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Immune cells are present within the central nervous system and play important roles in
neurological inflammation and disease. As relatively new described immune cell
population, Innate Lymphoid Cells are now increasingly recognized within the central
nervous system and associated diseases. Innate Lymphoid Cells are generally regarded
as tissue resident and early responders, while conversely within the central nervous
system at steady-state their presence is limited. This review describes the current
understandings on Innate Lymphoid Cells in the central nervous system at steady-state
and its borders plus their involvement in major neurological diseases like ischemic stroke,
Alzheimer’s disease and Multiple Sclerosis.
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INTRODUCTION

The central nervous system (CNS) is a highly sensitive organ and requires protection. Physical
protection to the CNS is provided by three meningeal layers. These three layers are the dura mater,
adjacent to the skull, the pia mater, located just above the CNS parenchyma, and the arachnoid
mater, in between the dura and pia mater (1) (Figure 1). Besides the physical protection of the brain,
the dura mater layer also harbor a variety of immune cells, whereas arachnoid- and pia mater
contain fewer (2). Moreover, dural myeloid and lymphoid cells are replenished from skull or
vertebrae bone-marrow in steady-state and inflammatory conditions (3–6). Within the dura mater
the superior sagittal sinus and the transverse sinus collect blood from the veins of the brain,
meninges and skull and transport this towards the internal jugular veins. The sinuses in the dura
mater are the neuro-immunological interface where CNS-derived antigens accumulate and the local
antigen presenting cells (APCs) prime patrolling T cells (7). Dural lymphatic vessels lining the
sinuses collect CSF from the subarachnoid space and interstitial fluid (ISF) from the brain and drain
via connections through the nasal-cribriform plate into the nasopharynx lymphatic vasculature (8)
towards the mandibular and deep cervical lymph nodes (dcLN) (9, 10). Therefore, the meninges is a
critical neuro-immunological interface where immune cells are situated to sense threatening factors
such as pathogens and antigens (7). During steady-state, migration of immune cells and
macromolecules into the brain parenchyma is restricted by the presence of the blood brain
barrier (BBB) around the blood vessels (11), made up of endothelial cells connected by tight
junctions (12, 13). Within the CNS, there are immune cells present within the choroid plexus (CP),
a villous structure located within brain ventricles comprised of a continuous single layer of
epithelium surrounding stroma. The major role of the CP is to produce the cerebral spinal fluid
org February 2022 | Volume 13 | Article 8372501
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(CSF) (14). Blood vessels with fenestrated endothelium
vascularize the CP stroma to enable entry of peripheral
leukocytes via interactions with blood vessel selectins, integrin
ligands and chemokines. Subsequently, recruited leukocytes are
able to migrate through the epithelial monolayer into the CSF,
mediated by the chemokines in the choroid plexus (15).

A variety of innate and adaptive immune cell subsets
including mast cells, dendritic cells (DCs), monocytes,
macrophages, T cells and B cells are located in the meninges
and CP under steady-state conditions (3, 7, 14, 16–20). The
detection of the relative newly described Innate Lymphoid Cells
(ILCs) (21) at the CNS borders under steady-state conditions and
damaged parenchyma gained increased attention in recent years.
ILCs are the innate counterparts of T cells but lack antigen
receptor rearrangement. The first ILC subset to be described was
the conventional natural killer (cNK) cell in 1975 (22, 23). Later,
Lymphoid Tissue Inducer (LTi) cells were described (24),
followed by ILC1, ILC2 and ILC3 members (24–32). NK cells
are considered to be the innate counterpart of CD8+ T
lymphocytes. The other ILCs share the characteristics of helper
CD4+ T cells, and are hence named helper-ILCs. The CD4+

