250–300 ms]) covered the final part of the initial
eye acceleration that we considered, as ocular responses
tend toward the steady-state eye velocity (see Lisberger
et al., 1981). In addition to this, other derived dependent
variables such as orientation angles, U (speed) and H
(scale), of the fitted spatiotemporal tuning surfaces and
the linear/nonlinear ratio RNL ¼ eobs=epred

� �
of the pattern

to the predicted component responses were also used for
specific hypotheses. For each time window, and each
valid trial, mean eye velocity was computed and then
used as statistical measurements for response amplitude
for a given time bin. All subsequent statistical analysis
and modeling were performed using these eye velocity
measurements as the dependent variables.
In our statistical testing, we had six stimulus or task fac-

tors of interest which were nine unique spatial frequencies
(sf0), 15 temporal frequencies (tf0), two stimulus types
(stp), the five time windows considered (tw), five speeds
(v0) and 15 scales (s0) and an additional factor for the pat-
tern stimuli, the spatiotemporal orientation angle (oa). The
scales (s0) were calculated as the Euclidean distance from

the origin [0,0] on the frequency axis along the reference
iso-velocity line (v = 24°/s) to the point of intersection with
the orthogonal line that cuts through the center of the
stimulus of interest. We used six statistical models M1 to
M6 to test our specific hypotheses. Five of these, M1 to
M5 used linear mixed effects modeling. All these linear
mixed effects models reported in this manuscript were
conducted using an implementation of Satterthwaite’s
method with adjusted estimates of degrees of freedom run
with routines from the lme4 and lmertest libraries in the pro-
gramming language R (Bates et al., 2015; Kuznetsova et al.,
2017). The Restricted Maximum Likelihood method (REML),
was used for the fits to minimize the effect of the parame-
ters which were not of interest. In each case, the inde-
pendent variables of interest were included as the fixed
factors while the random factors were selected to reflect
factors we expected to vary the value of the DV as noise.
The last statistical model M6 was simply a nonparametric
means comparison based on bootstrapping of 1000 sam-
ples of the linear-nonlinear separation times with trimmed
means.

Results
Figure 1 illustrates the rationale of the two series of ex-

periments. Motion stimuli are classically defined in the
spatiotemporal frequency space by their statistical prop-
erties such as mean spatial (sf0) and temporal (tf0) fre-
quencies. We compared sinusoidal DGs to MCs. The
former has a single spatial and temporal frequency and is
represented by a point in this space. In contrast, MCs are
broadband stimuli in Fourier space and therefore are de-
fined by both their mean and SD of spatial and temporal
frequencies. We defined our MC stimuli as being oriented,
that is their energy is distributed along an oblique line and
therefore are characterized by an oblique ellipse in Fourier
space. Within the spatiotemporal frequency space, such
an oblique axis defines an iso-velocity line, also named
the speed axis. Along this line, all motion inputs have the
same mean speed (and direction), but different spatial
and temporal frequencies thus maintaining the same ratio
(v0=sf0/tf0, in °/s). Gekas et al. (2017) proposed another
axis to describe the spatiotemporal properties of motion
input, called the scale axis. This axis is orthogonal to the
speed axis (s=tf0*sf0, in c2/°.s). Along this diagonal, inputs
have different speeds but the same product of spatial and
temporal frequencies.
Our first goal was to investigate the properties of ocular

tracking responses to a set of component DG or MC that
covered a broad range of spatial and temporal frequen-
cies (Fig. 1a). Mean spatiotemporal frequencies of the 15
motion components (labeled from c1 to c15) were se-
lected to tile the frequency space but also to probe differ-
ent mean speeds (diagonal axis “speed”) and scales
(diagonal axis “scale”). We separated these 15 compo-
nents into three scale ranges (low, medium, and high, re-
spectively, in red, green, and blue colors) and they were
aligned along 5 different mean speeds, ranging from 11°/s
to 52.6°/s. Figure 1b illustrates tracking eye velocities for
;160 trials (all trials included in gray, but mean based on
valid trials), in response to the central motion stimulus (c1,
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mean SF: 0.5 c/° mean TF: 12Hz; mean speed: 24°/s), for
either a MC (top) or a DG (bottom). Green continuous lines
are mean eye velocity profiles. One can notice the differ-
ence in response amplitudes, initial eye velocity being
larger for a component MC than for its DG counterpart,
despite the fact that both stimuli have identical mean (but
not distribution) spatiotemporal frequencies and speed.
We will first describe the tuning properties of ocular track-
ing responses as a function of the statistical properties of
the two motion inputs.
Our second objective was to probe the dynamics of

ocular tracking in response to pattern stimuli con-
structed by summing different motion components.
Figure 1c illustrates two examples for generating one
pattern MC from three component MCs. In the top ex-
ample, the three components (c1, c14, c10) are aligned
along a single iso-velocity line in the spatiotemporal
space (the speed axis), but span the three ranges of
spatiotemporal scales. In the bottom example, another
pattern MC is constructed by summing three compo-
nents (c8, c1, c12) which are aligned along the same
scale axis, but therefore span three different mean
speeds. Notice that for both patterns, mean spatio-
temporal frequencies and speeds are still identical. We
recorded ocular tracking responses to these patterns,
as illustrated in Figure 1d, where eye velocity profiles
of single trials (gray) and average (continuous colored
lines) are plotted. Broken lines illustrated the predicted
mean eye velocity profiles, computed by averaging the
responses to the three components presented inde-
pendently. It is then possible to compare observed
and linearly predicted responses to infer how visual in-
puts are combined, depending on their statistical
properties, similar to what has previously been done
for speed perception (Gekas et al., 2017).

Spatiotemporal frequency tuning of ocular tracking
We first characterized the spatiotemporal tuning of ocu-

lar tracking responses with both stimulus types. Figure 2a
illustrates mean eye velocity profiles, for a representative
participant, of tracking responses for each component
motion, for either a component DG (dotted lines) or com-
ponent MC (continuous line). Overall, tracking responses
are stronger with MC than DG. However, the difference
between the two stimulus types arises later for higher
temporal frequencies and speeds and is largely negligible
for low temporal and spatial frequencies. We estimated
the latency of component DG and MC-driven responses
to 83.36 9.4ms and 88.16 13.3ms, respectively. There
was no significant difference between the two types of
stimuli. To quantify the tuning of ocular tracking to tempo-
ral and spatial frequencies, we computed mean eye ve-
locity over five successive time windows of 50ms each,
binning the response dynamics from 50 to 300ms after
stimulus onset. The [50–100 ms] time window is a preres-
ponse or baseline time window that allows us to estimate
noise level just before response onset. Notice that the
second and third time windows ([100–150 ms] and [150–
200 ms]) of response corresponds to the initial open-
loop phase of tracking (that is between ;90 and ;180
ms after stimulus onset) and together the response bins
(from 100 to 300ms) capture the overall eye acceleration
phase as final eye velocity has not yet reached target ve-
locity (Fig. 2a).
We first plot mean eye velocity (6SD across six partici-

pants) for early ([150–200 ms]) and late ([250–300 ms])
time windows, against temporal (Fig. 2b) and spatial fre-
quency (Fig. 2c). For gratings, responses appeared to
show a peak tuning across both stimulus dimensions,
creating an inverted U-shape tuning function, peaking at
;10 Hz with a broad temporal frequency tuning that

Figure 2. Dynamics of spatiotemporal frequency tuning of ocular tracking responses. a, Mean eye velocity profiles of tracking re-
sponses to each of the component MC (continuous lines) or DG (dotted lines). At each location in the spatiotemporal frequency
space, grating, and MC stimuli have identical mean spatial frequency, temporal frequency, and speed, but different spreads around
these means. b, Early (left) and late (right) temporal frequency (TF) tuning of ocular tracking responses to either component MCs
(top) or DG (bottom). Data are mean (6SD) eye velocities across participants. c, Same plots but for spatial frequency (SF) tuning.
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depended on time window and stimulus type and low
spatial frequency (peak at;0.16 c/° for DG and;0.30 c/°
for MC). These tuning functions are present and measura-
ble from tracking onset (125-ms window) for DGs and a
little later for MCs and remain unchanged for later phases
of tracking. Separating components based on their scale
range does not change the overall spatial and temporal
frequency tuning. With component MC, these tuning
functions are broader and therefore less sharply visible,
with limited changes in early response amplitudes when
increasing either temporal or spatial frequency. Indeed,
spatial frequency peaks could not be estimated reliably
until the [150–200 ms] time window. For the late part of
the responses, tuning functions are even flatter. Overall,
tracking responses to gratings are more strongly tuned
for spatiotemporal frequencies when those to MC are
more subtly tuned to spatial and arguably untuned to tem-
poral frequencies, at least not in a consistent way across
our different scale ranges.
We quantified statistical dependencies in OFRs using

mixed effects modeling. The first model, M1 had OFR as
the dependent variable predicted by fixed factors spatial
frequency (sf0), temporal frequency (tf0), stimulus type
(stp), time window (tw), and the interaction between stp
and tw to compare temporal dynamics between compo-
nent MC and DG. As a random factor, we used individual
participants whose baseline eye velocity was expected to
vary with stimulus type, over time windows and based on
individual frequency functions. All linear mixed effects
models reported in this manuscript are conducted using
an implementation of Satterthwaite’s method run with
routines from the lme4 and lmertest libraries in the pro-
gramming language R (Bates et al., 2015; Kuznetsova
et al., 2017). Further details are given within Materials and
Methods.
There were main effects of sf0 (F(6.3) = 9.47, p=0.020)

and tw (F(7.3) = 5.14, p=0.028). There was no significant
effect of temporal frequency (tf0) or stimulus type with
p. 0.05. There was however a strong interaction between
the time window and stimulus type (F(867.8) = 13.69, p,
0.001). Looking at the pattern of this interaction, the fitted
statistics was tw. 4 for windows 3–5 (p, 0.01), indicat-
ing that MC responses became gradually stronger than
DG responses over the duration of the response, with a
significant difference between MCs and DGs from 175ms
onwards. We did not explore the significant spatial fre-
quency tuning further with the linear mixed model, but in-
stead did so with surface fitting.

