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The goal of this paper is to provide and examine an important extension of the usual portfolio insurance, namely to study the notion of portfolio performance participation. In this framework, the portfolio is based on two risky assets: the rst one corresponds to a reserve asset, while the second one is considered as an active asset which has usually both a higher mean and a higher variance. We aim at insuring a given percentage of the reserve asset return, whatever the market uctuations. The two main performance participation methods are the Option-Based Performance Participation (OBPP) and the Constant Proportion Performance Participation (CPPP). We compare these two portfolio strategies by means of various criteria such as their payo¤s at maturity, their four rst moments and their cumulative distributions functions. We also compare their dynamic hedging properties by computing in particular their deltas and vegas.

Introduction

The purpose of portfolio insurance is to allow the investor to limit the loss risk while beneting in part from a possible rise in the reference nancial market. At maturity, the investor recovers at least a given percentage of his initial investment, especially in bearish markets. (see e.g. Aftalion and Portait, 1988; Charlety-Lepers and Portait, 1997; Poncet and Portait, 1997). Two standard portfolio insurance methods are the Option Based Portfolio Insurance (OBPI) and the Constant Proportion Portfolio Insurance (CPPI). The OBPI has been introduced by Leland and Rubinstein (1976). This portfolio strategy is based on an investment in a risky asset � (usually a nancial index such as the S&P 500) covered by a put option written on it. Thus, at maturity, the portfolio value is always higher than the strike of the put. The CPPI has been introduced by Perold (1986) (see also Black and Jones, 1987; Perold and Sharpe, 1988; Black and Perold, 1992). This strategy allocates assets dynamically over time as follows: the investor begins by setting a oor equal to the lowest acceptable portfolio value. The di¤erence between the portfolio value and the oor is called the cushion. Then, he allocates to the risky asset an amount ("the exposure") equal to the cushion multiplied by a predetermined multiple. The remaining funds are invested in the reserve asset, usually T-bills. The key parameter is the multiple. Indeed, the higher the multiple, the higher the portfolio return when the nancial market is bullish. However, the higher the multiple, the higher the gap risk (i.e. the portfolio becomes smaller than the oor).

The goal of this paper is to extend portfolio insurance by substituting the xed capital guarantee [START_REF] Aftalion | La technique de portfolio insurance[END_REF] for a participation in the performance of a risky asset viewed as a reserve asset. The performance participation constraint is to ensure that the portfolio return will be higher than a given percentage of the reserve asset return, whatever the future nancial market uctuations. Note that the portfolio value guaranteed at maturity is no longer deterministic and can be correlated to the active asset itself. Such structured product can be introduced instead of usual portfolio insurance to overcome problems due for example to too low interest rates. For example, the reserve asset is no longer a money market account but rather a long-term government bond while the active asset is an equity index such as the S&P 500. Black and Perold (1992) have introduced such model (that they still call CPPI), showing mainly that, in the absence of transaction costs, this portfolio strategy is equivalent to investing in perpetual American call options, and that it is optimal for a piecewise-HARA utility function with a minimum consumption constraint. However, the interest of such a methodology is also to be able to invest in signicantly risky assets (emerging markets, hedge funds...) while ensuring a minimum return relative to a more standard nancial index.

In this paper, rst we set up the two main performance participation methods, namely the Option-Based Performance Participation (OBPP) and the Constant Proportion Performance Participation (CPPP). We introduce a quite general model allowing to take account simultaneously of both the performance participation condition and the initial budget constraint. [START_REF] Bajeux-Besnamou | The numeraire portfolio: A new perspective on nancial theory[END_REF] We show that they can be both expressed in terms of respectively the Option-Based Portfolio Insurance (OBPI) and the Constant Proportion Portfolio Insurance (CPPI) by choosing the reserve asset as numeraire. [START_REF] Bajeux-Besnamou | Dynamic asset allocation in a mean-variance framework[END_REF] We show also that the ratio of the two risky assets play a key role when analyzing the two portfolio strategies and especially its volatility. [START_REF] Ben Ameur | Portfolio insurance: gap risk under conditional multiples[END_REF] For the study of the OBPP portfolio, we use results of Margrabe (1978) about the valuation of exchange options. Second, as in Bertrand and Prigent (2005, 2011) for the OBPI and CPPI strategies, we examine and compare OBPI and CPPI strategies by using various criteria. In a rst part, we analyze and compare their properties at the end of the investment period by examining their payo¤s at maturity, their four rst moments and their cumulative distributions functions (cdf). [START_REF] Bernard | Dynamic preferences for popular investment strategies in pension funds[END_REF] As a by-product, we provide the explicit CPPP multiple value such that the two portfolios have the same expected return. For comparison criteria based on cdfs, we show that none of the two strategies stochastically dominates the other one at the rst order. We also examine the cdf of the portfolio values ratio. Finally, in a second part, we compare their dynamic properties. First, we prove that the OBPP method can be viewed as a generalized CPPP where the multiple can evolve stochastically over time. Second, we examine their hedging properties by computing in particular their deltas and vegas. For this latter Greek, as for the OBPI and CPPI strategies, the OBPP and CPPP di¤er very signicantly since their signs are opposite: the OBPP value is increasing with respect to the volatility of the ratio of the two risky assets whereas, for the CPPP, it is the converse.

