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Abstract

The goal of this paper is to provide and examine an important extension of the usual portfolio

insurance, namely to study the notion of portfolio performance participation. In this framework, the

portfolio is based on two risky assets: the �rst one corresponds to a reserve asset, while the second

one is considered as an active asset which has usually both a higher mean and a higher variance.

We aim at insuring a given percentage of the reserve asset return, whatever the market �uctuations.

The two main performance participation methods are the Option-Based Performance Participation

(OBPP) and the Constant Proportion Performance Participation (CPPP). We compare these two

portfolio strategies by means of various criteria such as their payo¤s at maturity, their four �rst

moments and their cumulative distributions functions. We also compare their dynamic hedging

properties by computing in particular their deltas and vegas.

JEL classi�cation : G11, G12, G13.

Key words : portfolio insurance; performance participation; OBPP; CPPP.

¤philippe.bertrand@univ-amu.fr
yThis work was supported by French National Research Agency Grant ANR-17-EURE-0020.
zCorresponding author. 33, Bd du Port, 95011, Cergy-Pontoise, France. E-mail: jean-luc.prigent@cyu.fr

1



1 Introduction

The purpose of portfolio insurance is to allow the investor to limit the loss risk while bene�ting in

part from a possible rise in the reference �nancial market. At maturity, the investor recovers at least

a given percentage of his initial investment, especially in bearish markets. (see e.g. Aftalion and

Portait, 1988; Charlety-Lepers and Portait, 1997; Poncet and Portait, 1997). Two standard portfolio

insurance methods are the Option Based Portfolio Insurance (OBPI) and the Constant Proportion

Portfolio Insurance (CPPI). The OBPI has been introduced by Leland and Rubinstein (1976). This

portfolio strategy is based on an investment in a risky asset � (usually a �nancial index such as the

S&P 500) covered by a put option written on it. Thus, at maturity, the portfolio value is always higher

than the strike of the put. The CPPI has been introduced by Perold (1986) (see also Black and Jones,

1987; Perold and Sharpe, 1988; Black and Perold, 1992). This strategy allocates assets dynamically

over time as follows: the investor begins by setting a �oor equal to the lowest acceptable portfolio

value. The di¤erence between the portfolio value and the �oor is called the cushion. Then, he allocates

to the risky asset an amount ("the exposure") equal to the cushion multiplied by a predetermined

multiple. The remaining funds are invested in the reserve asset, usually T-bills. The key parameter

is the multiple. Indeed, the higher the multiple, the higher the portfolio return when the �nancial

market is bullish. However, the higher the multiple, the higher the gap risk (i.e. the portfolio becomes

smaller than the �oor).

The goal of this paper is to extend portfolio insurance by substituting the �xed capital guarantee1

for a participation in the performance of a risky asset viewed as a reserve asset. The performance

participation constraint is to ensure that the portfolio return will be higher than a given percentage

of the reserve asset return, whatever the future �nancial market �uctuations. Note that the portfolio

value guaranteed at maturity is no longer deterministic and can be correlated to the active asset itself.

Such structured product can be introduced instead of usual portfolio insurance to overcome problems

due for example to too low interest rates. For example, the reserve asset is no longer a money market

account but rather a long-term government bond while the active asset is an equity index such as the

S&P 500. Black and Perold (1992) have introduced such model (that they still call CPPI), showing

mainly that, in the absence of transaction costs, this portfolio strategy is equivalent to investing in

perpetual American call options, and that it is optimal for a piecewise-HARA utility function with

a minimum consumption constraint. However, the interest of such a methodology is also to be able

to invest in signi�cantly risky assets (emerging markets, hedge funds...) while ensuring a minimum

return relative to a more standard �nancial index.

In this paper, �rst we set up the two main performance participation methods, namely the Option-

Based Performance Participation (OBPP) and the Constant Proportion Performance Participation

(CPPP). We introduce a quite general model allowing to take account simultaneously of both the

1In France, several �nancial structured products have such implicit "capital guarantee". However, the "Autorité des

Marchés Financiers" (AMF) does no longer consider them as portfolio insurance but rather prefers to label them "fonds

à formule" as those which have not such property.
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performance participation condition and the initial budget constraint.2 We show that they can be

both expressed in terms of respectively the Option-Based Portfolio Insurance (OBPI) and the Constant

Proportion Portfolio Insurance (CPPI) by choosing the reserve asset as numeraire.3 We show also

that the ratio of the two risky assets play a key role when analyzing the two portfolio strategies and

especially its volatility.4 For the study of the OBPP portfolio, we use results of Margrabe (1978) about

the valuation of exchange options. Second, as in Bertrand and Prigent (2005, 2011) for the OBPI and

CPPI strategies, we examine and compare OBPI and CPPI strategies by using various criteria. In a

�rst part, we analyze and compare their properties at the end of the investment period by examining

their payo¤s at maturity, their four �rst moments and their cumulative distributions functions (cdf).5

As a by-product, we provide the explicit CPPP multiple value such that the two portfolios have the

same expected return. For comparison criteria based on cdfs, we show that none of the two strategies

stochastically dominates the other one at the �rst order. We also examine the cdf of the portfolio

values ratio. Finally, in a second part, we compare their dynamic properties. First, we prove that

the OBPP method can be viewed as a generalized CPPP where the multiple can evolve stochastically

over time. Second, we examine their hedging properties by computing in particular their deltas and

vegas. For this latter Greek, as for the OBPI and CPPI strategies, the OBPP and CPPP di¤er very

signi�cantly since their signs are opposite: the OBPP value is increasing with respect to the volatility

of the ratio of the two risky assets whereas, for the CPPP, it is the converse.

