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Pareto solutions as limits of collective traps: an inexact
multiobjective proximal point algorithm

G. C. Bento1 · J. X. Cruz Neto2 · L. V. Meireles3 · A. Soubeyran4

Abstract
In this paper we introduce a definition of approximate Pareto efficient solution as well as a 
necessary condition for such solutions in the multiobjective setting on Riemannian 
manifolds. We also propose an inexact proximal point method for nonsmooth 
multiobjective optimization in the Riemannian context by using the notion of approximate 
solution. The main convergence result ensures that each cluster point (if any) of any 
sequence generated by the method is a Pareto critical point. Furthermore, when the problem 
is convex on a Hadamard manifold, full convergence of the method for a weak Pareto 
efficient solution is obtained. As an application, we show how a Pareto critical point can be 
reached as a limit of traps in the context of the variational rationality approach of stay and 
change human dynamics.

Keywords Multiobjective proximal method · Riemannian manifold · Approximate 
solution · Variational rationality · Worthwhile move · Trap
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1 Introduction

In this paper, we present an inexact proximal point method for multiobjective optimization 
in the Riemannian setting based on the concept of approximate Pareto solution.
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It should be noted that vector optimization models had found a lot of important applica-
tions in decision making problems such as in economics theory, management science and
engineering design. Owing to these applications, a lot of literatures have been published to
study optimality conditions, duality theories and topological properties of solutions of vec-
tor optimization problems (Chen et al., 2005; Jahn, 2004; Luc, 1989). It is worth noticing
that Bonnel et al. (2005) constructed a vector-valued proximal point algorithm to investigate
convex vector optimization problems in Hilbert spaces extending the convergence analysis
from the scalar case [see, for instance, Rockafellar (1976)] to the vectorial case. For others
references dealing with variants of the algorithms considered in Bonnel et al. (2005) for
convex vector or multiobjective problems; see, for instance, (Ceng & Yao, 2007; Ceng et
al., 2010; Choung et al., 2011; Gregório & Oliveira, 2011; Villacorta & Oliveira, 2011). An
approach for the R

m+-quasi-convex case was discussed in Bento et al. (2014), Apolinário et
al. (2016). More recently, in Bento et al. (2018) the authors present a new (scalarization-
free) approach for convergence analysis of the exact proximal point method considered in
Bento et al. (2005) where the first-order optimality condition of the scalarized problem is
replaced by a necessary condition for weak Pareto points of a multiobjective problem. As a
consequence, this allowed to consider the method without any assumption of convexity over
the constraint sets that determine the vectorial improvement steps. In Bento et al. (2018) the
authors extended the necessary condition for weak Pareto points of a multiobjective problem
[(see Minami (1983) for a version in the linear setting] as well as the approach presented
in Bento et al., (2018) to the Riemannian context, which allowed to authors to consider the
proximal point method for locally Lipschitz functions in multiobjective programming on
Hadamard manifolds. For an approach of the proximal method for convex vector problems
on Hadamard manifolds via scalarization see Bento et al. (2018b); Tang and Huang (2017).

Motivated by the definition of approximate Pareto efficient solutions introduced by Loridan 
(1984, Definition 4.1), in this paper we present that definition in the Riemannian setting and 
establish a necessary condition for this type of Pareto efficient solution, see Theorem 2, which  
plays an important role in the course of this paper. Besides, we present an inexact version 
of the proximal algorithm given in Bento et al. (2018), where each term of the sequence 
generated need not be an exact solution of the vectorial proximal optimization subproblem, 
but just an approximate solution of it by considering a relative error criteria as introduced in 
Solodov and Svaiter (1999). Note that the inexact versions of the proximal methods developed 
in the Riemannian context for vector optimization, see Bento et al. (2018b), Tang and Huang 
(2017), were developed, as in Bento et al. (2005), via scalarization by considering the same 
error criteria whose measure of the relative error is constant or has summable square. In 
our approach, we show that the accumulation points, if any, of each generated sequence are 
Pareto critical points and, in the convex case, we show full convergence of any generated 
sequence to a weak Pareto point. As an application, we show how a Pareto critical point can 
be reached as a limit of traps in the context of the variational rationality approach of stay and 
change human dynamics; see Soubeyran (2009, 2010, 2021a, 2021b, 2021c, 2021d).

In the rest of the paper is organized as follows. Section 2 provides some basic definitions 
and auxiliary results. In Sect. 3, we formulate definition of approximate Pareto solution 
and necessary conditions for characterizing this solutions for a multiobjective optimization 
problem on Riemannian manifolds. Section 4 is devoted to presenting and to analysing an 
inexact version of the proximal point algorithm. Section 5 provides an application showing 
how a Pareto critical point can be reached as a limit of traps in the context of the variational 
rationality approach of stay and change human dynamics. In the last section we present 
perspective future of works.
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2 Preliminaries

In this section, we present some pertinent concepts and results related to Riemannian geom-
etry. For more details see, for example, (Do Carmo, 1992; Ledyaev & Zhu, 2007; Li et al.,
2011; Sakai, 1996).