helper T cell populations Th1, 2 and 17 share transcription
factors and cytokines with their analogous ILC counterparts,
respectively ILC1, 2 and 3. As ILCs lack T cell receptor, their
activation does not rely on specific antigens and co-stimulation,
but rather requires cytokines and signals usually provided by
their tissue of residence. Therefore, they are early and immediate
responders to a microenvironmental challenge. ILCs distribute to
lymphoid and non-lymphoid tissues, including lymph nodes,
intestine, liver, lung, skin, uterus and decidua (21, 33). They have
been described as tissue-resident, being maintained and
expanding locally (34). Other data suggest that a proportion of
the ILCs are migratory (35). The CNS parenchyma is almost
devoid of ILCs under steady-state condition due to the presence
of brain barriers such as the blood-brain barrier (BBB),
meningeal barrier, blood-cerebrospinal fluid (CSF) barrier and
the ventricular barrier (3, 36). This raises questions on the
presence of supposedly tissue resident ILCs within the immune
privileged CNS, and what occurs with ILCs upon an
inflammation within the CNS. Here, we provide an overview
of the ILC presence within the CNS, including the meninges,
during steady-state plus their involvement and function in major
neurological diseases.
ILCs IN THE CNS AT STEADY-STATE

NK and ILC1
NK cells (NKs) and type 1 innate lymphoid cells (ILC1s)
commonly express NK1.1 and are defined as Lin−CD45+NK1.1+

NKp46+ lymphocytes, with a notable difference in NKs which
express transcription factor Eomes and T-bet while in general
ILC1s express transcription factor T-bet exclusively (37, 38).
Although both NKs and ILC1s produce the principle cytokine
IFN-g, they display different roles. NKs are cytotoxic, whereas
ILC1s are generally non-cytotoxic due to the lower expression of
perforin and granzyme B production (39).
Frontiers in Immunology | www.frontiersin.org 2
CD49a and CD49b are used to distinguish NK from ILC1s in
some tissues, such as liver, skin and bone marrow, but not in
salivary glands (21). Within the CNS, CD45highCD3−NK1.1+

CD49a−CD49b+ cel ls are Eomes+T-bet+, thus NKs.
CD45highCD3−NK1.1+CD49a+CD49b− cells are Eomes−T-bet+,
thus ILC1s (38). NKs have been described to convert into
intermediate ILC1s (intILC1s) by TGFb, and notably express
CD49a, CD49b and Eomes within a tumor microenvironment
(40, 41). CD49a+CD49b+Eomes+ intILC1s are also present within
the meninges (38). However, about 40% of the CD49a+CD49b+

intILC1s in the meninges have been described not to express
Eomes. Whether the CD49a+CD49b+Eomes− intILC1s are unique
meningeal resident cells and are functionally different remains
unknown. Both NKs and ILC1s have been observed within the
meninges during steady-state conditions (3, 38, 42, 43) (Figure 1).
Moreover, these two populations recirculate through peripheral
lymphoid tissues (35), raising the question whether NKs and
ILC1s within the meninges are migratory or resident. Compared
to the NKs in blood, NKs found in the dura mater express higher
levels of CD62L and CD27, which are critical for the maturation-
and effector- function of NKs (44, 45) and provide a faster and
stronger protection against challenges to the CNS. It has been
reported that neurons express chemokine CX3CL1 to recruit
CX3CR1+ NKs to the brain parenchyma, which is associated
with a better prognosis against e.g. glioma (46). NKs found in
the dura mater also express higher level of CX3CR1 compared to
NKs in blood (3), suggesting that NKs patrol the CNS in the
homeostatic state and could rapidly be involved in the reaction to
pathological conditions. Moreover, meningeal resident NKs are
the main contributors for IFN-g production which transmigrates
through the arachnoid and pia mater to induce the death receptor-
ligand TRAIL expression in astrocytes. Subsequently, activation of
the death receptor on T-cells limits their numbers and inhibits
neuroinflammation (42) (Figure 1). These findings suggest that
regulating the plasticity of NKs in the meninges might be a
potential therapy against neurological diseases. Compared to
meninges, fewer CD45+CD3−NK1.1+ lymphocytes have been
observed within the choroid plexus (CP) at steady state, most of
which are ILC1s but not NKs nor intILC1s (38). However, the role
of ILC1s in the CP at steady state is currently unknown.