The paper is organized as follows. Section 2 sets out the two strategies. Section 3 compares the

two strategies at maturity by means of their payo¤s, their four �rst moments and their cdfs. Section

4 is devoted to dynamic and hedging properties. Finally, section 5 concludes.6

2See Kraus et al (2010) for the study of a similar model but without taking explicitly the budget constraint into

account.
3See Black and Perold (1992) for a similar result. See also Bajeux-Besnamou and Portait (1997) for another illustration

of the use of a numeraire.
4We consider the Geometric Brownian framework in order to get explicit formulas and to prove main properties. Of

course, more general stochastic processes can be introduced but they require the use of Monte Carlo simulations.
5See Zagst et al (2019) for the comparison of the option-based performance participation with the usual option-based

portfolio insurance.
6Most of the proofs are gathered in the Appendix.
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2 The Performance Participation Strategies

In what follows, we begin by setting up both OBPP and CPPP portfolio values. Then, to assess these

two strategies, we begin by comparing their payo¤s at maturity. Thereafter, to better take account of

their respective probability distributions, we compare their �rst four moments and their cumulative

distribution functions (cdf). Finally, we examine their dynamic properties, especially the computation

of their Greeks for hedging purpose.

The portfolio manager is assumed to invest in two �nancial risky assets denoted by �1 and �2. We

assume that they are di¤usion processes which are solutions of:

��1�� = �1��
£
��1��+ ��1��1��

¤
� (1)

��2�� = �2��

h
��2��+ ��2���1�� + ��2

p
1¡ �2��2��

i
�

where �� = (�1����2��)� is a standard two-dimensional Brownian motion with respect to its own

�ltration (F�)�. We assume that the volatilities ��1 of asset �1 and ��2 of asset �2 are strictly positive

and that their instantaneous correlation � is not null. The period of time considered is [0� � ]. The

strategies are self-�nancing. The portfolio manager aims at providing a predetermined participation

of a reserve asset (here the risky asset �1) while investing in an active asset (here the risky asset �2).

Note that usually the active asset �2 (typically an equity index) is riskier than the reserve asset �1

(a government bond for example) while it provides a higher instantaneous expected return yielding

to conditions ��2 ¸ ��1and ��2 ¸ ��1 . The predetermined participation of the reserve asset �1 is

to guaranty that portfolio return �� ��0 is higher than a given proportion � of asset return �1����1�0

(with 0 � � � 1).

2.1 The Option-Based Performance Participation (OBPP)

The Option-Based Performance Participation strategy aims at providing a predetermined participation

of a reserve asset (here the risky asset �1) by using an adequate exchange option between the active

asset �2 and given � shares of asset �1, namely the option with payo¤ ���(�2�� � ��1�� ) which is

the best of the two assets ��1 and �2. The parameter � denotes the performance participation on

asset �1 in this exchange option whose payo¤ can also be expressed as �2�� + (��1�� ¡ �2�� )+. This

latter formula shows that this exchange option corresponds to the purchase of asset �2 covered by a

put written on it with "strike" ��1�� . Equivalently, we get also the payo¤ ��1�� + (�2�� ¡ ��1�� )+.

Note that usually the active asset �2 is riskier than the reserve asset �1 while it provides a higher

instantaneous expected return yielding to conditions ��2 ¸ ��1and ��2 ¸ ��1. The OBPP portfolio

is based on this exchange option. To adjust the value of the portfolio, we adequately7 duplicate this

basic structured product by purchasing � shares of it . Thus, the portfolio value � ���� is given at

the terminal date by:

� ����� = �
£
��1�� + (�2�� ¡ ��1�� )+

¤
� (2)

7See subsection 2.1.2.
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This relation shows that the insured amount at maturity corresponds to (��)�1�� .

Remark 1 The performance participation is de�ned as follows: the portfolio return must be always

higher than a predetermined fraction � of the reserve asset return. We must have:

¡
� ����� ��0

¢
¸ � (�1�� ��1�0) , with 0 � � � 1� (3)

Since at maturity we want to recover exactly � (�1����1�0) if the call is not exercisable (i.e. �2�� �

��1�� ), the coe¢cient �� is set equal to ��0��1�0.

Denote by � ��� (�� �� �2� ��1) the value at time � of the exchange option between �2 and ��1. Then

the value � ����� of the OBPP portfolio at any time 0 is given by:

� ����� = ���1�� + ��
��� (�� �� �2� ��1) � (4)

2.1.1 Valuation of the OBPP strategy

In what follows, we show how to valuate the OBPP strategy.