Speed and scale tuning of ocular tracking responses
Since mean spatial and temporal frequencies of the mo-

tion component cannot explain responses tuning for both
DG and MC together, we investigated how amplitudes
would be affected by either the input mean speed or scale
properties. The set of 15 component stimuli are replotted
in Figure 3a, together with labels for the speed and scale
axes. Recall that spatiotemporal frequencies are grouped
within three scale ranges (color hue) and were distributed
along five different speeds (11–53°/s), indicated by color
saturation.

Figures 3b,c illustrate speed tuning of ocular re-
sponses. For both component MC and grating, we plot
mean eye velocity profiles for a subset of five conditions
(c8, c2, c1, c5, c11), where all motion stimuli belong to the
medium scale range but span the whole speed range.
Amplitude of ocular responses clearly increases with
higher speeds (Fig. 3b), in particular for the later parts of
the responses (.150 ms). Amplitudes of speed modula-
tions are larger with component MC than DG. Figure 3c,
upper plot, plots the mean (6SD across six participants)
eye velocity, as a function of target speed, for the three
scale ranges, for the early time window ([100–150 ms]).
With component MC, speed tuning was independent of
stimulus scale: all three curves were superimposed, peak-
ing at ;30°/s. By comparison, the lower panel shows that
speed tuning was mostly flat for component DG, and
strongly different for stimuli with the highest scales (blue
symbols). In particular, with the highest scale stimuli (see
stimuli c10 and c11), responses to gratings were strongly
reduced, when compared with MC despite their identical
mean spatial and temporal frequency contents.
Next, we ordered the tracking responses according to

stimulus scale. Figure 3d plots, for the same participant,
the mean eye velocity profiles obtained with three compo-
nent MC (top) and grating (bottom) stimuli of the same
speed (24°/s) but different scales (c14, c1, and c10).
Again, ocular tracking responses were slightly modulated
by scale range for MC, but strongly reduced for highest
scales with DG (blue curves). Early mean eye velocity is
plotted against scale in Figure 3e (mean 6 SD across six
participants) for both component MC (upper plot) and DG
(lower plot). While tracking initiation is only marginally
tuned for scale, across speed ranges, there is a clear low-
pass scale tuning with component DG. We observed the
same pattern of scale tuning at later time windows.
These results suggest that ocular responses are tuned

for either speed or scale depending on stimulus type. To
statistically test for these effects, we used a second
mixed model M2 with a similar structure to M1 used
above but substituting the frequency factors st0 and tf0.
For M2, binned eye velocity was predicted by fixed fac-
tors scale (s0), speed (v0), stp, and tw and again the inter-
action between stimulus type and time (stp,tw). The
random factor was individual participants, with baseline
tracking eye velocity being dependent on stp, tw and indi-
vidual frequency response functions. There are main ef-
fects of speed (F(5.4) = 6.38, p=0.049), scale (F(5.2) = 17.73,
p=0.0076) and time window (F(7.3) = 4.91, p=0.031).
Stimulus type alone however does not show a significant
effect, p.0.05. Once again the interaction (stp,tw) is sig-
nificant (F(867.9) = 13.22, p, 0.001), suggesting that differ-
ences emerged over time and that the strong tuning
effects observed for s0 and v0 are driven primarily by MC
in the later time windows.
Overall, results shown in Figures 2, 3 reveal that ocular

responses are strongly modulated by both spatiotemporal
frequency and scale contents when presented with point
like (nonoriented) motion stimuli (DG) but are possibly
more reliably tuned for speed with oriented motion inputs
(MC). Thus, speed tuning to MC may be less sensitive to
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both mean spatial and temporal frequencies properties of
the inputs and more strongly dependent on stimulus
speed. We explore this difference in tuning further in the
next section.

Temporal dynamics of spatiotemporal, speed, and
scale tuning functions
We have shown above that tuning functions of ocular

tracking for the different stimulus parameters can evolve
over time such that while the overall response amplitude
broadly increases, different inputs can drive specific
changes in the shapes of early or late phases of tracking.
Spatiotemporal tuning surfaces have been previously
computed for human and monkey ocular following using
2D Gaussian models (Hayashi et al., 2010; Miura et al.,

2014). However, we show above that spatial and temporal
frequency tunings are not always independent and that,
with our limited set of conditions, temporal tuning is
poorly described by a Gaussian function. Therefore, we
fitted a more assumption free, 2D polynomial function
(quadric surface) through the 15 response amplitudes for
each participant as well as for the mean values across
participants, from the earliest ([100–150 ms]) to the latest
([250–300 ms]) phases of tracking responses. Such a sim-
ple model nicely renders the spatiotemporal tuning of
tracking behavior, with adjusted r2 correlations ranging
from 0.9 to 0.96 across both component DG and MC
data.
Figure 4a shows a 3D rendering of one best-fit spa-

tiotemporal surface (left panel), together with its 2D

Figure 3. a, Distribution of 15 component DG and MC, relative to both the scale and speed axes (same as Fig. 1a with added labels
for speed and scale). b, Mean eye velocity profiles for component MC (top) and DG (bottom) of mean speed increasing from 11°/s
to 56°/s, but sharing the same medium scale range. c, Mean (6SD across participants) eye velocity, as a function of stimulus
speed, for three different scale ranges. d, Mean eye velocity profiles for component MC (top) and DG (bottom) of identical mean
speed but increasing scale range. e, Scale tuning of ocular tracking, when presented with either component DGs or MCs. Same
color hue/saturation code.
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Figure 4. Temporal dynamics of ocular tracking tuning. a, Spatiotemporal tuning of response amplitude computed across the
15 component DG for a given temporal window (here [250–300 ms]). The spatiotemporal tuning was approximated by a quadric
surface (surface plot on the left, contour plot on the right). From these quadratic fits, we extracted the main axis (blue curve)
that tracks pairs of spatiotemporal frequency coordinates along which the amplitude changes the least for each scale within
the fitted range. We also estimated the maximum scale-speed axis (red curve) by collecting the scale corresponding to the
maximum eye velocity for each stimulus speed. b, Best fitted spatiotemporal tuning surfaces for component MC stimuli com-
puted across six participants and for four successive time windows, from [100–150 ms] to [250–300 ms] after stimulus onset.
c, Same as in b but for component DG stimuli. d, For each participant, the angle H of the maximum scale-speed axis is plotted
for five time windows, for both DG (pink) and MC (green) stimuli. Larger dots with error bars show mean 6 SD (across partici-
pants). The first time window is indicated as baseline, before response onsets. e, For each participant, the angle H of the main
axis of the spatiotemporal tuning surface is plotted for five time windows.
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projection (right panel), for mean eye velocity (across
six participants), at the latest time window. From this
surface, we extracted several properties. The red line
corresponds to the scale values yielding the largest re-
sponses, at each stimulus speed. We can compute the
angleH between this max-speed-scale axis and the speed
axis. When H = 90°, this line coincides with the scale axis.
The long axis of the envelope is plotted in blue, with its
angle relative to the speed axis being denoted U. When
U = 0, the main orientation of the spatiotemporal tuning
function is aligned with speed. When U = 45 or �45, the
tuning function is aligned with temporal or spatial fre-
quency, respectively.
Figure 4b plots these best-fit spatiotemporal surfaces

at different time windows, for either component DG or
MC. With DG, the spatiotemporal envelope exhibits the
classical low-pass properties already described by others
for OFRs (Miles et al., 1986; Gellman et al., 1990; Hayashi
et al., 2010). Over time, the orientation of the envelope
remains stable, with its main axes being closer to spa-
tial and temporal frequency axes than speed or scale.
Moreover, optimal spatiotemporal frequencies are re-
markably stable over time. By contrast, the envelope
observed with single MCs gradually rotates over time
such that, at the latest time window, it was mostly tuned
for speed rather than spatial or temporal frequencies.
Accordingly, the max-speed-scale line for MC was
closer to the scale axis at the end of the tracking.
We then computed H and U angles for each partici-