The paper is organized as follows. Section 2 sets out the two strategies. Section 3 compares the two strategies at maturity by means of their payo¤s, their four rst moments and their cdfs. Section 4 is devoted to dynamic and hedging properties. Finally, section 5 concludes. [START_REF] Bertrand | Portfolio insurance strategies : OBPI versus CPPI[END_REF] In what follows, we begin by setting up both OBPP and CPPP portfolio values. Then, to assess these two strategies, we begin by comparing their payo¤s at maturity. Thereafter, to better take account of their respective probability distributions, we compare their rst four moments and their cumulative distribution functions (cdf). Finally, we examine their dynamic properties, especially the computation of their Greeks for hedging purpose.

The portfolio manager is assumed to invest in two nancial risky assets denoted by � 1 and � 2 . We assume that they are di¤usion processes which are solutions of:

�� 1�� = � 1�� £ � � 1 �� + � � 1 �� 1�� ¤ � (1) 
�� 2�� = � 2�� h � � 2 �� + � � 2 ��� 1�� + � � 2 p 1 ¡ � 2 �� 2�� i �
where � � = (� 1�� � � 2�� ) � is a standard two-dimensional Brownian motion with respect to its own ltration (F � ) � . We assume that the volatilities � �1 of asset � 1 and � �2 of asset � 2 are strictly positive and that their instantaneous correlation � is not null. The period of time considered is [0� � ]. The strategies are self-nancing. The portfolio manager aims at providing a predetermined participation of a reserve asset (here the risky asset � 1 ) while investing in an active asset (here the risky asset � 2 ). Note that usually the active asset � 2 (typically an equity index) is riskier than the reserve asset � 1 (a government bond for example) while it provides a higher instantaneous expected return yielding to conditions � � 2 ¸�� 1 and � � 2 ¸�� 1 . The predetermined participation of the reserve asset � 1 is to guaranty that portfolio return � � �� 0 is higher than a given proportion � of asset return � 1�� �� 1�0 (with 0 � � � 1).

The Option-Based Performance Participation (OBPP)

The Option-Based Performance Participation strategy aims at providing a predetermined participation of a reserve asset (here the risky asset � 1 ) by using an adequate exchange option between the active asset � 2 and given � shares of asset � 1 , namely the option with payo¤ ���(� 2�� � �� 1�� ) which is the best of the two assets �� 1 and � 2 . The parameter � denotes the performance participation on asset � 1 in this exchange option whose payo¤ can also be expressed as � 2�� + (�� 1�� ¡ � 2�� ) + . This latter formula shows that this exchange option corresponds to the purchase of asset � 2 covered by a put written on it with "strike" �� 1�� . Equivalently, we get also the payo¤

�� 1�� + (� 2�� ¡ �� 1�� ) + .
Note that usually the active asset � 2 is riskier than the reserve asset � 1 while it provides a higher instantaneous expected return yielding to conditions � � 2 ¸�� 1 and � � 2 ¸�� 1 . The OBPP portfolio is based on this exchange option. To adjust the value of the portfolio, we adequately7 duplicate this basic structured product by purchasing � shares of it . Thus, the portfolio value � ��� � is given at the terminal date by:

� ��� � � = � £ �� 1�� + (� 2�� ¡ �� 1�� ) + ¤ � (2) 
This relation shows that the insured amount at maturity corresponds to (��) � 1�� .

Remark 1 The performance participation is dened as follows: the portfolio return must be always higher than a predetermined fraction � of the reserve asset return. We must have:

¡ � ��� � � �� 0 ¢ ¸� (� 1�� �� 1�0 ) , with 0 � � � 1� (3) 
Since at maturity we want to recover exactly � (� 1�� �� 1�0 ) if the call is not exercisable (i.e. � 2�� � �� 1�� ), the coe¢cient �� is set equal to �� 0 �� 1�0 .

Denote by � ��� (�� �� � 2 � �� 1 ) the value at time � of the exchange option between � 2 and �� 1 . Then the value � ��� � � of the OBPP portfolio at any time 0 is given by:

� ��� � � = ��� 1�� + �� ��� (�� �� � 2 � �� 1 ) � (4) 

Valuation of the OBPP strategy

In what follows, we show how to valuate the OBPP strategy.