Remark 2 The value of the exchange option can be expressed in terms of asset �1 considered as

numeraire. Indeed, � ��� (�� �� �2� ��1) ��1�� is equal to the value of the call option with underlying

�=�2��1, strike �, zero interest rate and volatility e� which is the volatility of the process � equal to
the ratio �2��1 (i.e. the value of asset �2 expressed in terms of asset �1 as numeraire) given by:

e� =
q
�2�1 + �

2
�2
¡ 2���1��2� (5)

We have:

� ��� (�� �� �2� ��1) ��1 = ���� (�� �� �2��1� �� � = 0� e�) � (6)

Therefore, at any time � 2 [0� � ], the OBPP strategy is equivalent to the purchase of ��1�� shares of
the OBPI strategy based on the ratio � = �2��1 as underlying risky asset with initial investment value

�0��1�0.
8 Indeed, using asset �1 as numeraire, we get the following relation:

� �����

�1��
= �

£
�+ (�2�� ��1�� ¡ �)+

¤
= �� ���� (�� �� � = �2��1� �0��1�0� �� � = 0� e�) � (7)

Previous result implies that, for any time � 2 [0� � ], we get:

� �����

�1��
= �� ���� (�� �� � = �2��1� �0��1�0� �� � = 0� e�) � (8)

8Recall that the OBPI strategy satis�es:

�
����
� = �

�
� + (�� ¡�)+

�
�

where �� is set equal to a �xed proportion of the initial invested amount �0, namely �� = ��0 (see e.g. Bertrand and

Prigent, 2005). We denote its current value by � ���� (�� �� �� �0��� �� �) where � is the risk-free interest rate and � is

the volatility of the risky asset �.
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In the Black and Scholes framework, recall that the value of ���� (�� �� �2��1� �� � = 0� e�) is equal

to:

���� (�� �� �2��1� �� � = 0� e�) = (�2����1��)� (�1��)¡ �� (�2��) �

where � denotes the cumulative distribution function (cdf) of the standard univariate Gaussian dis-

tribution and 8
><
>:
�1�� =

���

�
�2��
��1��

�
+ 1
2
��2(�¡�)

��
p
(�¡�)

�2�� = �1�� ¡ e�
p
(� ¡ �)

�

We deduce (see Margrabe, 1978):

� ��� (�� �� �2� ��1) = �2��� (�1��)¡ ��1��� (�2��) � (9)

2.1.2 Determination of the number of shares � and of the performance participation �

To take account of both participation and budget constraint � ����0 = �0, we have to solve the

following system of equations:

(
�� = ��0��1�0

�0 = � [��1�0 + �
��� (0� �� �2� ��1)]

�

which implies that � must satisfy:

1¡ �
�

=
� ��� (0� �� �2� ��1) ��1�0

�
=
���� (�� �� �2��1� �� � = 0� e�)

�
� (10)

Since � (�) = 1¡�
�

is strictly decreasing and bijective from ]0� 1[ to ]0�+1[ and � (�) = ����(�����2��1����=0���)
�

is strictly decreasing and bijective from ]0�+1[ to ]0�+1[, there exists one and only one solution �¤.

Then, we set �¤ = ��0��1�0
�¤ .

2.2 The Constant Proportion Performance Participation (CPPP)

The CPPP method consists of managing a dynamic portfolio so that its value � ����� is above the

�oor �� = ��1�� at any time �, where � is �xed. The di¤erence � ����� ¡ �� at any time � in [0� � ] is

called the cushion, denoted by ��.
9 Denote by �� the exposure, which is the total amount invested in

the risky asset �2. The CPPP method consists of letting �� = ��� where � is a constant parameter

called the multiple. The interesting case is when � � 1, that is, when the payo¤ function is convex

with respect to the asset �2 payo¤. The value of portfolio � ����� at any time � in the period [0� � ] is

given by10:

� ����� = ��1�� + ����
1¡�
1�� ��2���

9To insure that the cushion is always positive, we can set �� = ���
�
� ����
� ¡ ��1��� 0

�
. It implies that, if the

portfolio value becomes smaller than the �oor, then the whole portfolio value is invested in asset �1.
10Details about this formula are provided in the Appendix.
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where

�� =

Ã
�0 ¡ ��1�0
�1¡�1�0 ��2�0

!
exp [��] and � = ¡1

2
�(�¡ 1)e�2�

Thus, the CPPP method is parametrized by � and �.