pant and time window. Figure 4d plots the individual
(and mean 6 SD, continuous lines) angles H, from 75 to
275ms after stimulus onset. For DG, in Figure 4c, the H
angle is remarkably constant at ;�45°, indicating that
spatial frequency mostly determined the maximum am-
plitude at a given input speed. With component MC, this
axis rotates from ;�60° to ;180°, indicating that scale
properties set maximum response amplitude at a given
speed. These dynamics were similar across participants,
as illustrated by the small SD values. Accordingly, the
main axis of the spatiotemporal tuning (angle U) was
steadily close to 0 for MC but rotated toward ;�30° for
DG. Thus, over time, spatiotemporal tuning for MC is
best described by the speed and scale axis than by spa-
tial and temporal properties. With DG, and with our con-
ditions, spatiotemporal tuning is best described by
spatial and temporal factors independently.
To quantify this dynamic shift in the angles H and U

relative to speed and scale axes we used a third mixed
effects model M3. We run a linear mixed effects model
with tuning angle H (Fig.4a,d) predicted by the fixed fac-
tors stp and tw and their interaction (stp,tw). As a ran-
dom factor were participants, each with a tuning angle
which depended on individual baselines, stimulus type
and window dynamics. The main effect of stimulus type
was significant with component MCs having an angle H
that was larger by an average 71.6° and better aligned
with the speed axis than with component DG (F(45.3) =
6.58, p= 0.0137). There was no main effect of the time
window (F(5.4) = 4.60, p= 0.081). There was however a
significant interaction (stp,tw) (F(50.2) = 26.2, p , 0.001).

This interaction confirms what can be seen in Figure 4d,
indicating that the MC angle is separated from the DGs
from the 175-ms window onwards. We additionally run a
similar test for the angle of the major axis of the fitted el-
lipse U which represents the scale axis. This angle U was
also predicted by fixed factors stp, tw, and their interac-
tion (stp,tw). As random effects, we had participants
with individual baselines dependent on stimulus type
and windows. There were no significant main effects for
stimulus type (F(45.6) = 0.46, p = 0.503) or time window
(F(5.5) = 0.019, p = 0.90).
Finally, for the sake of comparison with previous stud-

ies, we carefully compare our 2D polynomial function with
the spatiotemporal tuning previously described using the
2D Gaussian function of Log(sf0) and Log(tf0). First, we
note that around the peak of the envelope, the best fit
polynomial parameters can be numerically related to
best-fit spatial and temporal frequency means of a 2D
Gaussian function. One can relate H and U angles to the
(in)separability of spatial and temporal frequency tuning
as previously reported for ocular following in humans
(Hayashi et al., 2010; Sheliga et al., 2016) and monkeys
(Miura et al., 2014). In particular, a coefficient Q, one of
the parameters from the Log Gaussian fitting of spatio-
temporal frequencies, has classically been used as an
index of the speed tuning of neural or behavioral re-
sponses (Priebe et al., 2003, 2006; Miura et al., 2014).
With this classical approach, the spatiotemporal fre-
quency surface function contains two Log Gaussians cor-
responding to separate spatial and temporal frequency
tuning terms. Q acts as a linear factor inside the exponent
of the temporal frequency term, determining the weighting
of a spatial frequency tuning contribution to that term. The
equations can be configured with a structure such that if
Q=0, then the channels are speed tuned (i.e., spatial and
temporal frequency tuning are inseparable), whereas if
Q = �1, then the frequencies are independently coded or
separable (Priebe et al., 2006). This would correspond to
ellipses of spatiotemporal tuning that are either oriented
(along the speed axis) or more circular. It can be shown
from partial first and second derivatives of the surface
functions that Q ; �(1 1 b4/2b5) where b4 and b5 are the
coefficients of the fx*ft and the ft

2 terms, respectively, in
our polynomial fit (see Eq. 12).
From this analysis, we show that optimal spatial and

temporal frequency tuning given by either 2D Gaussian
and polynomial fits are consistent. More important, Figure
5 shows that Q, as estimated from the best-fit individual
polynomial functions is around 0 for MC and around �1
for DG, consistent with the U estimates and confirming
that with MC spatial and temporal frequency tuning are
inseparable while, when tested with DG, ocular follow-
ing tuning is best described with independent spatial
and temporal frequency functions (Hayashi et al., 2010;
Sheliga et al., 2016).

Ocular responses to component MC aremore reliable
Several previous studies, at neuronal (Priebe et al.,

2006) and behavioral (Osborne et al., 2007; Simoncini
et al., 2012) levels have suggested that the statistics of
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visual motion inputs strongly impact response variability
across trials. Figure 6a illustrates, for one participant, fre-
quency distributions of mean eye velocity, across trials,
for three different mean stimulus speeds (from 11°/s to
52.6°/s). Each set of data points corresponds to one of
the three different spatiotemporal frequency scale ranges,
estimated for the early ([150–200 ms]) phase of tracking
responses. Distributions were fitted with a Gaussian func-
tion. As mean speed increases, distributions shift to the
right, corresponding to faster eye velocity during tracking
initiation, for both component MC and DG. However, for
any given stimulus speed, the distribution overlaps and
does not change in width with MC. On the contrary, with
DG, distributions shift toward lower eye velocities, and
broaden when scale increases. In particular, responses to

the highest scale range (blue symbols) were both smaller
and more variable.
Thus, different motion inputs of the same speed appear

to drive ocular tracking responses with different precision.
Moreover, over the whole observed time lapse, tracking
continuously accelerates toward target motion speed.
Increasing eye velocity would naturally increase its vari-
ability within and across trials. This noise-amplitude rela-
tionship would be expected to lead to a theoretical square
root relationship between m and s parameters of the
Gaussian functions fitted to the eye velocity distributions
across trials, for each time window as signal thresholds
have been shown to be limited by shot noise at the sen-
sory input stages (Osborne et al., 2007). These relation-
ships are illustrated in Figure 6b, for each time window.

Figure 5. a, b, Best fit 2D polynomial function describing the relationship between ocular following amplitude and both spatial and
temporal frequencies. Data are mean response amplitudes across six participants. a, Component DGs. b, Component MCs. c, Q
index can be derived from the best-fit 2D polynomial functions, as indicated with the two equations. Individual Q indices were com-
puted for each participant, and each time window. Individual and mean (6SD, across participants) are plotted. Note that one outlier
(MC condition) with a Q value of ;22 at time 150ms is not plotted to allow comparison between the two conditions.
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Notice that the leftmost plot corresponds to the baseline
time window, just before response onset ([50–100 ms]), as
used to estimate noise during fixation (Osborne et al.,
2004). Symbols are mean 6 SD values (across six partici-
pants) of these parameters, for each of the 15 compo-
nents and each stimulus type. The continuous black lines
indicate this theoretical square root scaling. Before
200ms (relative to stimulus motion onset), variability and
amplitude varied according to this simple model. After

200ms, variability of ocular responses increased more
than predicted for component DG, regardless of the scale
range. This result confirms that ocular tracking responses
to component DG were more variable than to component
MC, in particular for the late phase of tracking initiation,
that is later than 200ms after stimulus motion onset.
To statistically contrast the dynamic relationship be-

tween variability and response for the two stimulus types,
we use our fourth statistical model M4. The difference

Figure 6. Variability across trials of tracking responses. a, Distributions of early eye velocities, for participant S02. Data are shown
for three mean speeds (from left to right) and for each speed, with three different spatiotemporal frequencies and therefore three dif-
ferent scale ranges (color code). Motion stimuli were component MCs (top) or DGs (bottom). Continuous curves are best-fit
Gaussian functions. b, Relationship between best-fit parameters s and m. Data are mean (6SD) across six participants for each of
the 15 motion components, for either MCs (top) or DGs (bottom). Color code indicates the scale range of each data point. From left
to right, plots illustrate results obtained for the five successive time windows. The first time window ([50–100 ms], gray shaded) pro-
vides an estimate of baseline variability, as most of this measurement window covered preresponse time. Continuous black lines in-
dicate the theoretical relationship where s increases with the square root of the m value.
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between the SD s empirically measured for the tracking
responses for each participant across trials and that pre-
dicted from the square root of the mean response m, was
calculated as a dependent variable sd ¼ s � ffiffiffi

m
p

. This es-
timated value should be approximately zero if stimuli
show a

ffiffiffi
m

p
relationship between variability and average

response. In model M4, the relationship between the DV,
sd, and fixed factors tw, stp, and scale s, and three inter-
action terms, (spt,tw), (s,stp), and (s,tw), were used. As
random factors, we used the individual participants with
a baseline value adjusted by stimulus type. There were
main effects of time window (F(880) = 18.29, p, 0.001),
stimulus type (F(12.4) = 13.63, p, 0.01) and scale (F(880) =
3.20, p= 0.0412), indicating that all of these factors sig-
nificantly changed the mean response and variability
relationship. There was also a strong significant interac-
tion between the time window and stimulus type (F(880) =
40.79, p, 0.001). Further inspection showed that MC
differences were closer to the