ILC2
Type 2 innate lymphoid cells (ILC2s) do not only protect against
helminth parasites that infect CNS and lead to aggressive
neurological diseases (47), but can also promote tissue repair
(48). Neurotransmitter receptors such as neuromedin U receptor
(NMUR1) and vasoactive intestinal peptide receptor 2 (VIPR2)
expressed by ILC2s mediate the crosstalk between the peripheral
nervous system (PNS) and ILC2s (49). Neuromedin U (NMU)
secreted by neurons positively regulate activation, proliferation
and cytokine production of NMUR1+ ILC2s (50, 51) to provide a
rapid tissue protection against helminth infection. IL-5 produced
by immune cells, including ILC2s, promotes release of vasoactive
intestinal peptide (VIP) by sensory neurons. In return, VIP
stimulates VIPR2+ ILC2s to secret IL-5 (52, 53), providing a
strong auto-regulatory loop. Neurotransmitter receptor
expression by CNS-resident ILC2s has not been reported yet.
February 2022 | Volume 13 | Article 837250
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The transmembrane receptor RET (REarranged during
Transfection) tyrosine kinase in ILC2s is activated by glial-
derived neutrotrophic factor (GDNF) and induces IL-5 and IL-
13 expression (54). Neurons within the CNS express GDNF, and
thus the expression of these cytokines in CNS residing ILC2s
could be indicative of a neuronal-ILC2 communication (55).
ILC2s have been shown mainly within the dural meninges, but
not within the leptomeninges (arachnoid mater and pia mater) at
steady-state (56, 57) (Figure 1). Although few ILC2s have been
detected within the choroid plexus in a healthy young brain, an
abundance of this population has been found in the aged brain.
The increase of ILC2s in the aged brain is probably due to an
accumulation of CNS-resident ILC2s since they do not re-enter
circulation (56). Transcriptional plasticity analysis show that NK
cells and ILC1s could differentiate into ILC2s within the aged
brain (58), suggesting that the shift of other ILCs contribute to
the ILC2 increase. Interestingly, the ILC2s in the choroid plexus
and meninges from aged mice can be divided into three subsets,
with different capabilities to proliferate and produce cytokines.
ILC2s in the choroid plexus contain more Arg1+Il13+ ILC2s
which mediate type 2 inflammation, whereas the meningeal
ILC2s contained more Csf2 (encoding GM-CSF) expressing
ILC2s. Since ILC2-derived GM-CSF induces differentiation of
hematopoietic stem and progenitor cells (HSPC) (59, 60), these
ILC2s could improve treatment efficacy when transplanting
HSPC during neurodegenerative disease treatments. The
heterogeneity of ILC2s in the CNS suggests that the distinctive
ILC2 subsets only respond to their corresponding stimulation
upon a specific inflammation.

ILC3
Group 3 ILCs share the expression of transcription factor RORgt
and are divided into two main populations, the NCR− and the
NCR+ ILC3s. The NCR− population includes LTi cells which are
generated before birth and LTi-like cells generated after birth
(61). ILC3s play critical roles before and after birth (61). NCR−
Frontiers in Immunology | www.frontiersin.org 3
ILC3s are essential for the formation of lymph nodes and Peyer’s
patches in the embryo, while both NCR− and NCR+ ILC3s
regulate mucosal immunity. There have been several examples
described on neuro-ILC3 crosstalk. Circadian circuits regulate
stability of enteric ILC3s that express circadian clock genes (62–
64). Disruption of these genes in ILC3s cause impaired
microbiome homeostasis and increase susceptibility to
inflammatory bowel disease. VIP produced by enteric neurons
is recognized as a regulator for enteric VIPR2-expressing ILC3s,
even though the results about regulation of VIP on IL-22
production by these ILC3s remain controversial (65–67).
Relatively little is known about the presence and roles for
ILC3s within the CNS. Heterogeneous ILC3 subsets LTi/LTi-
like cells and NCR+ ILC3s have been observed in the healthy
meninges (68) (Figure 1). Although ILC1s and ILC2s are present
within the choroid plexus, barely any ILC3s are detected within
the CNS (56).
ILCs IN NEUROLOGICAL DISEASES

NK and ILC1
The global burden of neurological diseases is increasing (69).
Recent advancements in neuroimmunology indicate that
developing immunotherapies against neurological diseases are
beneficial in improving clinical treatment. Therefore, a better
understanding of the roles for ILCs could benefit development of
immunotherapies. We will restrict the discussion on ILCs in
major neurological diseases such as cerebrovascular disease
ischemic stroke, demyelinating disease multiple sclerosis (MS),
Alzheimer’s disease (AD) and glioma.