Remark 3 Note that we have:

Ã
�0 ¡ ��1�0
�1¡�1�0 ��2�0

!
=

µ
�0��1�0 ¡ �
(�2�0��1�0)

�

¶
�

Additionally, e� is the volatility of the process �2��1. Therefore, as for the OBPP case, by using
asset �1 as numeraire, the CPPP portfolio value can be expressed in terms of reserve asset �1 as

follows:11

� �����

�1��
= � + ��� (�2����1��)

�

= � ����� (�� �� � = �2��1� �0��1�0� �� � = 0) �

3 Comparison between OBPP and CPPP at maturity

3.1 Comparison of the payo¤ functions

The OBPP has just one parameter, the participation coe¢cient �. In order to compare the two meth-

ods, �rst the initial amounts � ����0 and � ����0 are assumed to be equal to the same initial invested

amount �0. Secondly, the two strategies are assumed to provide the same participation coe¢cient �,

which implies to choose the performance participation � of the CPPP strategy equal to ��. Hence,

�� = ���1�� and then �0 = ���1�0. Note that these two conditions do not impose any constraint on

the multiple, �. Therefore, we can consider several CPPP strategies for various values of the multiple

�. 12Note that, due to the absence of arbitrage and since � ����0 = � ��� �0 = �0, neither of the two

payo¤s is higher than the other for all terminal values of the risky asset. The two payo¤ functions

intersect one another. We choose the following numerical example with typical values for a �nancial

market with a long term government bond as reserve asset and an equity index as active asset:

�0�1 = �0�2 = 100� ��1 = 5%� ��1 = 6%� ��2 = 9%� ��2 = 20%� � = ¡0�15� � = 1 year, � = 0�9� (11)

11Recall that the CPPI strategy associated to the multiple � satis�es:

�
����
� = ��0 + �

����
� �

�
� �

where � is a guaranteed proportion of the initial invested amount �0 (see e.g. Bertrand and Prigent, 2005). The coe¢cient

�� is given by:

�
����
� =

�
�0 ¡ ��0�¡��

�

��0
�
������

with �
����

= ¡1
2
� (�¡ 1)�2�

where � is the risk-free interest rate and � is the volatility of the risky asset �. We denote its current value by

� ���� (�� �� �� �0� �� �� �)
12Note that the multiple must not be too high as shown for example in Prigent (2001) or in Bertrand and Prigent

(2005).
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Figure 1 illustrates the OBPP payo¤ as functions of the two assets. We note that the payo¤ is

convex and increasing with respect to the active asset. Figure 2 displays the CPPP payo¤ as functions

Figure 1: OBPP return as function of the two assets ���1 and ���2

of the two assets. As for the OBPP payo¤, the CPPP payo¤ is convex and increasing with respect to

the active asset.

Figure 2: CPPP return as function of the two assets ���1 and ���2
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Figure 3 illustrates the comparison of both OBPP and CPPP payo¤s as function of the ratio

process � = �2��1. Note that as � increases, the payo¤ function of the CPPP becomes more convex

with respect to the ratio � = �2��1.

60 80 100 120 140
Ratio return

1.0

1.1

1.2

1.3

1.4

1.5

Portfolio return

CPPP m8

CPPP m6

CPPP m4

CPPP m2

OBPP

Figure 3: CPPP and OBPP payo¤s in terms of the numeraire �1 as functions of the ratio � = �2��1

We can check in this example that the two curves intersect one another for the di¤erent values of

� considered (� = 2� � = 4� � = 6 and � = 8). CPPP performs better for large �uctuations of the

ratio � while OBPP performs better around the initial value of ratio � and for its moderate increases.

3.2 Comparison of the expectation, variance, skewness and kurtosis

In what follows, we examine the �rst four moments of both strategies. Indeed, since their payo¤s

are not linear with respect to the two assets, the standard mean-variance approach is not su¢ciently

suitable due to signi�cant skewness and kurtosis. We can consider various values of the multiple � to

compare the �rst four moments. However, it is interesting to examine the special case corresponding

to the equality of the expected returns. We determine the multiple corresponding to this additional

constraint in the following subsection.

3.2.1 Equality of return expectations

Let us denote the rates of portfolio returns by ������ and ������ . Recall that we assume that

��2 � ��1.

Proposition 4 For any given participation coe¢cient �, there exists a unique value �¤ (�) of the
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multiple such that �[������ ] = �[������ ]. In the Black and Scholes framework, it is given by:

�¤ (�) = 1 +

Ã
1¡

��2 ¡ ��1
¢
�

!
ln

µ
�(0� �� �2��1� �� � = ��2 ¡ ��1� e�)

�(0� �� �2��1� �� � = 0� e�)

¶
� (12)

where �(0� �� �� �� �� �) denotes the Black-Scholes value of the call with underlying �, strike � , interest

rate � and volatility �, evaluated at time 0 and with investment horizon � .

Note that, from relation 10, we deduce that coe¢cient � is increasing with respect to performance

participation percentage �. Then, from relation 12, we deduce that the multiple �¤ (�) is an increasing

function of the performance participation coe¢cient �. Therefore, �¤ is also increasing with respect

to �, as shown in Figure 4.

0.2 0.4 0.6 0.8
Performance participation

2

3

4

5

Multiple

Figure 4: Multiple of the CPPP strategy such that its mean is equal to that of the OBPP. Illustration

as function of the performance participation percentage �

Note that both the expected returns of the OBPP and the CPPP strategies are decreasing with

respect to coe¢cient performance participation percentage � since both the number of shares � and

the call values �(0� �� �2��1� �� � = ��2 ¡��1� e�) and �(0� �� �2��1� �� � = ��2 ¡��1� e�) are decreasing
with respect to �. From proposition 4, as for the comparison of standard OBPI and CPPI, we can

deduce that there exists at least one value for �, for example the value �¤, such that the OBPP

strategy dominates in a mean-variance sense the CPPI.