ffiffiffi
m

p
prediction at later time

windows. There was also a significant interaction be-
tween stimulus type and scale (F(880) = 4.38, p,0.05),
but no significant interaction between time window and
scale (p. 0.05). Thus, responses to MC were less vari-
able than those to component DG when taking into ac-
count the expected variability from response amplitude.
This is true in particular for the highest scale.
Analyzing the relationships between mean (m) and var-

iance (s ) of eye velocity distributions suggest that higher

scales (i.e., higher spatial and temporal frequencies; Fig.
6a,b, blue symbols) more strongly impaired behavioral re-
liability when tracking component DG, as compared with
MC. Therefore, we checked whether such an increase in
variability could be tuned for either scale or speed by
pooling data across either speeds or scales. To do so, we
computed the coefficient of variation ðCV ¼ s=mÞ to com-
pare response variability, after normalizing by response
amplitude. To compare across stimulus types, we plot CV
values obtained with component DGs as a function of the
corresponding component MCs (Fig. 7). In Figure 7a–c,
data above the diagonal unity lines indicate that variability
of responses to DGs is larger than for a MC, for the same
condition and regardless of their relative amplitude.
Looking at shifts in data point positions within the plots
relative to the diagonal line of unity as we go from left to
right panels is indicative of stimulus-dependent dynamic
shifts in response variability. We tracked these relation-
ships across the five time windows, binning the responses
from 100 to 300ms after stimulus onset. Again, a baseline
time window ([50–100 ms]) is shown to estimate noise be-
fore response onset.
Figure 7a shows that variability of responses to compo-

nent DG was larger than observed with MC, for the late
time windows (.200 ms) but not the earlier ones. This ob-
servation holds for all scale ranges (Fig. 7b). In fact, rela-
tive variability was larger with MCs over the first time
windows, corresponding to tracking initiation. To further

Figure 7. Speed or scale tuning of tracking responses variability. CV values estimated for ocular responses to component MCs or
DGs are plotted one against the other, for six time windows, starting at 50ms (left column) and spanning 50ms each. The first time
window ([50–100 ms]) estimates the relative variabilities over a baseline, preresponse epoch (gray shaded). a, Each dot corresponds
to a given component stimulus pair, for all participants. Colors correspond to the scale range. b, CV values are averaged across
speeds, and participants, for each of the three scale ranges. Continuous contour lines enclose the variance across participants. c,
CV values are averaged across scales, and participants, for each of the stimulus speeds.

Research Article: New Research 14 of 28

May/June 2022, 9(3) ENEURO.0511-21.2022 eNeuro.org



illustrate how variability changes with scale and speed
ranges, we average CV over the five components defining
one scale range. Similarly, we computed CV values for the
five mean speeds independently, pooling data across
scale ranges (Fig. 7c). The same pattern of dynamics is
visible: variability was larger for MC than DG at tracking
initiation but then reversed and became larger for DG than
MC for the late part of tracking responses, across all
speeds. At the closing of the open-loop phase, corre-
sponding to the [200–250 ms] time window, responses to
either component DG or MC show the same variability,
across both scale and speed ranges.

Ocular tracking responses to pattern motion speeds
Once we have fully characterized the dynamics and

spatiotemporal tuning of tracking responses to either
component MC or DG, we can analyze the behavioral re-
sponses to moving patterns constructed by summing two
or three of these components. We constructed nine pat-
terns using DG (pDG) and MC (pMC) components, respec-
tively (labeled from a to i). It is critical to recall that all
patterns made of symmetrical triplets have the same mean
speed, but different spatiotemporal properties (Fig. 1b; see
also Table 2). With pairs, mean spatial and temporal fre-
quencies, as well as mean speed, are affected but only
marginally (Fig. 8; Table 2). We systematically varied the
orientation and distance of the triplets/pairs to map the in-
teractions between channels located at different locations
within the spatiotemporal frequency space, as we did pre-
viously for speed perception (Gekas et al., 2017). Figure 8a
illustrates three examples of triplets made of components
aligned along a scale axis (pattern d), along the speed axis
(pattern i), or in between (pattern e). As illustrated in Figure
8b, we generated a total of seven triplets, with four different
orientations and two distances (patterns a–f and i). We also
constructed two nonsymmetrical patterns (patterns g, h)
made of two component pairs, to better sample interac-
tions along the scale axis.
One classic, basic observation about motion integra-

tion for tracking initiation is that a linear sum/average of
all motion inputs can be quickly computed (Ferrera and
Lisberger, 1997; Mestre and Masson, 1997; Masson
and Castet, 2002). Therefore, we tested whether pat-
tern-driven responses may be predicted from compo-
nent-driven ones. One simple, linear assumption is that
responses to a given pattern are identical to the average
of the responses to its components. Any deviation from
the linear prediction would unveil interactions between
channels sampling the components. We show both ob-
served and predicted mean eye velocity profiles for
three examples in Figure 8a. Responses to pattern mo-
tion stimuli are indicated by colored lines, each color re-
ferring to the corresponding triplet. Gray lines illustrate
the theoretical eye velocity profiles, obtained by averag-
ing the responses to each component, already illustrated
for the same participant S04 in Figure 2a. Upper and
lower rows correspond to pMC and pDG, respectively.
From this participant, representative of our 5 other par-
ticipants, several features can be observed. First, for
both pMC and pDG, responses reach higher eye velocity

when triplets are aligned along the speed axis (pattern f).
Responses become smaller as the triplets orientation
lies along the scale axis (pattern d). Second, observed
responses are either larger or smaller than the linear pre-
diction, depending on the triplets orientation but also the
stimulus type. This could indicate that nonlinear interac-
tions would be tuned to both speed and scale domains
but also be dependent on the local statistics of the mo-
tion inputs. Third, observed and predicted eye velocity
diverge at different points in time, depending on the
moving pattern characteristics. Early ocular tracking
phases of tracking responses always match the linear
prediction while later phases diverge away from it, sug-
gesting that the nonlinear pattern of interactions builds
up over time.
To capture these different effects, we estimated the de-

viation between the measured responses and their linear
prediction by computing a nonlinear index (RNL) defined
as

RNL ¼ eobs=epred; (8)

where eobs and epred are the mean eye velocity over a
given time window of the observed responses to the pat-
tern and the predicted responses, respectively. When
RNL . 1, observed responses are larger than predicted
from a simple averaging of the component-driven re-
sponses. When RNL , 1, the pattern-driven responses
are smaller than predicted. We computed RNL for all suc-
cessive time windows and mean values (6SD across six
participants) are plotted against time in Figure 8c for all
nine patterns.
The pattern of interactions is remarkably similar across

participants. Figure 8c, upper row, plots the time course
of RNL for pMC. First, when components are aligned along
(or close to) the scale axis, responses are smaller than
predicted and such a reduction is larger for both later time
windows and more distant components (compare pat-
terns a and d). This later effect is confirmed when using
pairs of components (patterns g and h), close to the
mean speed axis. Second, when components are dis-
tributed along the speed axis (pattern i) or close to it
(patterns c and f), responses are overall larger than line-
arly predicted. Such enhancements tend to be larger
when components are more distant from each other,
that is when they cover a broader range of spatial and
temporal frequency channels along the iso-velocity line.
Third, when components are distributed along a nearly
vertical, iso-spatial frequency axis, responses are still
larger than expected although with a smaller gain.
Comparison between top and bottom rows in Figure

8c shows that this pattern of interaction is different be-
tween component DG and MC. First, inhibitory interac-
tions when components are aligned along the scale axis
(patterns a, d) are stronger with pDG than pMC. Second,
excitatory interactions are also stronger with pattern DG
when triplets are aligned along the speed axis (pattern i).
This gain modulation may be explained considering that
components are either point-like (DG) or oriented (MC)
along an iso-velocity line. Thus, the boost expected when
aligning three point-like inputs along the speed axis is
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larger than with component MC which are already ori-
ented along the same axis. In the same vein, these ori-
ented inputs drive stronger responses when presented in
isolation, such that when combined along the scale axis,

the inhibitory interactions are smaller than when local,
point-like triplets have the same global orientation along
the scale axis. Lastly, one can see that the amplitude of
excitatory and inhibitory interactions is modulated when

Figure 8. Tracking responses to pattern DGs (pDG) and MCs (pMC). a, Top, Three examples of triplets, aligned along the scale axis (pat-
tern d), the speed axis (pattern i), or in between (pattern e). Next two rows illustrate mean eye velocity profiles to these pattern MCs (mid-
dle, continuous lines) or DGs (bottom, dotted lines). Colored lines show the observed response profiles for participant S04. Gray lines
show the linear prediction computed by averaging the responses to each component of the triplet. b, Top and Bottom Rows, Component
distributions of the 15 patterns (from a to i), in the spatiotemporal space, for both pMCs and pDGs, respectively. Different orientations and
distances between components were used. c, The two rows plot, for each pattern type, the ratio between observed and predicted mean
eye velocities, over time. A ratio of 1 indicates that observed responses are equal to the linear prediction. Values above or below 1 indicate
the observed responses are larger or smaller than predicted, respectively. Data are mean (6SD) across six participants.
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triplets or pairs are distributed with larger distances along
their orientation.
We quantified the effects of various factors on the nonli-

nearity using statistical model M5. In this case the de-
pendent variable was the ratio RNL. This was predicted by
fixed factors stp, tw, and orientation angle (oa). This last
variable (oa) captures the Euclidean orientation of the trip-
lets/pairs, relative to the speed axis. The random variable
was participants, with separate stimulus determined base-
lines. There were main effects of stimulus type (F(490.9) = 5.90,
p=0.0155) and time window (F(527) = 6.90, p = 0.0088).
Orientation angle was however not significant (F(527) =
2.9815, p = 0.085). There was a significant interaction
of stimulus type and time window (F(527) = 4.57,
p = 0.033), while interactions between stimulus type
and orientation angle, and time window and orienta-
tion angle were both not significant. These statistics
support some of the trends visualized in Figure 8c,
showing that nonlinearities emerge over time, with a
significant difference in the nonlinearity for the pattern

MC and DG. The relationship between the response
linearity and stimulus orientation angle, oa, which ap-
pears to change from sublinear to supralinear across
the cases from left to right in Figure 8c is however not
statistically significant and may depend on stimulus
component distances from the central component and
as such should be explored further in the subsequent
modeling.