Stroke is a major cause of disability and death worldwide and
classified into ischemic stroke and hemorrhagic stroke. Innate
and adaptive immune cells including microglia, neutrophils,
monocytes and lymphocytes play multiphasic roles in ischemic
stroke and impact the pathogenesis of ischemic brain
FIGURE 1 | ILCs in the CNS borders at steady-state. Meninges consist of the dura mater, arachnoid mater and pia mater. Dural lymphatic vessels lining the sinuses
absorb CSF from the subarachnoid space. Arachnoid- and pia mater are impermeable to immune cells due to tight junctions. NK cells are observed within the meninges
to regulate astrocytes by secreting IFN-g which diffuses into the brain parenchyma. ILC1s are observed to reside in both meninges and choroid plexus. ILC2s and ILC3s
are mainly observed within the meninges. The insert illustrates that in an ischemic stroke ILCs accumulate at the lesion border, the majority being NK cells.
February 2022 | Volume 13 | Article 837250
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injury (70–73). NK cells have been detected in the brain
parenchyma of stroke patients and mouse models with induced
ischemic stroke (43, 74, 75). We observed that the robust
accumulation of NK cells in the stroke lesion is caused by
progressive migration rather than in situ proliferation (43).
The main chemotaxis described thus far for controlling
migration of NKs towards the lesion are the CX3CL1/CX3CR1
and CXCL12/CXCR4 axis (43, 74). The roles for NK cells in
ischemic stroke are contradictionary. To establish the role of
NKs, anti-NK1.1 treatment has been frequently used to deplete
NKs and ILC1s. However, it is important to note that NK1.1 is
expressed on a subset of (ex)ILC3s, which are NKp46+T-
bet+RORyt+ (76), and thus anti-NK1.1 treatment can affect this
population. However, it has been shown that there are no NK1.1+

(ex)ILC3 within the CNS by using the RORcGFP fate mapping
reporter mouse model (38). Moreover, the presence of the
RORgt+ ILC population is very limited in ischemic stroke brain
when compared to the NK cells and ILC1 (43). Therefore, studies
using anti-NK1.1 to mediate depletion affect most likely only
NKs and ILC1s, but not ILC3s within the CNS. Depletion of NK
cells using anti-NK1.1 decreases infarction size and neurological
deficits in MCAO (middle cerebral artery occlusion) stroke
model (74). However, we have observed that CXCR4+ NK cells
protect motor behavioral functions in the photothrombotic
stroke model by using anti-NK1.1 mediated depletion. Also,
blocking migration towards the lesion by Cxcr4 deletion
specifically in NKs and ILC1s protects motor-behavior after
stroke ischemic induction (43). The contradiction in the effects
of the NKs between these studies can partly be attributed to
differences in behavioral test applied. In the study by Gan et al. a
less precise Bederson score testing forelimb flexion has been
used, which basically measures resistance to lateral push and
circling behavior (77). In our study where we have observed a
protective effect, we have used beam-walk assay testing foot slips
when mice cross an elevated beam to analyze the motor-
behavioral deficits. Indeed, using the Rag1-/- mice, in which all
T cells are absent, but not ILCs or NK cells, an improvement of
the motor behavior has also been observed in the tMCAO stroke
model (78). These findings on the protective nature of NK cells
fit with the recent study by Sanmarco et al. reporting that IFNy
from NK cells induced TRAIL expression in LAMP+ astrocytes
to limit the T cell presence and hence prevent inflammation in
EAE (42). The protective IFN-g production by meningeal NK
cells, positively regulating the protective role of LAMP+TRAIL+
Frontiers in Immunology | www.frontiersin.org 4
astrocytes, has been shown to be induced by the intestinal
microbiome (42). Therefore, another explanation for the
contradictionary findings is a possible difference in commensal
microbes within the intestines of the mice used in the different
labs. Intriguingly, clinical studies showed that dysbiosis of gut
microbiota has been correlated with the severity of acute
ischemic stroke and mice receiving fecal transplantation of
ischemic stroke patients with significant dysbiosis develop
more severe brain injury (79, 80). To better understand the
role of NK cells in the stroke brain, additional studies on how
microbiota affect the regulation of NK cells on stroke brain
recovery are required.