3.2.2 Numerical comparison of the �rst four moments

Using parameter values of the numerical base case given in relation 11, we provide the numerical

values of the �rst four moments for the equality of expected returns case in Table 1. We consider

three values of the performance participation percentage �, namely � = 0�5� 0�7 and 0�9.

10



Table 1

Comparison of the �rst four moments

� = 0�5 �¤ = 4�6 � = 0�7 �¤ = 3�07 � = 0�9 �¤ = 5�57

OBPP CPPP OBPP CPPP OBPP CPPP

expectation 9�41% 9�41% 9�25% 9�25% 7�552% 7�552%

volatility 22�09% 24% 21�56% 25�63% 15�94% 23�07%

relative skewness 0�61 10�16 1�49 2�52 1�47 10�21

relative kurtosis 3�67 3�83 5�46 15�98 5�80 332

The OBPP dominates the CPPP in a mean-variance sense. However, the CPPP has a signi�cantly

higher positive relative skewness than the OBPP. This is due to its more prominent convexity Hence

with respect to this criterion, CPPP should be preferred to OBPP. Looking at relative kurtosis, it is

the converse since the CPPP relative kurtosis is much higher than that of OBPP.

Remark 5 For a given performance participation percentage �, as soon as the multiple � is higher

than�¤, both the expected return and variance of the CPPP strategy are higher than those of the OBPP

strategy. Therefore, no strategy dominates the other with respect to the mean-variance criterion. If

� � �¤, for a small di¤erence between � and �¤, the variance of the OBPP strategy remains smaller

than that of the CPPP. Consequently, the OBPP strategy strictly dominates the CPPP strategy. For

a su¢ciently large di¤erence �¤ ¡�, no strategy dominates the other one.

3.3 Comparison of quantiles

Due to the presence of asymmetry and fat tails in the probability distributions, it is more convenient

to examine the whole distribution by comparing their cdfs. Figure 5 shows that the OBPP and CPPP

cdf curves intersect, implying that there is no stochastic dominance at the �rst order.

0.5 1.0 1.5
Return

0.2

0.4

0.6

0.8

1.0

CDF

CPPP m8

CPPP m6

CPPP m4

CPPP m2

OBPP

Figure 5: Cumulative distribution functions
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0.9 1.0 1.1 1.2
Ratio

0.2

0.4

0.6

0.8

1.0

CDF

m8

m6

m4

m2

Figure 6: Cumulative distribution function of the ratio � ����� �� �����

To go further on the comparison of the two payo¤s, we investigate the probability distribution of

the ratio OBPP value on the CPPP value. Note that using remarks 2 and 3, we deduce:

� �����

� �����

=
� ���� (�� �� � = 0� � = �2��1� �0��1�0� �)

� ��� � (�� �� � = 0� � = �2��1� �0��1�0� �)
�

Using parameter values of the numerical base case given in relation 11, Figure 6 displays the

cumulative distribution function of
� �����

� �����

for di¤erent values of the multiple, namely � = 2� 4� 6 and

8.

Figure 6 shows that the probability that the OBPP value is smaller than the CPPP value is minimal

for the smallest multiple value but is not monotonic with respect to the CPPP multiple. However the

higher the multiple, the smaller the probability that the OBPP value is signi�cantly higher than the

CPPP value (ratio values higher than 10%).
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4 Comparison of the dynamic behaviors of OBPP and CPPP

Even if the OBPP is mainly a buy-and-hold strategy (i.e. at initial date, the investor purchases

the �nancial assets once and for all), its optional component has to be dynamically hedged from

the portfolio manager point of view. Additionally, as proved in what follows, the OBPP strategy

can be considered as a generalized CPPP by means of a variable multiple which measures its risk

exposure. In the Black and Scholes model, there exists a perfect hedging strategy and both performance

participation methods can be analyzed and compared dynamically.

4.1 OBPP as a generalized CPPP

For the CPPP method, the multiple is the fundamental parameter since it determines the amount

allocated in the active asset at any time. Therefore, from the theoretical point of view, it is interesting

to express the OBPP as a generalized CPPP with a corresponding generalized multiple (at least in

the Black and Scholes framework).