Temporal dynamics of nonlinear interactions
Examples of velocity profiles in Figure 8a and time

courses of nonlinear effects in Figure 8c both suggest
that tracking responses to patterns diverge away from
their linear predictions only several dozens of milliseconds
after pursuit onset and that the underlying nonlinear inter-
actions build up over time. We first estimated when the
difference between the mean eye velocity profiles of ob-
served and predicted responses became statistically sig-
nificant (Fig. 9a). To do so, mean and SD of observed and
predicted eye velocity profiles were binned into 5-ms time
windows and tested one against each other with a t test.
Figure 9a, vertical dotted lines, illustrates these statistical
time points of separation.
Figure 9b plots, for each pattern, the individual estimate

of the first time point of statistical divergence between oc-
ular tracking to patterns and the linear predictions from
their respective component-driven responses. For a given
pattern, square and circle symbols correspond to pattern
MCs and DGs, respectively. Large symbols indicate the
mean (6SD) values across participants. Overall, re-
sponses diverged between 150 and 200ms after stimulus
onset, that is between 50 and 100ms after tracking re-
sponse onset. No systematic differences between stimu-
lus types were observed. Average (mean 6 SD across
participants) time of divergence was 1616 70 ms across
all pattern DG and 1856 70 ms across all pattern MC (Fig.
9c, circle and square symbols). Figure 9c plots the distri-
butions of separation times, across six participants and
nine patterns. These distributions exhibit atypical skew
and kurtosis characteristics (median and interquartile
range: 149 and 72 for pattern DG; 185 and 98 for pattern
MC). With our last statistical model, M6, we conducted a
nonparametric, bootstrapped t test with 1000 runs of a
trimmed mean estimation of separation onset against
stimulus type (stp). The difference between the separation
onset times of the pattern MCs and DG traces was not
found to be significant (t(29) = 1.93, p=0.063). Thus, the
temporal dynamics of nonlinear interactions is approxi-
mately constant across stimulus types. Since the latency
of pattern-driven tracking responses were 80.66 5 and
89.369.5 for pattern DG and MC, respectively, one can
conclude that most separation times occurred during the
open-loop period of pursuit (that is from ;90 to ;180 ms
after stimulus onset). Thus, nonlinear interactions are be-
cause of sensory processing and not a mere effect of
tracking responses on retinal image motion. This is also
supported by the fact that eye velocity reached only a
fraction (;8–10°/s) of stimulus speed (24°/s) at the end of
our 400ms of measurement after stimulus motion onset.

Table 1: Speed (v0), spatial (sf0), and temporal (tf0) fre-
quency parameters of each of the MCs

MC # Spd (°/s) sf (c/°) tf (Hz)
Relative
distance (log) Angle

c1 24.000 0.500 12.000 0.00 0.0
c2 35.522 0.379 13.459 1.00 157.5
c3 35.522 0.660 23.438 2.41 67.5
c4 16.215 1.149 18.626 3.13 27.9
c5 16.215 0.660 10.699 1.00 �22.5
c6 16.215 0.379 6.144 2.41 �112.5
c7 35.522 0.218 7.730 3.14 �152.1
c8 52.576 0.287 15.100 2.00 157.5
c9 52.576 0.660 34.690 3.66 75.4
c10 24.000 1.149 27.569 3.92 45.0
c11 10.956 2.000 21.911 5.04 23.5
c12 10.956 0.871 9.538 2.00 �22.5
c13 10.956 0.379 4.151 3.66 �104.6
c14 24.000 0.218 5.222 3.92 �135.0
c15 52.576 0.125 6.572 5.04 �156.5

The first MC, c1 lies at the left of the stimulus space and is used as the refer-
ence stimulus. Also included are the relative distances in log units and the
polar angle from the reference c1.

Table 2: Stimulus parameters for the pattern MCs (pMCs)
or pattern gratings (pDGs)

CMC No of MCs (P) Comp MCs Mean vo Rel. span Orientation
a 3 2, 1, 5 24.000 2.00 157.52
b 3 3, 1, 6 24.000 4.83 67.50
c 3 4, 1, 7 24.000 6.27 27.86
d 3 8, 1, 12 24.000 4.00 157.49
e 3 9, 1, 13 24.000 7.31 75.36
f 3 11, 1, 15 24.000 10.07 23.48
g 2 1, 5 20.108 1.00 157.52
h 2 2, 1 29.761 1.00 157.52
i 3 10, 1, 14 24.000 7.84 45.00

These five stimulus characteristics are: the total number (P) and identities of
the individual components based on Table 1 and Figure 1, the mean speed vo
which is 24°/s for most stimuli except g and h, the relative Euclidean span
covered by the stimulus across the frequency space in log units and the orien-
tation angle (°) relative to the horizontal of the given stimulus in the frequency
space
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Figure 9. Latency of nonlinear effects. a, Two examples of tracking responses for one representative participant, for pattern e com-
posed of three components, either MC (upper plot) or DG (lower plot). Gray lines plot the theoretical eye velocity profiles obtained
by averaging the tracking responses to each component, independently. Vertical dotted lines indicate the first point in time (target
motion onset) at which observed and predicted tracking responses are significantly different. b, The time of separation between pre-
dicted and observed eye velocity profile is plotted for each participant. For comparison, similar patterns MC (square) and DG (circle)
are shown together. Larger symbols with error bars are mean (6SD) across six participants for one given condition. The gray
shaded area indicates the mean open-loop period of tracking responses. c, Distributions of separation times, across nine patterns
and six participants, for both pattern DG (red) and MC (green) conditions. Closed red circles and green squares plot the median val-
ues (6IQR, that is the interquartile range) of separation times.

Table 3: Parameters of the model. Bolded parameters are allowed to vary to match the experimental data

Symbol Value Description
s x 0.5 Channel variance over spatial frequency
s t 0.5 Channel variance over temporal frequency
r 0.6 Correlation coefficient
g 1996 58.7 Channel gain multiplier (unique for each participant)
wi From polynomial Weight of channel w i
b0�5 [�23.88, �3.63, 1.95, �0.72, 0.61, �0.45] Polynomial parameters of channel weights
a 2.16 Interaction weight
re1 0.2542 Excitation SD over x-axis
re2 0.7718 Excitation SD over y-axis
ri1 0.2501 Inhibition SD over x-axis
ri2 0.7711 Inhibition SD over y-axis
u 3p /4 Rotation of the interaction profile
mprior 2.516 1.35 Mean of prior distribution (unique for each participant)
sprior 0.866 0.36 SD of prior distribution (unique for each participant)
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Linear and nonlinear interactions shapemotion
computation for ocular tracking
The results presented above highlight four main properties

of motion processing for ocular tracking. First, the optimal
range of spatial and temporal frequencies to drive tracking
response is different for DGs and MCs and change over time
for the latter, not the former. Second, tracking responses to
DG are tuned for both spatial and temporal frequencies. By
consequence, the tuning curves are best described by a
scale dimension, where scale is the product of spatial and
temporal frequency. By contrast, tracking responses to MC
become tuned for input speed, being less sensitive to its
mean spatial and temporal frequency or, equivalently, its
scale. Third, tracking responses to patterns made of several
components can be either suppressed or enhanced depend-
ing on the orientation of the pattern. When the pattern is
aligned along the speed axis, the observed response is larger
than the linear (average of the component-driven responses)
prediction. When the pattern is rotated away from the speed
axis and toward the scale axis, the pattern-driven responses
are smaller than linearly predicted. Fourth, responses devi-
ated from the linear prediction only ;100 ms after tracking
initiation, unveiling the temporal dynamics of linear-nonlinear
interactions. These results suggest that, after 100ms, ocular
tracking is driven by a nonlinear estimation of target speeds
that takes into account the stimulus statistics. We attempted
to model this observed set of properties with a dynamic
probabilistic model.