Multiple sclerosis (MS) is an autoimmune disease of the
central nervous system, with a hallmark of nerve fiber
demyelination. The pathological role of Th17 cells in MS and
its animal model experimental autoimmune encephalomyelitis
(EAE) has been described before (81). Anti-NK1.1 mediated
depletion of mainly NK and ILC1s suppress Th17-mediated
neuroinflammation in EAE (82). Moreover, specifically
deletion of NKs and ILC1s using the Tbx21−/− (encoding T-
Bet) and Tbx21f/f NKp46-Cre+ model indicate the importance of
these cells in the onset of the Th17 mediated inflation as well (83)
(Table 1). Indeed, several other studies indicate the protective
role of NK cells in neuroinflammation, notably in EAE and MS
patients (42, 86–89). NKp44 is only expressed on activated NK
cells and mediates both activating and inhibitory signals to NK
cells (90). NKp44 ligand (NKp44L) is expressed by astrocytes
and the interaction of astrocytes with NK cells is mediated by
NKp44L-NKp44 interaction. This interaction activates NK cells
function and leads to NK mediated astrocyte cell death (91).
Therefore, NKs and ILC1s can either inhibit or enhance
inflammation in EAE depending on signaling pathways used.

ILC1s in the CP of the CNS maintain stable expression of
IFN-g and TNF-a in EAE, which could synergistically regulate
the levels of IFN-gR and TNF-R1 expressed by the choroid
plexus endothelium (38, 92). IFN-g upregulates a wide array of
trafficking molecules expressed by the choroid plexus epithelium,
such as vascular cell adhesion molecule 1 (VCAM1), intercellular
adhesion molecule 1 (ICAM1) and chemokines (CCL2, CCL5,
CXCL9, CXCL10, CX3CL1), which contribute to the trafficking
across of CP epithelial barriers by immune cells (92). Thus,
ILC1s in the choroid plexus probably act as a gatekeeper for the
entry of neuroinflammation-induced immune cells into the CNS.
TABLE 1 | Overview of ILCs localization in steady-state and neurological diseases.

NK ILC1 ILC2 ILC3

Steady-state Meninges (3, 42, 43) Meninges and CP (3, 38, 42, 43) Meninges and CP (56) Meninges (68)
Stroke BP (43, 74) BP (43) BP (43) BP (43)
AD CSF (84) N.D. N.D. N.D.
MS (EAE) SCP (82, 83)

Meninges (83)
BP (38)

Meninges (83)
N.D. BP and SCP (68)