Proposition 6 The OBPP strategy is equivalent to an extension of the CPPP one, provided that the

multiple satis�es

����� (�� ��) =
(�2����1��)� (�1��)

���� (�� �� �2����1��� �� � = 0� e�)
� (13)

Proof. Recall that:

� ����� = �
¡
��1�� + (�2�� ¡ ��1�� )+

¢

Thus:

� ����� = � (��1�� + ���� (�� �� �2����1��� �� � = 0� e�)) �

Therefore, the OBPP is always above the �oor �� = ���1�� and ��1������ (�� �� �2����1��� �� � = 0� e�)
corresponds to the cushion ������ =

¡
� ����� ¡ ��

¢
at any time � during the portfolio management

period [0� � ]. By de�nition, this cushion is equal to
������

�����
�

. Here, the cushion is simply the call and

the exposure is the total amount invested in the risky asset, equal to �2��
�� �����

��2��
. We note that:

�� �����

��2��
= ��1��

����� (�� �� �2����1��� �� � = 0� e�)
��2��

�

which is equal to ��2��� (�1��). Finally, the desired result for the multiple is obtained:

������ =
(�2����1��)� (�1��)

���� (�� �� �2����1��� �� � = 0� e�)
�

Therefore, the OBPP multiple is a function of the ratio � of the two asset values13. As illustrated

by �gure 7, this generalized multiple is a decreasing function with respect to the ratio �.

13Such more general multiples have been introduced and studied in Prigent (2001).
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Figure 7: OBBP multiple as function of the ratio of the two assets (at t=T/2).

Recall that the generalized multiple �����
� is the ratio of the exposure on the cushion ������ .

Therefore, it can be very high if either the cushion is too small, or the exposure is too high. In such

a case, there exists a signi�cant gap risk if the market suddenly drops.

4.2 The Deltas

The deltas of the OBPP are obviously based on the delta of the call, which yields to:

¢����1�� =
�� �����

��1��
= �� [1¡� (�2��)] �

¢����2�� =
�� �����

��2��
= �� (�1��) �

For the CPPP, they are given by:

¢����1�� =
�� �����

��1��
= ��+ �� (1¡�)�¡�1�� ��2�� = ��+ �� (1¡�)��� �

¢����2�� =
�� �����

��2��
= ����

1¡�
1�� ��¡12�� = ����

�¡1
� �

For the deltas ¢1��, we note that ¢
����
1�� is always positive but smaller than �� which is equal to

the performance participation percentage � times the ratio of initial values �0��1�0. For high values

of the ratio process �, and high values of the multiple �, ¢����1�� can be negative due to the leverage

e¤ect on the reserve asset resulting from the strong convexity of CPPP value for high multiples (see

Figure 8). For both the OBPP and CPPP strategies, the deltas ¢2�� are always positive (see similar

results for the OBPI and CPPI strategies). Due to the strong convexity of CPPP value, ¢����2�� can

be signi�cantly higher than �, which is the upper bound of ¢����2�� (see Figure 9).
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Figure 8: Comparison of Delta 1 as function of the ratio of the two assets �.
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Figure 9: Comparison of Delta 2 as function of the ratio of the two assets.

4.3 The Gammas

The Gammas of the OBPP are given by:

¡����1�� =
�2� �����

��21��
= ��

� 0 (�2��)

�1��e�
p
(� ¡ �)

� 0�

¡����2�� =
�2� �����

��22��
= �

� 0 (�1��)

�2��e�
p
(� ¡ �)

� 0�

e¡����1�2�� =
�2� �����

��1����2��
= ¡� � 0 (�1��)

�1��e�
p
(� ¡ �)

� 0�
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The Gammas of the CPPP are equal to:

¡����1�� =
�2� �����

��21��
= ��� (�¡ 1)�¡(�+1)1�� ��2�� = ��� (�¡ 1)�¡11�� ��� � 0�

¡����2�� =
�2� �����

��22��
= ��� (�¡ 1)�1¡�1�� ��¡22�� = ��� (�¡ 1)�¡11�� ��¡2� � 0�

e¡����1�2�� =
�2� �����

��1����2��
= ¡��� (�¡ 1)�¡�1�� ��¡12�� = ¡��� (�¡ 1)�¡11�� ��¡1� � 0�

For both performance participation properties, the two derivatives at the �rst order �2��
��21��

and �2��
��22��

are positive while the cross-derivatives are negative. Note that both Hessians are null (see Appendix).

For the OBPP strategy, the sensitivities ¡����1�� and ¡����2�� are �rst increasing then decreasing while,

for the CPPP strategy, ¡����1�� and ¡����2�� are always increasing and can take high values when the

ratio process � increases signi�cantly (see Figures 10 and 11). This is still due to the strong convexity

of the CPPP value.
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Figure 10: Gamma 1 (times S1) as function of the ratio of the two assets
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Figure 11: Gamma 2 (times S2) as function of the ratio of the two assets

4.4 The Vegas

In what follows, we consider the sensitivity of the portfolio values to the volatility e� of the ratio process
� = �2��1.

The Vega of the OBPP is de�ned as:14

V����� =
�� �����

�e� = ��2��
p
(� ¡ �)� 0 (�1��) �

14Recall that the Vega of ���� (�� �� ���� �� �) calculated in the Black and Scholes framework is equal to:

����� (�� �� ���� �� �)

��
= ��

�
(� ¡ �)� 0

(�1��) �
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Figure 12: Vega in terms of the reserve asset as function of the ratio of the two assets

For the CPPP, the Vega is given by:15

V����� =
�� �����

�e� = ¡� (�¡ 1) e�������� �

Therefore, the sensitivity of the OBPP value with respect to the volatility e� is positive whereas,

for the CPPP, it is negative since � � 1.