Modeling the dynamics of speed estimation
Following our original approach for speed discrimination

(Simoncini et al., 2012; Gekas et al., 2017), we present here
a probabilistic model to simulate the diverse set of results
and infer the pattern of interactions that shape speed proc-
essing for both simple and complex retinal moving images.
In a nutshell, the model is based on four stages. First, the
stimulus is processed by a bank of spatiotemporal channels
that can represent speed as various combinations of spatial
and temporal frequencies. Each stimulus is filtered by this
bank of channels, thereby simulating a neural population ac-
tivity. Second, the channels interact with each other, and the
interaction pattern depends on the population activity.
Third, speed is read out of the population activity by apply-
ing an optimal likelihood decoder. Finally, in the fourth stage
of the model, estimated speed is combined with prior tem-
poral estimates. By taking into account the history of such
estimates, it has been shown that one can simulate the tem-
poral evolution of eye velocity during pursuit responses
(Montagnini et al., 2007; Bogadhi et al., 2011).
The first stage of the model consists of spatiotemporal

channels defined as bivariate normal distributions in
Fourier space so that:

w i fx; ftð Þ;Nðm;RÞ; (9)

where

m ¼ fx;i
ft;i

� �
andR ¼ s 2

x rs xs trs xs ts
2
t

� �
: (10)

Each channel is determined by its location (central
spatial fx;i and temporal ft;i frequencies), spread (variance

in spatial s x and temporal s t frequencies), and a corre-
lation coefficient r ¼ 0:6 that determines the concen-
tration along the diagonal line of constant velocity (a
correlation of 1 stands for pure speed channels where-
as a correlation of 0 stands for completely separable
channels in spatial and temporal frequencies). The
channels ðN ¼ 722Þ are homogeneously distributed in
a rectangle from 1°/s to 512°/s preferred speed (Fig.
10a), thereby covering the full window of visibility of
human motion sensitivity and more).
For a stimulus s with contrast c each channel w i pro-

duces response:

mi s; cð Þ ¼ g2wi

ðð
w i fx; ftð ÞpsðcÞdfxdft; (11)

where g is a gain parameter for each participant, and
wi is the channel weight. Low channel weights corre-
spond to channels that are beyond the window of visi-
bility, whereas high channel weights correspond to the
peak speed sensitivities. Channels are fixed across
time and are assumed to account for characteristics of
the network such as density of neurons for different
spatiotemporal frequencies or strength of connection
to the next stage. The weight of each channel is as-
sumed to follow a quadratic bivariate polynomial sur-
face that depends on the central spatial and temporal
frequency of the channel:

wi ¼ b0 1b1fx;i 1b2ft;i 1b3f2x;i 1b4fx;ift;i 1b5f2t;i: (12)

In the second stage of the model, we introduce time-
dependent interactions between the channels. At each
time window v , we assume dynamic patterns of interac-
tions Ivi between channels so that the activity of the net-
work is:

nv
i ¼ miIvi ; (13)

where the interaction depends on the activity of the
network. We assume a mechanism in which channels
interact with each other based on their relative dis-
tance dij in spatiotemporal frequency space:

Ivi ¼
XN

j¼1

mv
j dij: (14)

The activity of each channel is inceased or decreased
by the weighted sum of the activity of its surrounding
channels. The interaction pattern is composed of an ex-
citatory and an inhibitory component. Each component
is described as a bivariate Gaussian function over speed
and scale:

dij ¼ a
Nexcðmexc;RexcÞ

maxðNexc mexc;Rexcð ÞÞ �
Ninhðminh;RinhÞ

maxðNinh minh;Rinhð ÞÞ

 !
;

(15)

where
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mexc ¼
0
0

� �
;Rexc ¼ cosðu Þsinðu Þ � sinðu Þcosðu Þ½ �

s 2
e100s

2
e2

� �
cosð�u Þsinð�u Þsinð�u Þcosð�u Þ½ � (16)

minh ¼
0
0

� �
;Rinh ¼ cosðu Þsinðu Þ � sinðu Þcosðu Þ½ �

s 2
i100s

2
i2

� �
cosð�u Þsinð�u Þsinð�u Þcosð�u Þ½ �; (17)

a is a magnitude parameter, s2
e1;s

2
e2;s

2
i1;s

2
i2 are the

variances in octaves, and u ¼ 3p=4. The same interaction

pattern is applied to each channel regardless of its mean
spatial and temporal frequency and across time.
In the third stage of the model, the logarithm speed like-

lihood of each channel is computed:

log p sð Þ ¼ nv
i logðc iÞ; (18)

where c i is the speed tuning of channel i centered on speed

vi ¼ ft;i
fx;i

. The speed tuning function of a channel that is a bi-

variate normal distribution is the cross-section along the
ft ¼ �fx axis:

Figure 10. Model. a, Tiling of spatiotemporal channels. Each channel is a bivariate normal function with its main axis oriented along
a line of constant speed. All channels coding for the same speed are shown by the same color: blue for slow speed and pink for
fast speed. The colored dots represent the center of the channels. The black dots represent the coordinates of the component stim-
uli. b, Receptive field of a channel. The contour lines show the receptive field in log-log Fourier space of a channel centered at 0.5
c/° and 11.31Hz. The white dots represent the coordinates of the component stimuli. c, Speed tuning of a channel. Each curve
shows the speed tuning of the channel in b at one spatial frequency; different colors indicate different spatial frequencies and the
colors of the curves match the vertical lines in b. d–g, Representation of different stimuli types in the log-log Fourier space.
Component DG 1 (d), PDG d (e), component MC 1 (f), and PMC d (g). h–k, Normalized responses of all channels of the network to
the respective stimuli of d–g.
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c i vð Þ ¼ e
� ðv�viÞ2
2s2ð1�rÞ: (19)

The log-likelihoods are then summed across all channels
to give the overall speed log-likelihood of the stimulus:

logðL sð ÞÞv ¼
XN

i¼1

nv
i logðc iÞ: (20)

In the fourth stage of the model, we take into account
the history of the stimulus processing in the network. A
posterior probability of speed at time window v is taken
as the combination of the likelihood and prior at this time
window v . The prior at time window v is the posterior of
stimulus at the previous time window v � 1, so that the
posterior distribution at v is:

posterior sð Þv ¼ L sð Þð Þvposterior sð Þv�1
: (21)

The posterior at the first time window v ¼ 0 (i.e., the ini-
tial prior distribution) is assumed to be a lognormal distri-
bution with mean mprior and SD sprior. We find the model
parameters M (summarized in Table 3) that maximize the
log-likelihood of matching the experimental OFRs with the
model for all stimuli at each time window:

M ¼ argmaxM

XS;V
s¼1;v¼1

logðp sð ÞÞ

2
64

3
75: (22)

We consider the window between 100 and 150ms as
the first time window ðv ¼ 0Þ, and we fit the parameters
of the model to the following three time windows 150–
200, 200–250, and 250–300ms.
There are four types of stimuli: component DGs, pattern

DGs (pDGs), component MCs, and pattern MCs (pMC;
Fig. 10d–g). DGs are defined as points in the log-log spa-
tiotemporal frequency space and the response of each
channel to the grating is computed from the value of the
tuning function at the coordinates of the stimulus multi-
plied by the contrast. pDGs are defined as the averaged
activation to their corresponding component DGs. MCs
are defined as ellipses in frequency space so they activate
multiple points with different intensity (see MC equation).
pMCs are defined as the averaged response to their cor-
responding component MCs. The response of each chan-
nel is calculated as the weighted sum of the responses to
each point in the discretized frequency space (Fig. 10h–k).
For DGs, this is calculated directly from the bivariate nor-
mal distribution of the channel. For MCs, the channel re-
sponse is calculated as the weighted average of a large
number of individual gratings.

Model fitting
The model attempts to capture not only the differences

in OFRs between different types of stimuli (DGs and MCs)
but also stimuli that differ in their spatiotemporal charac-
teristics. To accomplish that, it assumes that channels
centered at different spatiotemporal coordinates have
distinct weights. So, stimuli that activate different channels

will produce larger or smaller responses depending on the
weight of these channels. The weights predicted by the
model are plotted in Figure 11a. Weights are maximized at
channels centered on 0.21 c/o and 1.68Hz and decrease
further away from these coordinates. Furthermore, the
model is able to track the dynamics of the OFR at different
time windows. Figure 11c shows two examples of the evo-
lution of the response likelihood for one example partici-
pant (S03) for the central components DG c1 and MC c1.
At each time window, the speed likelihood (blue dashed
curves) produced by the network is combined with the
prior probability (red dashed lines) to derive the posterior
probability (green curves) of response. The close similarity
of the posterior with the participant’s responses (gray
curves) shows that the model can capture the mean eye
velocity and the variance in responses across trials. A com-
parison of mean eye velocities to component DG and MC
between the model and the data are shown in Figure 12.
Figure 12a,b plots the distributions of observed and simu-
lated distributions of eye velocity at two different time win-
dows. For a component MC moving at 24°/s (see also Fig.
3a), varying input scale has very little impact on both the
mean and width of these distributions. On the contrary,
both data and model distributions for a single DG moving
at the same speed show that at higher scale (blue curves),
responses become slower (a shift in the mean) and more
variable (an increase in width). Similar differences were ob-
served at lower (11°/s and 16°/s) and higher speeds (36°/s
and 53°/s). This result illustrates that with MC, the model
tuning is scale invariant for MC, but not for DG. The model
is also able to capture the different evolution of responses
to either single MC or DG over time. There is a high correla-
tion between predicted and observed mean eye velocities
at different time scales (Fig. 12c,d, insets), both at group (r2