Meninges (68)
SCI N.D. N.D. Meninges and SCP (57) N.D.
Glioma TME (85) N.D. N.D. N.D.
February 2022 | Volume 13
There are no ILCs found within the brain parenchyma (BP) at steady-state.
AD, Alzheimer’s disease; EAE, Experimental autoimmune encephalomyelitis; SCI, Spinal cord injury; SCP, Spinal cord parenchyma; TME, Tumor microenvironment; N.D., Not Determined.
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Alzheimer’s disease (AD) is a neurodegenerative disorder and
research on AD focusses on the two well-established hallmarks,
amyloid beta (Ab) plaques and neurofibrillary tangles (NFT) (93,
94). Bioinformatical experimental and clinical studies indicate that
the immune system plays an indispensable role in AD pathology
(95–98). NK cells have been also reported in the CSF from AD
patients (84). However, the role of NK cells in AD patients and the
underlying mechanism mediating the migration of NK cells
towards the plaques and interaction with the plaques is
unknown. Therefore, it remains to be established if NK cells are
present in, or near, the plaques, and with which cells they interact.
Since IL7Ra is expressed by the majority of ILC1s and hardly on
NK cells in the adult, some IL7Ra+ NK cells detected in the CSF of
Alzheimer’s disease are most likely ILC1s (21, 84). It does not
exclude the possibility that the CP-resident ILC1s enter the CSF to
patrol the Alzheimer’s brain. In order to distinguish ILC1s from
NK cells in the CSF from Alzheimer’s disease in future studies,
CD49a and CD49b can be used. CD49a promote the persistence of
CD8+ T cells within the skin and increases this population after
local antigen challenge (99). In analogy to skin CD8+ T cells, the
CD49a-expressing ILC1s might also protect brain parenchyma
from AD and viral or bacterial infections by promoting the
persistence of CD8+ cells within the CNS.

Glioma is the most prevalent tumor of the CNS with a high
mortality rate (100). High heterogeneity of gliomas indicates the
complexity of immune landscape within glioma tumor
microenvironment (101). The involvement of microglia,
macrophage, effector- and regulatory T cells in glioma is
described in detail elsewhere (102–104). NK cells are present
within the glioma tumor microenvironment (85) and are
attracted towards the tumor by neuronal expressed chemokine
CX3CL1. The attraction of the CX3CR1+ NK cells is associated
with a better prognosis in glioma patients (46). The role of NK
cells and NK cell immunotherapy against malignant CNS tumors
is discussed in detail elsewhere (105). Summarized, activated NK
cells are associated with improved prognosis and survival of
glioma patients and therefore strategies to enhance NK cell
mediated anti-glioma function could improve clinical outcomes.

We propose that NK cells are involved in regulating CNS
diseases in a multiphasic manner. NK cells can be activated at the
onset of the disease and secret cytokines to regulate its
progression. When NK cells arrive at the focal zone, they are
capable of directly interacting with some targets such as neurons,
microglia and astrocytes. Natural cytotoxicity receptors (NCR)
expressed by NK cells recognize a variety of ligands derived from
cells, viruses, bacteria and parasites, which affect the activation or
inhibition of NK cells (106). Experimental data support the
interaction between NK cells and motor neuron (MN) within
the CNS, mediated by NCR NKG2D on NK cells, promoting MN
degeneration and impairment (107). IL-2-activated NK cells
rapidly form synapses with human microglia, mediated by
NKG2D and NKp46. This interaction results in killing of the
resting microglia and modulate the innate and adaptive immune
responses within the CNS (108). Knowledge about ILC1s in
neurological diseases is limited since they were previously mis-
characterized as closely related conventional NK cells. The recent
Frontiers in Immunology | www.frontiersin.org 5
ILC1 characterization open new areas of investigations into
CNS diseases.

ILC2
Meningeal ILC2 cell numbers increase after spinal cord injury
(SCI) (57). Intriguingly, lung-derived ILC2s present within the
meninges have been shown beneficial for the recovery after SCI
(57), suggesting that they share some characteristics with
meningeal ILC2s. ILC2s in other tissues such as lung and gut
express the neurotransmitter receptors NMUR1 and VIPR2.
Meningeal ILC2s upregulate the gene encoding the receptor for
calcitonin gene-related peptide (CGRP) (57), which implies that
they are not only activated by cytokine IL-33 but possibly also by
CGRP, a neurotransmitter secreted by nociceptive neurons
after SCI (Table 1). Whether meningeal ILC2s also express
other neurotransmitter receptors involved in ILC2s-neuron
communication remains to be established. After SCI induction,
in situ proliferating ILC2s are capable of positively regulating
Th2 cell response by IL-13, which could promote axonal
regrowth (109, 110).

ILC2s are also detected in the lesion of mouse stroke model
(43), meaning that they are potential candidates to regulate the
regeneration of affected neurons within the CNS.