Remark 2

The value of the exchange option can be expressed in terms of asset � 1 considered as numeraire. Indeed, � ��� (�� �� � 2 � �� 1 ) �� 1�� is equal to the value of the call option with underlying �=� 2 �� 1 , strike �, zero interest rate and volatility e � which is the volatility of the process � equal to the ratio � 2 �� 1 (i.e. the value of asset � 2 expressed in terms of asset � 1 as numeraire) given by:

e � = q � 2 � 1 + � 2 � 2 ¡ 2�� � 1 � � 2 � (5) 
We have:

� ��� (�� �� � 2 � �� 1 ) �� 1 = ���� (�� �� � 2 �� 1 � �� � = 0� e �) � (6) 
Therefore, at any time � 2 [0� � ], the OBPP strategy is equivalent to the purchase of �� 1�� shares of the OBPI strategy based on the ratio � = � 2 �� 1 as underlying risky asset with initial investment value � 0 �� 1�0 . 8 Indeed, using asset � 1 as numeraire, we get the following relation:

� ��� � � � 1�� = � £ � + (� 2�� �� 1�� ¡ �) + ¤ = �� ��� � (�� �� � = � 2 �� 1 � � 0 �� 1�0 � �� � = 0� e �) � (7) 
Previous result implies that, for any time � 2 [0� � ], we get:

� ��� � � � 1�� = �� ��� � (�� �� � = � 2 �� 1 � � 0 �� 1�0 � �� � = 0� e �) � (8) 
8 Recall that the OBPI strategy satises:

� ��� � � = � � � + (�� ¡ �) + � �
where �� is set equal to a xed proportion of the initial invested amount �0, namely �� = ��0 (see e.g. Bertrand and Prigent, 2005). We denote its current value by � ��� � (�� �� �� � 0 � �� �� �) where � is the risk-free interest rate and � is the volatility of the risky asset �.

In the Black and Scholes framework, recall that the value of ����

(�� �� � 2 �� 1 � �� � = 0� e �) is equal to: ���� (�� �� � 2 �� 1 � �� � = 0� e �) = (� 2�� �� 1�� ) � (� 1�� ) ¡ �� (� 2�� ) �
where � denotes the cumulative distribution function (cdf) of the standard univariate Gaussian distribution and 8 > < > :

� 1�� = ��� � � 2�� �� 1�� � + 1 2 � � 2 (� ¡�) � � p (� ¡�) � 2�� = � 1�� ¡ e � p (� ¡ �) �
We deduce (see Margrabe, 1978):

� ��� (�� �� � 2 � �� 1 ) = � 2�� � (� 1�� ) ¡ �� 1�� � (� 2�� ) � (9) 

Determination of the number of shares � and of the performance participation �

To take account of both participation and budget constraint � ��� � 0 = � 0 , we have to solve the following system of equations:

( �� = �� 0 �� 1�0 � 0 = � [�� 1�0 + � ��� (0� �� � 2 � �� 1 )] �
which implies that � must satisfy: Then, we set

1 ¡ � � = � ��� (0� �� � 2 � �� 1 ) �� 1�0 � = ���� (�� �� � 2 �� 1 � �� � = 0� e �) � � (10) 
� ¤ = �� 0 �� 1�0 � ¤ .

The Constant Proportion Performance Participation (CPPP)

The CPPP method consists of managing a dynamic portfolio so that its value [START_REF] Black | Simplifying portfolio insurance[END_REF] Denote by � � the exposure, which is the total amount invested in the risky asset � 2 . The CPPP method consists of letting � � = �� � where � is a constant parameter called the multiple. The interesting case is when � � 1, that is, when the payo¤ function is convex with respect to the asset � 2 payo¤. The value of portfolio � �� � � � at any time � in the period [0� � ] is given by [START_REF] Black | Constant proportion portfolio insurance and the synthetic put option : a comparison[END_REF] : [START_REF] Black | Simplifying portfolio insurance[END_REF] To insure that the cushion is always positive, we can set

� �� � � � is above the oor � � = �� 1�� at any time �, where � is xed. The di¤erence � �� � � � ¡ � � at any time � in [0� � ] is called the cushion, denoted by � � .
� �� � � � = �� 1�� + � � �� 1¡� 1�� � � 2�� �
�� = ��� � � �� � � � ¡ ��1��� 0 � .
It implies that, if the portfolio value becomes smaller than the oor, then the whole portfolio value is invested in asset �1. [START_REF] Black | Constant proportion portfolio insurance and the synthetic put option : a comparison[END_REF] Details about this formula are provided in the Appendix.

where

� � = à � 0 ¡ �� 1�0 � 1¡� 1�0 � � 2�0 ! exp [��] and � = ¡ 1 2 �(� ¡ 1)e � 2 �
Thus, the CPPP method is parametrized by � and �.

Remark 3 Note that we have:

à � 0 ¡ �� 1�0 � 1¡� 1�0 � � 2�0 ! = µ � 0 �� 1�0 ¡ � (� 2�0 �� 1�0 ) � ¶ �
Additionally, e � is the volatility of the process � 2 �� 1 . Therefore, as for the OBPP case, by using asset � 1 as numeraire, the CPPP portfolio value can be expressed in terms of reserve asset � 1 as follows: 11

� �� � � � � 1�� = � + � � � (� 2�� �� 1�� ) � = � �� � � � (�� �� � = � 2 �� 1 � � 0 �� 1�0 � �� � = 0) �
3 Comparison between OBPP and CPPP at maturity