= 0.89) and individual levels (0.90 . r2 . 0.20). Moreover,
predicted responses to single DGs at the highest scale
were also much smaller than for single MCs. The model
can also capture the relative variabilities of responses to ei-
ther DG or MC, and their dynamics. Over time, the normal-
ized variability (i.e., the CV, r2 = 0.80) decreases for both
model and human responses to MC, regardless of stimulus
scale (Fig. 12c,d). By comparison, both predicted and ob-
served CV remains constant over time with DGs, in particu-
lar because of the larger variability and smaller responses
seen with single DGs at high scale.
Importantly, the model assumes a pattern of interac-

tion between channels depending on their relation in the
spatiotemporal space or in speed-scale coordinates
(Fig. 11b and model compared with example component
data in Fig. 12). The simulated pattern indicates strong
inhibition between channels along the same scale that is
maximized approximately at a distance of three octaves
and decreases for orientations away from the scale axis.
Channels that are along the same speed lines show mini-
mal or weakly positive interactions. This interaction is re-
quired to explain the systematic deviations from the
linear predictions exhibited by the pattern stimuli. Figure
11d shows a comparison of ratios between observed
and predicted mean eye velocities for each pattern stim-
ulus for the MCs and DGs and the fits of the model with
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(solid curves) and without (dashed curves) interaction.
While the model without interaction can predict some of
the smaller deviations found in patterns with compo-
nents between the scale and speed axis, it cannot ex-
plain the strong sublinear and supralinear responses to
pattern stimuli with components along the scale and the
speed axis, respectively.
To evaluate the quality of our model, we computed the

Akaike Information Criterion (AIC) for the model fits to in-
dividual data, with (AICwith) or without (AICwithout) the

interaction pattern. Figure 13 plots the mean differences
between the two models. Since the preferred model is the
one with the minimum AIC value, positive and negative
differences indicate that the model with interactions per-
forms worse or better than without. By plotting this index
for both component and pattern DG/MC at different time
windows, it is possible to track when the interactions be-
tween spatiotemporal channels become necessary to fit
the data. Indeed, with both component and pattern MC,
both models fit the data at the first two time windows equally

Figure 11. Model performance. a, Distribution of channel weights across the network. b, Best-fit interaction pattern. c, Comparison
of responses probabilities across time windows between experimental and model data, for one participant (S03). d, Ratios between
observed and predicted mean eye velocities (plotted on a Log scale) to pattern stimuli over time plotted for experimental data, the
model with interaction and the model without interaction. Colors and labels are identical to Figure 6.
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well but with the latest time window, the interaction model
outperforms, for almost all conditions except the component
with the highest scale range. The signal level on these high
scale responses is generally lower than the rest of the range.
With pattern MC and DG, early eye velocity is best fitted with
interactions, in particular the inhibitory interactions along the
scale axis (patterns a, d, g, h).

Discussion
We investigated the spatiotemporal tuning of reflexive

ocular tracking responses in humans, using both DGs and
moving textures. We used these responses to predict

tracking eye movements to patterns made of either two or
three of these component motions. Altogether, our results
document both spatiotemporal frequency tuning for sim-
ple and complex inputs and the dynamic interactions
underlying speed representation.

Constant spatiotemporal tuning of grating ocular
responses
Using large, moving stimuli, Miles et al. (1986) first re-

ported in monkeys that initial eye velocity is tuned for low
spatial frequencies, with a peak at ;0.3 c/°, and mid-

Figure 12. Comparison between data and model for component stimuli. a, Distribution of observed (data) and predicted (model)
eye velocity of ocular responses to a component MC moving at 24°/s, for participant S04. Color indicates scale range. First and
second row illustrate early ([150–200 ms]) and late ([250–300 ms]) time windows. b, Same plots, but now for component DG of the
same mean spatial and temporal frequency and mean speed (24°/s). c, d, Relationship between predicted and observed CV (coeffi-
cient of variation) across the three scales (color) and five speeds (saturation), for three windows. Insets plot the same relationships
between model and data but now for mean eye velocities. Oblique lines indicate a slope of 1 for the linear regression.
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range temporal frequencies, with a peak at ;10 Hz.
Similar tuning was subsequently reported in humans
(Gellman et al., 1990; Sheliga et al., 2005; Quaia et al.,
2012). In both human and nonhuman primates ocular fol-
lowing, the spatiotemporal tuning envelope orientation
is biased toward the temporal frequency axis and is
mostly separable into spatial and temporal frequency
tuning (Hayashi et al., 2010; Miura et al., 2014; Sheliga
et al., 2016). Interestingly, in macaque monkeys, ocular
following spatiotemporal tuning resembles the weighted sum
of the envelopes describing the neural population tuning of
MST andMT (Miura et al., 2014).
With DGs, our results are consistent with previous

findings. First, both early and late eye velocities are
best tuned for spatial and temporal frequency, over
the range of tested frequencies. We found a nearly

symmetric envelope peaking at low spatial (;0.3 c/°)
and mid temporal (;10 Hz) frequencies. For the first
time we reconstructed the temporal dynamics of spa-
tiotemporal tuning and showed that it remains constant
over time, despite the large change in retinal image mo-
tion occurring over the first 300ms of tracking. This
tuning is consistent with previous studies in humans
(Hayashi et al., 2010; Sheliga et al., 2016) and monkeys
(Miura et al., 2006) and might reflect the contribution of
temporal frequency tuned neurons found in monkey
area MT when tested with gratings (Perrone and Thiele,
2001; Priebe et al., 2003; Miura et al., 2006; Zaharia et
al., 2019). We propose that the scale dimension, de-
fined as the product of spatial and temporal frequen-
cies, best summarizes this constant spatiotemporal
tuning of OFRs to gratings.

Figure 13. Comparison between linear and nonlinear models of motion integration for speed estimation. AIC values were computed
for each model and component or pattern conditions and each participant. The mean (6SD across participants) difference between
AICwith and AICwithout values is plotted for all 15 components (c1 to c15) and nine patterns (from a to i). Positive and negative values
indicate that the nonlinear, interaction model is worse or better than a model without interactions, respectively. a, Color codes for ei-
ther component (left) or pattern (right) stimuli. b, Component and pattern MC. c, Component and pattern DG.
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Orientation of local motion energy improves speed
tuning
Spatiotemporal tuning for perception (Kelly, 1979) and

ocular tracking (Hayashi et al., 2010) was primarily previ-
ously probed with drifting sinusoidal gratings, that are
point-like (nonoriented) motion stimuli in Fourier space.
Here, we systematically compared gratings with broad-
band oriented MCs (Sanz-Leon et al., 2012; Vacher et
al.,2018). While DG have zero variance, MCs have inde-
pendent variance along spatial and temporal frequency.
We constructed them by constraining MC spatiotemporal
distributions to be oriented along a speed axis unlike DG,
while both stimuli retain matched mean speed, spatial
and temporal frequencies and contrast energy. We con-
trasted their response patterns. First, oriented MC stimuli
systematically elicited stronger tracking velocity, in partic-
ular from ;100 ms after response onset, with higher reli-
ability across trials. These results are consistent with our
earlier finding that broadband energy distributions along a
given iso-velocity line result in stronger and more reliable
ocular following (Simoncini et al., 2012). Speed tuning of
MCs responses was constant over time, with an optimal
speed range of 30–50°/s, consistent with human OFRs to
either DGs (Gellman et al., 1990), random dot (Quaia et
al., 2012), or 1D pink noise patterns (Sheliga et al., 2020).
Second, for DG the reduction in eye velocity was stronger
for the highest scale components, corresponding to high
spatial and temporal frequencies. In contrast, MCs en-
large the optimal range of spatiotemporal frequencies for
decoding input speeds so that speed tuning becomes in-
dependent of spatial and temporal features (scale invari-
ance) over the tested range and the 2D spatiotemporal
envelope becomes elongated along a speed axis in
Fourier space (reflecting inseparability).
These results are consistent with several properties of

cortical speed tuned neurons. In areas V1 and MT, few di-
rection-selective cells are truly speed-tuned (Perrone and
Thiele, 2001; Priebe et al., 2003, 2006). When tested with
broadband motion stimuli such as random dot patterns,
speed tuning is sharper and responses are stronger than
with DGs (Priebe et al., 2003; Solomon et al., 2010).
Moreover, pattern-selective MT cells in macaques and
marmoset monkeys prefer higher speeds (Priebe et al.,
2003; Krekelberg et al., 2006; Solomon et al., 2010; Wang
and Movshon, 2016) and tend to be better described as
spatial frequency inseparable, or equivalently “velocity-
separable” (Zaharia et al., 2019). Such properties might
emerge from recurrent interactions, in particular excitation
along the iso-velocity line and inhibition away from it
(Inagaki et al., 2016). We propose that contrasting oriented
and point-like component stimuli is an efficient approach
to titrate their relative contribution. We now discuss how
pattern stimuli can further unveil the nonlinearities at neuro-
nal levels (Meso and Zanker, 2009; Meso and Simoncini,
2014; Inagaki et al., 2016; Zaharia et al., 2019).