Meningeal ILC2 are mainly present within the dural sinuses
which have been shown as a critical site for local antigen
presentation and immune cell interactions in the CNS (7, 57).
The transfer of bone marrow-derived ILC2s into Cd132−/−

(IL2Rg) mouse model induces CNS demyelination upon CNS
viral infection, indicating this process is ILC2-dependent (111).
However, using a more specific ILC2 knock-out model is
required to establish the exact role of ILC2s in demyelination,
as in the Cd132 knock-out also other ILCs are deleted which can
potentially bias the conclusion. Demyelination causes a variety of
problems including diminished memory, impaired vision,
slurred speech and trouble walking. Identifying the cytokines
secreted by meningeal ILC2s and the targeted immune cells
which promote demyelination after viral infection will be
beneficial for understanding the role of ILC2s in CNS diseases
and beneficial to use in treatments to inhibit CNS demyelination
caused by viral infections.

Female MS patients show symptoms at a younger age and
exhibit more severe disease-course than males in general, the reason
of which is not fully understood (112, 113). A possible explanation is
that testosterone has been shown to increase IL-33 expression which
activates ILC2s, induces Th2 responses and involved in limited
Th17-dominated demyelination (114). Therefore, increased IL33
levels in males could lead to an increased ILC2 activation and
inhibition of MS related symptoms. Also, since ILC2s play a vital
role in suppressing tumor growth and metastasis (115), the gender
bias in IL-33 secretion could also contribute to differences in glioma
incidence and evolution (116, 117).

ILC3
LTi cells are part of the ILC3 subset and essential for the
development of secondary lymphoid organs (SLOs). A critical
step in this process is mediated through the lymphotoxin (LT)
February 2022 | Volume 13 | Article 837250
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a1b2 signaling pathway (118), and the cells are involved in
formation of some tertiary lymphoid organs (TLOs) (119, 120).
LTi cells are attracted by CXCL13 during embryonic lymph node
formation (121) and in analogy, increased CXCL13 levels in the
CSF of MS patients attract CXCR5+ LTi cells towards the CNS
(122). Indeed, detection of RORgt+CD3− (ILC3) cells in the sub-
meningeal B cell follicles suggest the involvement of LTi cells in
MS patients (123). Also in relapsing-remitting MS patients, LTi
cells have been observed in blood (124) and associate with a
specific lesion tomography. On the contrary, in the mouse
experimental model for MS, EAE, LTi cells have not been
found in TLO’s within the cerebellum parenchyma, but instead
Lymphotoxin expressing B-cells have been suggested as inducers
of the TLO (125). In another study on EAE, an increase of
OX40L+ and CD30L+ ILC3s in the meninges has been observed,
but these are not associated with TLO’s (68). Since LTi cells in
adult mice are known to express OX40L and CD30L, these ILC3
within the meninges could very well be LTi cells (126) (Table 1).
Combined, results from patients and mouse models suggest that
the peripheral LTi cells could organize meningeal lymphoid
follicles in specific circumstances in MS or EAE, while in other
cases their function would be taken over by other cells
expressing lymphotoxin.

ILC3s are essential in CNS inflammation, as deletion of
MHC-II+ ILC3s cells results in loss of symptoms associated
with EAE. In this neuroinflammatory model, ILC3’s are
capable of presenting antigen to autoimmune T cells in focal
lesions and thereby mediate neuroinflammation within the CNS
parenchyma (83, 127). Similarly, MHC-II expression by some
LTi cells (24, 128) suggests that LTi cells could also promote
inflammation in EAE by initiating circulating inflammatory T
cells. How antigens are obtained by these ILCs and present it on
their MHC-II remains unknown, as they have not been shown to
be phagocytic. Accumulated ILC3s, including LTi cells and other
ILC3s, are capable of producing pro-inflammatory cytokines
such as IFN-g, IL-17 and GM-CSF, which are responsible for
chronic inflammation (68, 83). Besides cytokines, ILC3s could
regulate the function and survival of memory CD4+ T cells by
expressing CD30L and OX40L (129). OX40L expressed by ILC3s
is reported to regulate the homeostasis of intestinal Treg cells
(130). The existence of Treg cells and ILC3s in the stroke lesion
(43, 131) indicates a crosstalk between ILC3s and Treg cells in
this disease.
CONCLUDING REMARKS