Comparison of the payo¤ functions

The OBPP has just one parameter, the participation coe¢cient �. In order to compare the two methods, rst the initial amounts � ��� � 0 and � �� � � 0 are assumed to be equal to the same initial invested amount � 0 . Secondly, the two strategies are assumed to provide the same participation coe¢cient �, which implies to choose the performance participation � of the CPPP strategy equal to ��. Hence, � � = ��� 1�� and then � 0 = ��� 1�0 . Note that these two conditions do not impose any constraint on the multiple, �. Therefore, we can consider several CPPP strategies for various values of the multiple �. [START_REF] Kraus | Theory of performance participation strategies[END_REF] Note that, due to the absence of arbitrage and since � ��� � 0 = � �� � � 0 = � 0 , neither of the two payo¤s is higher than the other for all terminal values of the risky asset. The two payo¤ functions intersect one another. We choose the following numerical example with typical values for a nancial market with a long term government bond as reserve asset and an equity index as active asset: [START_REF] Charlety-Lepers | Assurance et couverture de portefeuille, volatilité des prix et stabilité des marchés nanciers[END_REF] Recall that the CPPI strategy associated to the multiple � satises:

� 0�1 = � 0�2 = 100� � � 1 = 5%� � � 1 = 6%� � � 2 = 9%� � � 2 = 20%� � = ¡0�15� � = 1 year, � = 0�9� (11)
� �� � � � = ��0 + � �� � � � � � � �
where � is a guaranteed proportion of the initial invested amount �0 (see e.g. Bertrand and Prigent, 2005). The coe¢cient �� is given by:

� �� � � � = � �0 ¡ ��0� ¡�� � � � 0 � � � � � � � with � �� � � = ¡ 1 2 � (� ¡ 1) � 2 �
where � is the risk-free interest rate and � is the volatility of the risky asset �. We denote its current value by � �� � � (�� �� �� �0� �� �� �)

Figure 1 illustrates the OBPP payo¤ as functions of the two assets. We note that the payo¤ is convex and increasing with respect to the active asset. Figure 2 displays the CPPP payo¤ as functions of the two assets. As for the OBPP payo¤, the CPPP payo¤ is convex and increasing with respect to the active asset. We can check in this example that the two curves intersect one another for the di¤erent values of � considered (� = 2� � = 4� � = 6 and � = 8). CPPP performs better for large uctuations of the ratio � while OBPP performs better around the initial value of ratio � and for its moderate increases.

Comparison of the expectation, variance, skewness and kurtosis

In what follows, we examine the rst four moments of both strategies. Indeed, since their payo¤s are not linear with respect to the two assets, the standard mean-variance approach is not su¢ciently suitable due to signicant skewness and kurtosis. We can consider various values of the multiple � to compare the rst four moments. However, it is interesting to examine the special case corresponding to the equality of the expected returns. We determine the multiple corresponding to this additional constraint in the following subsection.

Equality of return expectations

Let us denote the rates of portfolio returns by � ��� � � and � �� � � � . Recall that we assume that

� �2 � � �1 .
Proposition 4 For any given participation coe¢cient �, there exists a unique value

� ¤ (�) of the multiple such that �[� ��� � � ] = �[� �� � � � ].
In the Black and Scholes framework, it is given by:

� ¤ (�) = 1 + à 1 ¡ � � 2 ¡ � � 1 ¢ � ! ln µ �(0� �� � 2 �� 1 � �� � = � � 2 ¡ � � 1 � e �) �(0� �� � 2 �� 1 � �� � = 0� e �) ¶ � ( 12 
)
where �(0� �� �� �� �� �) denotes the Black-Scholes value of the call with underlying �, strike � , interest rate � and volatility �, evaluated at time 0 and with investment horizon � .

Note that, from relation 10, we deduce that coe¢cient � is increasing with respect to performance participation percentage �. Then, from relation 12, we deduce that the multiple � ¤ (�) is an increasing function of the performance participation coe¢cient �. Therefore, � ¤ is also increasing with respect to �, as shown in Figure 4. 

�(0� �� � 2 �� 1 � �� � = � �2 ¡ � �1 � e �) and �(0� �� � 2 �� 1 � �� � = � �2 ¡ � �1 � e �)
are decreasing with respect to �. From proposition 4, as for the comparison of standard OBPI and CPPI, we can deduce that there exists at least one value for �, for example the value � ¤ , such that the OBPP strategy dominates in a mean-variance sense the CPPI.

Numerical comparison of the rst four moments

Using parameter values of the numerical base case given in relation 11, we provide the numerical values of the rst four moments for the equality of expected returns case in Table 1. We consider three values of the performance participation percentage �, namely � = 0�5� 0�7 and 0�9.

Table 1

Comparison of the rst four moments The OBPP dominates the CPPP in a mean-variance sense. However, the CPPP has a signicantly higher positive relative skewness than the OBPP. This is due to its more prominent convexity Hence with respect to this criterion, CPPP should be preferred to OBPP. Looking at relative kurtosis, it is the converse since the CPPP relative kurtosis is much higher than that of OBPP.

� = 0�5 � ¤ = 4�6 � = 0�7 � ¤ = 3�07 � = 0�9 � ¤ = 5�57
Remark 5 For a given performance participation percentage �, as soon as the multiple � is higher than � ¤ , both the expected return and variance of the CPPP strategy are higher than those of the OBPP strategy. Therefore, no strategy dominates the other with respect to the mean-variance criterion. If � � � ¤ , for a small di¤erence between � and � ¤ , the variance of the OBPP strategy remains smaller than that of the CPPP. Consequently, the OBPP strategy strictly dominates the CPPP strategy. For a su¢ciently large di¤erence � ¤ ¡ �, no strategy dominates the other one.