This means that an increase in volatility works against the strategy CPPP. It implies also that, if

the ratio of the two assets �2��1 increases moderately while its volatility increases, then the OBPP

strategy will be preferred to the CPPP one (see Figure 3). For the strategy CPPP to be the best,

the increase in the ratio will have to be relatively large if its volatility increases, for example a large

growth of the active asset and/or a signi�cant drop in the price of the reserve asset.

This is similar to the OBPI versus CPPI case: as highlighted by Black and Rouhani (1989), when

the volatility increases, the CPPI values decreases. Additionally, the higher the multiple, the more

signi�cant the decrease.

15Recall that:

�
����
� = ���1�� + ����

1¡�
1�� �

�
2���

where

�� =

�
�0 ¡ ���1�0
�1¡�1�0 ��2�0

�
exp [��] and � = ¡1

2
�(�¡ 1)��2�

Therefore, we get:

�� ����
�

��� =

�
�0 ¡ ���1�0
�1¡�1�0 ��2�0

�
exp [��] �

��

���
= ¡�(�¡ 1)��������� �
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5 Conclusion

In this paper, we have analyzed and compared the two main performance participation methods,

namely the OBPP and CPPP. We have shown that usual comparison criteria such as comparison of

their payo¤s, of their cdfs with �rst order stochastic dominance and of their �rst four moments, do not

allow a clear conclusion in favour of one of the two strategies. This is not so surprising since, as proved

in the paper, their relative values expressed in terms of the reserve asset as numeraire correspond

respectively to OBPI and CPPI strategies the comparison of which leads to similar conclusions. For

example, when the ratio of the two processes is around or moderately higher than its initial value,

the OBPP value is higher than the CPPP one (at least in the GBM framework). Otherwise, it is the

converse. Note also that the OBPP is a buy-and-hold strategy while the CPPP is more �exible but

may bear transaction costs and is more sensitive to sudden drops. Further extensions could consider

capped OBPP and CPPP, more general dynamics by using Monte Carlo simulations and also other

decision criteria for absolute and relative loss control (see e.g. Mantilla-Garcia, 2014). The optimality

of such products could be also examined (see e.g. Bajeux-Besnamou and Portait (1998) for the mean-

variance case) and also according to various assumptions about the asset dynamics (see e.g. Bernard

and Kwak, 2016). Finally, much �exibility would be allowed for example by introducing a conditional

multiple as in Ben Ameur and Prigent (2014).
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6 Appendix

6.1 Determination of the CPPP value

The value at time � of the CPPP portfolio is given by:

�� ����� = (� ����� ¡ ��)
��1��

�1��
+ ��

��2��

�2��
�

Recall that � ����� = �� + ��, �� = ��� and �� = ��1��. Thus, the cushion value � must satisfy :

��� = �(� ����� ¡ ��)�
= (� ����� ¡ ��)��1���1��

+ ��
���
��
¡ ����

= (�� + �� ¡���)��1���1��
+ (���)

���
��
¡ ����

= (�� ¡���)��1���1��
+ (���)

��2��
�2��

�

Therefore, we get:
���

��
= (1¡�)��1��

�1��
+�

��2��

�2��
�

from which we deduce:

�� = �0 exp

" ¡
(1¡�)��1 +���2 ¡ 1�2

£
(1¡�)2�2�1 +�2�2�2 + 2��(1¡�)��1��2

¤¢
�

+(1¡�)��1�1�� +���2��1�� +���2
p
1¡ �2�2��

#
�

By using the relations:

�1�� = �1�0 exp

·
��1�1�� +

µ
��1 ¡

1

2
�2�1

¶
�

¸
�

�2�� = �2�0 exp

·
��2��1�� + ��2

p
1¡ �2�2�� +

µ
��2 ¡

1

2
�2�2

¶
�

¸
�

we can deduce that:

exp [��1�1��] =
�1��

�1�0
exp

·
¡
µ
��1 ¡

1

2
�2�1

¶
�

¸
�

exp
h
��2

p
1¡ �2�2�� + ��2��1��

i
=

�2��

�2�0
exp

·
¡
µ
��2 ¡

1

2
�2�2

¶
�

¸
�

By substituting these expressions for �1�� and �2�� into previous expression for ��, we get:

�� = �0 exp
£¡
(1¡�)��1 +���2 ¡ 1�2

£
(1¡�)2�2�1 +�2�2�2 + 2��(1¡�)��1��2

¤¢
�
¤

£ exp [��1�1��]
(1¡�) exp

h
��2

p
1¡ �2�2�� + ��2��1��

i�
�
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�� = �0 exp
£¡
(1¡�)��1 +���2 ¡ 1�2

£
(1¡�)2�2�1 +�2�2�2 + 2��(1¡�)��1��2

¤¢
�
¤

exp

·
¡(1¡�)