Although the presence of ILCs in the meninges and choroid
plexus in steady-state has been shown, their origin and
Frontiers in Immunology | www.frontiersin.org 6
maintenance remain unknown. Circulating ILC progenitors in
the blood might replenish these subsets as was shown in human
(132). Previously shown for CNS B-cell and myeloid cell renewal,
the contribution of skull and vertebral bone marrow to ILC
maintenance has not been investigated (4). Brain barriers
prevent the migration of ILC into brain parenchyma at steady-
state. It has been shown that neurological diseases cause break
down of BBB and meningeal integrity (133–135). The
permeability of the BBB is notably increased in stroke and
glioma during which the vasculature bed is completely
remodeled and re-constructed (136, 137). Also, tight junctions
within the BBB are disrupted by molecules such as matrix
metalloproteinases (MMPs) in ischemic stroke model (138).
Similar as in the BBB, tight junctions in the arachnoid and pia
mater might also be disrupted in the inflammatory conditions.
These processes could lead to a massive invasion of immune
cells, and ILCs, towards the brain lesion. In this model, the ILCs
are absent within the brain parenchyma in steady-state
conditions but infiltrate the lesion from the dural meninges
and local blood vessels upon insult and loss of meningeal- and
blood-brain- barrier function.

Considering the importance of ILCs in neurological diseases,
such as NK cells in ischemic stroke as well as ILC2s and ILC3s in
EAE, knowing the origin and maintenance could aid inducing
and culturing these cells in vitro. Subsequently, these cells can
contribute to developing therapies. The interaction of ILCs with
other immune cells such as T cells in the CNS tissues remains to
be studied. This knowledge will enhance our understanding of
pathological or protective immune responses. Research on ILCs
and neuroimmunology has gained much attention in the last few
years, whereas the knowledge of ILC-CNS crosstalk remains to
be improved. The description of ILC-neuron circuits in
peripheral tissues such as lung and intestine (50, 51, 54, 66,
139) raise the question of whether ILCs could also directly
communicate with neurons within the CNS.
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85. Friebel E, Kapolou K, Unger S, Núñez NG, Utz S, Rushing EJ, et al. Single-
Cell Mapping of Human Brain Cancer Reveals Tumor-Specific Instruction
of Tissue-Invading Leukocytes. Cell (2020) 181:1626–42. doi: 10.1016/
j.cell.2020.04.055

86. Infante-Duarte C, Weber A, Krätzschmar J, Prozorovski T, Pikol S, Hamann
I, et al. Frequency of Blood CX 3 CR1-Positive Natural Killer Cells Correlates
With Disease Activity in Multiple Sclerosis Patients. FASEB J (2005)
19:1902–4. doi: 10.1096/fj.05-3832fje

87. Bielekova B, Catalfamo M, Reichert-Scrivner S, Packer A, Cerna M,
Waldmann TA, et al. Regulatory CD56bright Natural Killer Cells Mediate
Immunomodulatory Effects of IL-2ra-Targeted Therapy (Daclizumab) in
Multiple Sclerosis. Proc Natl Acad Sci USA (2006) 103:5941–6. doi: 10.1073/
pnas.0601335103

88. Chanvillard C, Millward JM, Lozano M, Hamann I, Paul F, Zipp F, et al.
Mitoxantrone Induces Natural Killer Cell Maturation in Patients With
Secondary Progressive Multiple Sclerosis. PLoS One (2012) 7:e39625.
doi: 10.1371/journal.pone.0039625

89. Gross CC, Schulte-Mecklenbeck A, Rünzi A, Kuhlmann T, Posevitz-Fejfár
A, Schwab N, et al. Impaired NK-Mediated Regulation of T-Cell Activity in
Multiple Sclerosis Is Reconstituted by IL-2 Receptor Modulation. Proc Natl
Acad Sci USA (2016) 113:E2973–82. doi: 10.1073/pnas.1524924113
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