Comparison of quantiles

Due to the presence of asymmetry and fat tails in the probability distributions, it is more convenient to examine the whole distribution by comparing their cdfs. Figure 5 shows that the OBPP and CPPP cdf curves intersect, implying that there is no stochastic dominance at the rst order. To go further on the comparison of the two payo¤s, we investigate the probability distribution of the ratio OBPP value on the CPPP value. Note that using remarks 2 and 3, we deduce:

� ��� � � � �� � � � = � ��� � (�� �� � = 0� � = � 2 �� 1 � � 0 �� 1�0 � �) � �� � � (�� �� � = 0� � = � 2 �� 1 � � 0 �� 1�0 � �) �
Using parameter values of the numerical base case given in relation 11, Figure 6 displays the cumulative distribution function of

� ��� � � � �� � � �
for di¤erent values of the multiple, namely � = 2� 4� 6 and 8.

Figure 6 shows that the probability that the OBPP value is smaller than the CPPP value is minimal for the smallest multiple value but is not monotonic with respect to the CPPP multiple. However the higher the multiple, the smaller the probability that the OBPP value is signicantly higher than the CPPP value (ratio values higher than 10%).

Comparison of the dynamic behaviors of OBPP and CPPP

Even if the OBPP is mainly a buy-and-hold strategy (i.e. at initial date, the investor purchases the nancial assets once and for all), its optional component has to be dynamically hedged from the portfolio manager point of view. Additionally, as proved in what follows, the OBPP strategy can be considered as a generalized CPPP by means of a variable multiple which measures its risk exposure. In the Black and Scholes model, there exists a perfect hedging strategy and both performance participation methods can be analyzed and compared dynamically.

OBPP as a generalized CPPP

For the CPPP method, the multiple is the fundamental parameter since it determines the amount allocated in the active asset at any time. Therefore, from the theoretical point of view, it is interesting to express the OBPP as a generalized CPPP with a corresponding generalized multiple (at least in the Black and Scholes framework).

Proposition 6

The OBPP strategy is equivalent to an extension of the CPPP one, provided that the multiple satises

� ��� � (�� � � ) = (� 2�� �� 1�� ) � (� 1�� ) ���� (�� �� � 2�� �� 1�� � �� � = 0� e �) � (13) 
Proof. Recall that:

� ��� � � = � ¡ �� 1�� + (� 2�� ¡ �� 1�� ) + ¢ Thus: � ��� � � = � (�� 1�� + ���� (�� �� � 2�� �� 1�� � �� � = 0� e �)) �
Therefore, the OBPP is always above the oor � � = ��� 1�� and �� 1�� ���� (�� �� � 2�� �� 1�� � �� � = 0� e �) corresponds to the cushion

� ��� � � = ¡ � ��� � � ¡ � � ¢ at any time � during the portfolio management period [0� � ].
By denition, this cushion is equal to

� ��� � � � ��� � � .
Here, the cushion is simply the call and the exposure is the total amount invested in the risky asset, equal to � 2�� �� ��� � � �� 2�� . We note that:

�� ��� � � �� 2�� = �� 1�� ����� (�� �� � 2�� �� 1�� � �� � = 0� e �) �� 2�� � which is equal to �� 2�� � (� 1�� ).
Finally, the desired result for the multiple is obtained:

� ��� � � = (� 2�� �� 1�� ) � (� 1�� ) ���� (�� �� � 2�� �� 1�� � �� � = 0� e �) �
Therefore, the OBPP multiple is a function of the ratio � of the two asset values [START_REF] Leland | The evolution of portfolio insurance[END_REF] . As illustrated by gure 7, this generalized multiple is a decreasing function with respect to the ratio �. Recall that the generalized multiple � ��� � � is the ratio of the exposure on the cushion � ��� � � . Therefore, it can be very high if either the cushion is too small, or the exposure is too high. In such a case, there exists a signicant gap risk if the market suddenly drops.

The Deltas

The deltas of the OBPP are obviously based on the delta of the call, which yields to:

¢ ��� � 1�� = �� ��� � � �� 1�� = �� [1 ¡ � (� 2�� )] � ¢ ��� � 2�� = �� ��� � � �� 2�� = �� (� 1�� ) �
For the CPPP, they are given by:

¢ �� � � 1�� = �� �� � � � �� 1�� = �� + � � (1 ¡ �) � ¡� 1�� � � 2�� = �� + � � (1 ¡ �) � � � � ¢ �� � � 2�� = �� �� � � � �� 2�� = � � �� 1¡� 1�� � �¡1 2�� = � � �� �¡1 � �
For the deltas ¢ 1�� , we note that ¢ ��� � 1�� is always positive but smaller than �� which is equal to the performance participation percentage � times the ratio of initial values � 0 �� 1�0 . For high values of the ratio process �, and high values of the multiple �, ¢ �� � � 1�� can be negative due to the leverage e¤ect on the reserve asset resulting from the strong convexity of CPPP value for high multiples (see Figure 8). For both the OBPP and CPPP strategies, the deltas ¢ 2�� are always positive (see similar results for the OBPI and CPPI strategies). Due to the strong convexity of CPPP value, ¢ �� � � 2�� can be signicantly higher than �, which is the upper bound of ¢ ��� � 2�� (see Figure 9). 