µ
��1 ¡

1

2
�2�1

¶
�

¸
exp

·
¡�

µ
��2 ¡

1

2
�2�2

¶
�

¸µ
�1��

�1�0

¶[1¡�] µ
�2��

�2�0

¶�
�

Therefore, we deduce:

�� = �0

µ
�1��

�1�0

¶[1¡�]µ
�2��

�2�0

¶�
£ exp

"Ã
¡1�2

£
(1¡�)2�2�1 +�2�2�2 + 2��(1¡�)��1��2

¤

+(1¡�)
¡
1
2�

2
�1

¢
+�

¡
1
2�

2
�2

¢
!
�

#
�

= ����
(1¡�)
1�� ��2�� = ����1��

µ
�2��

�1��

¶�
�

where

�� = �0

µ
1

�1�0

¶[1¡�]µ
1

�2�0

¶�
exp [��] �

and

� = ¡1�2
£
(1¡�)2�2�1 +�2�2�2 + 2��(1¡�)��1��2

¤
+ (1¡�)

µ
1

2
�2�1

¶
+�

µ
1

2
�2�2

¶
�

= ¡1�2
££
(1¡�)2 ¡ (1¡�)

¤
�2�1 +

£
�2 ¡�

¤
�2�2 + 2��(1¡�)��1��2

¤
�

= ¡1�2�(�¡ 1)e�2�

Therefore, the portfolio value is given by:

� ����� = ��1�� + ����
(1¡�)
1�� ��2���

Note that we have: � ����� = �1���
��� �
� (�� �� � = 0� � = �2��1).

6.2 Equality of expectations

Recall that:

� ����� = � [��1�� + �
��� (�� �� �2� ��1)] � (14)

with

� =
�0

��1�0 + � ��� (0� �� �2� ��1)
�

where the value � ��� (0� �� �2� ��1) is equal to:

� ��� (0� �� �2� ��1) = �1���� (�� �� �2��1� �� � = 0� e�) � (15)

Recall also that (� = ��)

� ����� = ���1�� + �� ��
1¡�
1�� ��2�� �
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where

�� =

Ã
�0 ¡ ���1�0
�1¡�1�0 ��2�0

!
exp [�� ] and � = ¡1

2
�(�¡ 1)e�2�

We are looking for the value of the multiple � such that the expected portfolio values are equal:

�[���1�� + � (�2�� ¡ ��1�� )+] = �[���1�� + �� ��(1¡�)1�� ��2�� ]�

We get the equivalent condition:

��
£
(�2�� ¡ ��1�� )+

¤
= ���

h
�
(1¡�)
1�� ��2��

i
�

��
£
(�2�� ¡ ��1�� )+

¤
= (�0 ¡ ���1�0) exp [�� ]�

2
4�

(1¡�)
1��

�
(1¡�)
1�0

��2��

��2�0

3
5 �

But we have:

(1)

�

2
4�

(1¡�)
1��

�
(1¡�)
1�0

��2��

��2�0

3
5 = exp

£
¡�� + ��1� +�

¡
��2 ¡ ��1

¢
�
¤
;

(2)

(�0 ¡ ���1�0) = ��1���� (�� �� �2��1� �� � = 0� e�) ;

(3)

�
£
(�2�� ¡ ��1�� )+

¤
= exp

£
��2�

¤
�(0� �� �2��1� �� � = ��2 ¡ ��1 � e�)�

Therefore, we deduce:

��1 exp
£
��2�

¤
�(0� �� �2��1� �� � = ��2¡��1� e�) = ��1���� (�� �� �2��1� �� � = 0� e�) exp

£
��1� +�

¡
��2 ¡ ��

Recall that we assume ��1 � ��2. Finally, we obtain the value of the multiple � as a function �¤ (�)

of the performance participation �:

�¤ (�) = 1 +

Ã
1¡

��2 ¡ ��1
¢
�

!
ln

µ
�(0� �� �2��1� �� � = ��2 ¡ ��1� e�)

�(0� �� �2��1� �� � = 0� e�)

¶
�

6.3 Hessians of the two portfolio values

For the OBPP strategy, the Hessian � (which corresponds to the mathematical determinant of the

matrix of derivatives at the second order) is given by:

����� =
�2� �����

��21��
£ �

2� �����

��22��
¡
µ
�2� �����

��1����2��

¶2

=
�2� 0 (�1��)

e�2 (� ¡ �)�1��

µ
�
� 0 (�2��)
�2��

¡ �
0 (�1��)
�1��

¶
�
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Since we have
� 0(�1��)
� 0(�2��)

=
��1��
�2��

, we deduce that the Hessian of the OBPP is null.

For the CPPP, the Hessian � is equal to:

����� =
�2� �����

��21��
£ �

2� �����

��22��
¡
µ
�2� �����

��1����2��

¶2

= �2��
2 (�¡ 1)2

³
�¡11�� �

�
� �

¡1
1�� �

�¡2
� ¡ �¡21�� �2�¡2�

´

= �2��
2 (�¡ 1)2 �¡21��

¡
��� �

�¡2
� ¡ �2�¡2�

¢

= 0

24