Decoding pattern speed is shaped by nonlinear
interactions between frequency channels
Computational rules and neural mechanisms of motion

direction integration have been largely investigated by

comparing the perceptual, behavioral and neuronal re-
sponses to either component or pattern motion stimuli
(for review, see Born and Bradley, 2005; Nishida et al.,
2018). Only recently have some studies directly linked
motion direction and speed computation (Zaharia et al.,
2019). Ocular responses to patterns made of different
direction components have unveiled several nonlinear
properties (Priebe et al., 2001; Masson and Castet,
2002; Hayashi et al., 2010; Sheliga et al., 2020). Here,
we show that early reflexive tracking depends on the
orientation of the motion components relative to the
speed axis. Responses to patterns made of compo-
nents aligned along an iso-velocity line are always
larger than predicted by averaging the corresponding
component-driven responses, what we call the linear
prediction. The gain is higher when components are
DGs, and not oriented local components as expected
since responses to single gratings were in fact smaller
than to single MC. Rotating the component axis relative
to this iso-velocity line reduced eye velocity and when
the three components were distributed along the scale
axis, responses were less than linearly predicted. Recall
that moving patterns had the same mean retinal speed
and so comparing response amplitudes relative to the lin-
ear (average) prediction alleviates any differences in am-
plitude explained by the spatiotemporal tuning of ocular
tracking. Thus, positive or negative changes in tracking
responses can be attributed only to interactions, excita-
tory or inhibitory, respectively, between channels sensing
the different components.
Our model reveals this interaction pattern from the like-

lihoods of response amplitudes for each component and
pattern input. Vector average computation cannot ac-
count for ocular responses to both pattern DG and MC.
Rather, we identified two orthogonal interactions within
the spatiotemporal frequency space, aligned with the
scale and speed axes. Inhibition is strong between chan-
nels along the same scale and is maximized approxi-
mately at a distance of three octaves. It decreases for
orientations away from the scale axis. Channels that are
along the same iso-velocity line show minimal or weakly
positive interactions. As expected, these positive inter-
actions were stronger with pDG than pMC, since single
MC are already oriented along the same axis. These pat-
terns of interactions can account for the response ampli-
tude and variability across trials.
Such a pattern of crossed speed-scale interactions is

consistent with our previous results with both ocular follow-
ing and speed perception (Simoncini et al., 2012; Gekas et
al., 2017). It is also consistent with recent neuronal studies
investigating the structure of velocity selectivity in macaque
MT neurons. Inagaki et al. (2016) found that their spectral re-
ceptive field is shaped by excitatory inputs along the iso-ve-
locity line and broad suppressive inputs. We propose a
rationale for the organization of these inhibitory interactions:
they are stronger along the scale axis. Such a suppressive
structure would improve the reliability of velocity representa-
tion while supporting motion segmentation. We will discuss
below the functional importance of such crossed excitation/
inhibition patterns.
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From linear to nonlinear motion integration: temporal
dynamics
A popular belief is that speed integration collapses into

a single local averaging of all inputs within the central vis-
ual field (Mestre and Masson, 1997; Lisberger, 2010).
There are however known nonlinearities that shape the in-
itiation of tracking eye movements, such as contrast gain
control or center-surround interactions (Barthélemy et al.
2006, 2008; Sheliga et al., 2016, 2020). Ocular following
tracks the temporal dynamics of the cascade of motion
processing steps from local luminance measurements to
global speed/direction integration (for review, see Masson
and Perrinet, 2012). Here, we unveiled three aspects of
speed computation during a transition from linear to non-
linear mechanisms.
First, the earliest part of ocular tracking is tuned for

speed, spatial and temporal frequencies and broadband
motion inputs drive larger initial eye acceleration (Hayashi
et al., 2010; Simoncini et al., 2012). Further comparison
between point-like (DG) and oriented (MC) inputs reveals
that a true speed representation is achieved only with ori-
ented inputs. The speed representation is largely invariant
to spatial and temporal properties over the three to four
octaves studied. Conversely, responses to DG are more
tuned for the spatiotemporal scale, rather than speed.
Second, the reliability of speed representation gradually

builds over time for oriented MC stimuli. This result is con-
sistent with the observation that tracking responses to
moving oriented patterns with broader spatial frequency
distributions are more precise and reliable than for point-
like moving inputs (Simoncini et al., 2012; Mukherjee et
al., 2015). Thus, distributing motion energy along an iso-
velocity line in Fourier space sharpens speed represen-
tation and improves the reliability of decoding. Similar
temporal dynamics was reported for smooth pursuit in
monkeys, where both discrimination threshold and accu-
racy improves over ;100 ms (Osborne et al., 2007).
Lisberger and colleagues proposed that noise in sensory
processing of visual motion direction and speed pro-
vides the major source of variation in the initiation of pur-
suit. For direction, such a time course of information
driving pursuit is probably determined by noise in MT
neuronal responses (Osborne et al., 2004; Osborne,
2011; Lisberger, 2015). Further studies should investi-
gate the time course of precision and reliability of neural
speed representation along the visual motion pathway
contrasting oriented and point-like, alongside compo-
nent and pattern motion inputs.
Overall, our results suggest that the earliest integration

is best explained by a linear averaging of the different
speed components. Nearly 80ms after response onset,
within the open-loop period, responses diverged from the
linear prediction, bringing nonlinear mechanisms into play.
Our dynamical model accounts for this, since after 100ms
of pursuit, eye velocity likelihoods are better simulated by
the interaction model. Although very little is known about
the time course of speed selectivity in the primate visual
system, our results call for a closer examination of popula-
tion dynamics of speed representation when probed with
naturalistic, complex stimuli as introduced here. It should

be noted that such temporal dynamics is consistent with
that documented for 2D motion direction integration, at
both behavioral (Masson et al., 2000; Masson and Castet,
2002) or neuronal levels (Pack and Born, 2001; Smith et al.,
2005). With ocular following, Masson and colleagues iden-
tified a two-stage, cascaded motion computation. An early
phase is driven by a linear integration of motion inputs,
similar to vector averaging but a second phase starts;20–
30 ms after pursuit onset and grows over time, rotating eye
movement direction toward the true 2D pattern motion di-
rection (Masson and Castet, 2002; Barthélemy et al.,
2008). The same time course was later found for smooth
pursuit in both humans and monkeys (Pack and Born,
2001; Masson and Stone, 2002) and is consistent with pre-
vious studies showing a similar delayed contribution by
;50–100 ms of global or second-order motion speed to
pursuit initiation in humans (Butzer et al., 1997) and mon-
keys (Priebe et al., 2001). For motion direction, several
studies have shown that direction selectivity in monkey
area MT follows the same time course, with component se-
lective cells being activated before pattern-selective neu-
rons and pattern direction selectivity gradually emerging
over time (Pack and Born, 2001; Smith et al., 2005). At the
computational level, such temporal dynamics has been ex-
plained by delayed higher-order motion integration mecha-
nisms (Wilson et al., 1992; Löffler and Orbach, 1999), a
slower inhibition (Medathati et al., 2017), and a gradual dif-
fusion mechanism (Tlapale et al., 2010; Perrinet and
Masson, 2012). Similar mechanisms may be involved in
speed representation.

Conclusion: a new view of visual speed computation
The present study strengthens the idea that speed rep-

resentation is shaped by nonlinear interactions which are
best captured within the scale-speed space (Gekas et al.,
2017). Speed and scale axes relate spatial and temporal
frequencies of an image by their ratio (speed) and product
(scale), respectively. Speed tuned neurons are often
understood as spatiotemporal inseparable filters, oriented
along the speed axis. In the speed domain, we propose
that, similar to the direction domain (Medathati et al.,
2017), local excitation corresponds to excitatory interac-
tions implementing integration along one iso-velocity line
in Fourier space. With oriented motion stimuli, such as
MC, speed tuning of these neurons is sharper and more
reliable and, by consequence, the population spatiotem-
poral tuning is also oriented in Fourier space. Thus, be-
havioral performance is improved (Simoncini et al., 2012;
Gekas et al., 2017). Inhibition is often attributed to chan-
nels located away from the same iso-velocity line, as for
instance in MT receptive fields (Inagaki et al., 2016). We
propose that the inhibition pattern is better captured
along the scale axis. Our reasoning is that an iso-scale
line corresponds to visual inputs distributed at different
depths and spanning both spatial and temporal frequency
gradients within a parallax flow field. Therefore, speed
signals along this axis are different and should typically be
segmented as belonging to separate objects. Overall,
scale-speed interaction patterns would optimally parse
the visual motion flow and support object segmentation.
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Optomotor responses could then exploit such interac-
tions for tracking objects while discarding background
motion information.
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