The Gammas

The Gammas of the OBPP are given by:

¡ ��� � 1�� = � 2 � ��� � � �� 2 1�� = �� � 0 (� 2�� ) � 1�� e � p (� ¡ �) � 0� ¡ ��� � 2�� = � 2 � ��� � � �� 2 2�� = � � 0 (� 1�� ) � 2�� e � p (� ¡ �) � 0� e ¡ ��� � 1�2�� = � 2 � ��� � � �� 1�� �� 2�� = ¡� � 0 (� 1�� ) � 1�� e � p (� ¡ �) � 0�
The Gammas of the CPPP are equal to:

¡ �� � � 1�� = � 2 � �� � � � �� 2 1�� = � � � (� ¡ 1) � ¡(�+1) 1�� � � 2�� = � � � (� ¡ 1) � ¡1 1�� � � � � 0� ¡ �� � � 2�� = � 2 � �� � � � �� 2 2�� = � � � (� ¡ 1) � 1¡� 1�� � �¡2 2�� = � � � (� ¡ 1) � ¡1 1�� � �¡2 � � 0� e ¡ �� � � 1�2�� = � 2 � �� � � � �� 1�� �� 2�� = ¡� � � (� ¡ 1) � ¡� 1�� � �¡1 2�� = ¡� � � (� ¡ 1) � ¡1 1�� � �¡1 � � 0�
For both performance participation properties, the two derivatives at the rst order

� 2 � � �� 2 1�� and � 2 � � �� 2 2��
are positive while the cross-derivatives are negative. Note that both Hessians are null (see Appendix).

For the OBPP strategy, the sensitivities ¡ ��� � 1�� and ¡ ��� � 2�� are rst increasing then decreasing while, for the CPPP strategy, ¡ �� � � 1�� and ¡ �� � � 2�� are always increasing and can take high values when the ratio process � increases signicantly (see Figures 10 and11). This is still due to the strong convexity of the CPPP value. In what follows, we consider the sensitivity of the portfolio values to the volatility e � of the ratio process

� = � 2 �� 1 .
The Vega of the OBPP is dened as: 14 For the CPPP, the Vega is given by: 15

V ��� � � = �� ��� � � �e � = �� 2�� p (� ¡ �)� 0 (� 1�� ) �
V �� � � � = �� �� � � � �e � = ¡� (� ¡ 1) e ��� �� � � � �
Therefore, the sensitivity of the OBPP value with respect to the volatility e � is positive whereas, for the CPPP, it is negative since � � 1.

This means that an increase in volatility works against the strategy CPPP. It implies also that, if the ratio of the two assets � 2 �� 1 increases moderately while its volatility increases, then the OBPP strategy will be preferred to the CPPP one (see Figure 3). For the strategy CPPP to be the best, the increase in the ratio will have to be relatively large if its volatility increases, for example a large growth of the active asset and/or a signicant drop in the price of the reserve asset. This is similar to the OBPI versus CPPI case: as highlighted by Black and Rouhani (1989), when the volatility increases, the CPPI values decreases. Additionally, the higher the multiple, the more signicant the decrease. [START_REF] Margrabe | The value of an option to exchange one asset for another[END_REF] Recall that:

� �� � � � = ���1�� + ���� 1¡� 1�� � � 2�� � where � � = � �0 ¡ ���1�0 � 1¡� 1�0 � � 2�0 � exp [��] and � = ¡ 1 2 �(� ¡ 1)� � 2 �
Therefore, we get:

�� �� � � � �� � = � �0 ¡ ���1�0 � 1¡� 1�0 � � 2�0 � exp [��] � �� �� � = ¡�(� ¡ 1)� ��� �� � � � �

Conclusion

In this paper, we have analyzed and compared the two main performance participation methods, namely the OBPP and CPPP. We have shown that usual comparison criteria such as comparison of their payo¤s, of their cdfs with rst order stochastic dominance and of their rst four moments, do not allow a clear conclusion in favour of one of the two strategies. This is not so surprising since, as proved in the paper, their relative values expressed in terms of the reserve asset as numeraire correspond respectively to OBPI and CPPI strategies the comparison of which leads to similar conclusions. For example, when the ratio of the two processes is around or moderately higher than its initial value, the OBPP value is higher than the CPPP one (at least in the GBM framework). Otherwise, it is the converse. Note also that the OBPP is a buy-and-hold strategy while the CPPP is more exible but may bear transaction costs and is more sensitive to sudden drops. Further extensions could consider capped OBPP and CPPP, more general dynamics by using Monte Carlo simulations and also other decision criteria for absolute and relative loss control (see e.g. Mantilla-Garcia, 2014). The optimality of such products could be also examined (see e.g. Bajeux-Besnamou and Portait (1998) for the meanvariance case) and also according to various assumptions about the asset dynamics (see e.g. Bernard and Kwak, 2016). Finally, much exibility would be allowed for example by introducing a conditional multiple as in Ben Ameur and Prigent (2014).

6 Appendix

Determination of the CPPP value

The value at time � of the CPPP portfolio is given by:

�� �� � � � = (� �� � � � ¡ � � ) �� 1�� � 1�� + � � �� 2�� � 2�� � Recall that � �� � � � = � � + � � , � � = �� � and � � = �� 1�� .
Thus, the cushion value � must satisfy :

�� � = �(� �� � � � ¡ � � )� = (� �� � � � ¡ � � ) �� 1�� � 1�� + � � ��� � � ¡ �� � � = (� � + � � ¡ �� � ) �� 1�� �1�� + (�� � ) ��� �� ¡ �� � � = (� � ¡ �� � ) �� 1�� �1�� + (�� � ) �� 2�� �2�� �
Therefore, we get:

�� � � � = (1 ¡ �) �� 1�� � 1�� + � �� 2�� � 2�� �
from which we deduce:

� � = � 0 exp " ¡ (1 ¡ �)� � 1 + �� �2 ¡ 1�2 £ (1 ¡ �) 2 � 2 �1 + � 2 � 2 �2 + 2��(1 ¡ �)� � 1 � � 2 ¤¢ � +(1 ¡ �)� �1 � 1�� + �� �2 �� 1�� + �� �2 p 1 ¡ � 2 � 2�� # �
By using the relations:

� 1�� = � 1�0 exp • � �1 � 1�� + µ � � 1 ¡ 1 2 � 2 �1 ¶ � ¸� � 2�� = � 2�0 exp • � � 2 �� 1�� + � � 2 p 1 ¡ � 2 � 2�� + µ � � 2 ¡ 1 2 � 2 � 2 ¶ � ¸� we can deduce that: exp [� � 1 � 1�� ] = � 1�� � 1�0 exp • ¡ µ � � 1 ¡ 1 2 � 2 �1 ¶ � ¸� exp h � � 2 p 1 ¡ � 2 � 2�� + � � 2 �� 1�� i = � 2�� � 2�0 exp • ¡ µ � � 2 ¡ 1 2 � 2 �2 ¶ � ¸�
By substituting these expressions for � 1�� and � 2�� into previous expression for � � , we get:

� � = � 0 exp £¡ (1 ¡ �)� � 1 + �� �2 ¡ 1�2 £ (1 ¡ �) 2 � 2 � 1 + � 2 � 2 � 2 + 2��(1 ¡ �)� � 1 � � 2 ¤¢ � ¤ £ exp [� � 1 � 1�� ] (1¡�) exp h � � 2 p 1 ¡ � 2 � 2�� + � � 2 �� 1�� i � � � � = � 0 exp £¡ (1 ¡ �)� � 1 + �� �2 ¡ 1�2 £ (1 ¡ �) 2 � 2 � 1 + � 2 � 2 � 2 + 2��(1 ¡ �)� � 1 � � 2 ¤¢ � ¤ exp • ¡(1 ¡ �) µ � � 1 ¡ 1 2 � 2 � 1 ¶ � ¸exp • ¡� µ � � 2 ¡ 1 2 � 2 � 2 ¶ � ¸µ � 1�� � 1�0 ¶ [1¡�] µ � 2�� � 2�0 ¶ � �
Therefore, we deduce:

� � = � 0 µ � 1�� � 1�0 ¶ [1¡�] µ � 2�� � 2�0 ¶ � £ exp "à ¡1�2 £ (1 ¡ �) 2 � 2 �1 + � 2 � 2 �2 + 2��(1 ¡ �)� � 1 � � 2 ¤ +(1 ¡ �) ¡ 1 2 � 2 � 1 ¢ + � ¡ 1 2 � 2 � 2 ¢ ! � # � = � � �� (1¡�) 1�� � � 2�� = � � �� 1�� µ � 2�� � 1�� ¶ � �
where

� � = � 0 µ 1 � 1�0 ¶ [1¡�] µ 1 � 2�0 ¶ � exp [��] � and � = ¡1�2 £ (1 ¡ �) 2 � 2 � 1 + � 2 � 2 � 2 + 2��(1 ¡ �)� � 1 � � 2 ¤ + (1 ¡ �) µ 1 2 � 2 � 1 ¶ + � µ 1 2 � 2 � 2 ¶ � = ¡1�2 ££ (1 ¡ �) 2 ¡ (1 ¡ �) ¤ � 2 � 1 + £ � 2 ¡ � ¤ � 2 � 2 + 2��(1 ¡ �)� �1 � �2 ¤ � = ¡1�2�(� ¡ 1)e � 2 �
Therefore, the portfolio value is given by: 

� �� � � � = �� 1�� + � � �� ( 

Equality of expectations

Recall that:

� ��� � � = � [�� 1�� + � ��� (�� �� � 2 � �� 1 )] � (14) 
with

� = � 0 �� 1�0 + � ��� (0� �� � 2 � �� 1 )
�

where the value � ��� (0� �� � 2 � �� 1 ) is equal to:

� ��� (0� �� � 2 � �� 1 ) = � 1 ���� (�� �� � 2 �� 1 � �� � = 0� e �) � (15) 
Recall also that (� = ��)

� �� � � � = ��� 1�� + � � �� 1¡� 1�� � � 2�� �
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where

� � = à � 0 ¡ ��� 1�0 � 1¡� 1�0 � � 2�0 ! exp [�� ] and � = ¡ 1 2 �(� ¡ 1)e � 2 �
We are looking for the value of the multiple � such that the expected portfolio values are equal:

�[��� 1�� + � (� 2�� ¡ �� 1�� ) + ] = �[��� 1�� + � � �� (1¡�) 1�� � � 2�� ]�
We get the equivalent condition: 

�� £ (� 2�� ¡ �� 1�� ) + ¤ = � � � h � (1¡�) 1�� � � 2�� i � �� £ (� 2�� ¡ �� 1�� ) + ¤ = (� 0 ¡ ��� 1�0 ) exp [�� ] � 2 
£ ¡�� + � � 1 � + � ¡ � � 2 ¡ � � 1 ¢ � ¤ ; (2) 
(� 0 ¡ ��� 1�0 ) = �� 1 ���� (�� �� � 2 �� 1 � �� � = 0� e �) ; (3) 
� £ (� 2�� ¡ �� 1�� ) + ¤ = exp £ � �2 � ¤ �(0� �� � 2 �� 1 � �� � = � �2 ¡ � �1 � e �)�
Therefore, we deduce:

�� 1 exp £ � �2 � ¤ �(0� �� � 2 �� 1 � �� � = � �2 ¡� �1 � e �) = �� 1 ���� (�� �� � 2 �� 1 � �� � = 0� e �) exp £ � �1 � + � ¡ � �2 ¡ � �
Recall that we assume � � 1 � � � 2 . Finally, we obtain the value of the multiple � as a function � ¤ (�) of the performance participation �:

� ¤ (�) = 1 + à 1 ¡ � �2 ¡ � �1 ¢ � ! ln µ �(0� �� � 2 �� 1 � �� � = � �2 ¡ � �1 � e �) �(0� �� � 2 �� 1 � �� � = 0� e �) ¶ �

Hessians of the two portfolio values

For the OBPP strategy, the Hessian � (which corresponds to the mathematical determinant of the matrix of derivatives at the second order) is given by:

� ��� � = � 2 � ��� � � �� 2 1�� £ � 2 � ��� � � �� 2 2�� ¡ µ � 2 � ��� � � �� 1�� �� 2�� ¶ 2 = � 2 � 0 (� 1�� ) e � 2 (� ¡ �) � 1�� µ � � 0 (� 2�� ) � 2�� ¡ � 0 (� 1�� ) � 1�� ¶ � Since we have � 0 (� 1�� ) � 0 (�2��) = �� 1��
� 2�� , we deduce that the Hessian of the OBPP is null. For the CPPP, the Hessian � is equal to:

� �� � � = � 2 � �� � � � �� 2 1�� £ � 2 � �� � � � �� 2 2�� ¡ µ � 2 � �� � � � �� 1�� �� 2�� ¶ 2 = � 2 � � 2 (� ¡ 1) 2 ³ � ¡1 1�� � � � � ¡1 1�� � �¡2 � ¡ � ¡2 1�� � 2�¡2 � = � 2 � � 2 (� ¡ 1) 2 � ¡2 1�� ¡ � � � � �¡2 � ¡ � 2�¡2 � ¢ = 0

  Since � (�) = 1¡� � is strictly decreasing and bijective from ]0� 1[ to ]0� +1[ and � (�) = ����(��� ��2��1����=0�� �) � is strictly decreasing and bijective from ]0� +1[ to ]0� +1[, there exists one and only one solution � ¤ .
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 4 Figure 4: Multiple of the CPPP strategy such that its mean is equal to that of the OBPP. Illustration as function of the performance participation percentage �
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 1011 Figure 10: Gamma 1 (times S1) as function of the ratio of the two assets
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 12 Figure 12: Vega in terms of the reserve asset as function of the ratio of the two assets

  Note that we have:� �� � � � = � 1�� � �� � � � (�� �� � = 0� � = � 2 �� 1 ).

In France, several nancial structured products have such implicit "capital guarantee". However, the "Autorité des Marchés Financiers" (AMF) does no longer consider them as portfolio insurance but rather prefers to label them "fonds à formule" as those which have not such property.

See Kraus et al (2010) for the study of a similar model but without taking explicitly the budget constraint into account.

See Black and Perold (1992) for a similar result. See also Bajeux-Besnamou and Portait (1997) for another illustration of the use of a numeraire.

See subsection 2.1.2.

Note that the multiple must not be too high as shown for example in[START_REF] Prigent | Assurance du portefeuille : analyse et extension de la méthode du coussin[END_REF] or in[START_REF] Bertrand | Portfolio insurance strategies : OBPI versus CPPI[END_REF].

Such more general multiples have been introduced and studied in[START_REF] Prigent | Assurance du portefeuille : analyse et extension de la méthode du coussin[END_REF].
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