Assuming that M is a complete and connected Riemannian manifold, from Hopf-Rinow
theorem it is known that any pair of points in M can be joined by a minimal geodesic.
Moreover, (M, d) is a complete metric space, where d denotes the Riemannian distance, and
bounded closed subsets are compact. Given x ∈ M , the exponential map expx : TxM → M
is defined by expx v := γv(1, x), where γv(·, x) denotes the geodesic determined by its
position x and velocity v at x .

A complete, simply connected Riemannian manifold of nonpositive sectional curvature is
called a Hadamard manifold. The following result is well known [see, for example, (Sakai,
(1996), Theorem 4.1, p. 221].

Proposition 1 Let M be a Hadamard manifold and x ∈ M. Then, expx is a diffeomorphism,
and for any two points x, y ∈ M there exists an unique normalized geodesic joining x to y,
which is, in fact, a minimal geodesic. In particular, d(x, y) = ‖ exp−1

x y‖.
From now on, M is assumed to be a finite-dimensional Hadamard manifold. One impor-

tant property is described in the following proposition, which is taken from [Sakai (1996),
Proposition 4.5, p. 223] andwill be useful in our study. Recall that a geodesic triangle�(xyz)
of a Riemannian manifold is a set consisting of three points x , y and z and three minimal
geodesics joining these points.

Proposition 2 (Law of cosines) Given a geodesic triangle �(xyz) in a Hadamard manifold,
it holds

d2(x, z) + d2(z, y) − 2〈exp−1
z x, exp−1

z y〉 ≤ d2(x, y),

where exp−1
z (·) denotes the inverse of expz(·).

Now,we introduce some elements of nonsmooth analysis onRiemannianmanifoldswhich
will be useful throughout the paper.

We denote the extended real line by R̄ := R ∪ {+∞}. For an extended-valued function
f : M → R̄ the domain of f is defined by

dom( f ) := {x ∈ M : f (x) < +∞}.
We recall that f is said to be proper if dom( f ) �= ∅.
Definition 1 (Ledyaev & Zhu, 2007) Let f : M → R̄ be a proper and lower semicontinuous
function. The Fréchet subdifferential of f at x ∈ dom( f ) is defined by

∂F f (x) := {dg(x) : g ∈ C1(M) and f − g attains a local minimum at x},
where dg(x) is the differential of g at x . The (limiting) subdifferential of f at x ∈ M is
defined by

∂ f (x) := {v ∈ TxM : ∃(xk, vk) ∈ Graph(∂F f ), (xk, vk) → (x, v), f (xk) → f (x)},
where Graph(∂F f ) := {(y, u) ∈ T M : u ∈ ∂F f (y)}.
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It follows directly from Definition 1 that ∂F f (x) ⊂ ∂ f (x). Note further that ∂F f (x)may
be empty, but if f attains a local minimum at x , then 0 ∈ ∂F f (x). A necessary (but not
sufficient) condition for x ∈ M to be a minimizer of f is that

0 ∈ ∂ f (x).

Two next propositions have appeared in Meireles (2019).

Proposition 3 Let f : M → R̄ be a locally Lipschitz function. Consider a sequence
(xk)k ⊂ dom(∂F f ) which is bounded. If the sequence (vk)k is such that vk ∈ ∂F f (xk), for
each k ∈ N, then (vk) is also bounded.

Proposition 4 If f : M → R̄ is a locally Lipschitz function, then the limiting subdifferential
is not empty.

For further details and properties on (limiting) subdifferentials on Riemannian manifolds
see, for example (Ledyaev & Zhu, 2007).

For a general closed subset C ⊂ M and a point x0 ∈ C , the Fréchet normal cone and
(limiting) normal cone of C at x0 were defined in Ledyaev and Zhu (2007) as

NF
C (x0) := ∂FδC (x0); NC (x0) := ∂δC (x0),

respectively, where δC : M → R̄ is the indicator function of C . As remarked by Li et al.
(2011), when C is convex, i.e., for any x, y ∈ C there exists a minimizing geodesic of M
connecting x, y is contained in C , then N F

C (x0) = NC (x0).

Proposition 5 Let C ⊂ M be a not empty and closed set. If x ∈ C, then

∂FdC (x) ⊂ Bx ∩ NC (x), (2.1)

where dC (x) := inf{d(y, x) : y ∈ C} and Bx := {ξ ∈ TxM : ‖ξ‖ ≤ 1}.
In the particular case where M is a Hadamard manifold and C is a convex set, it follows

from [(Li et al., (2011), Lemma 5.2 and Theorem 5.3], that the expression (2.1) of the last
proposition takes the form

∂dC (x) = Bx ∩ NC (x).

As noted previously, (M, d) is a metric space. Hence, the result below is valid in our
context and they will be useful in next section.

Theorem 1 Let (M, d) be a metric space. Take a set C ⊂ M and a function f : M → R.
Assume that f satisfies a Lipschitz condition on M with Lipschitz constant L. Let x̄ be a
minimizer for the constrained minimization problem,

min f (x), x ∈ C . (2.2)

Choose any τ ≥ L. Then, x̄ is also a minimizer for the unconstrained minimization problem,

min{ f (x) + τdC (x)}, x ∈ M . (2.3)

If τ > L and C is a closed set, then the converse assertion is also true: any minimizer x̄ for
the unconstrained problem (2.3) is also a minimizer for the constrained problem (2.2) and
so, in particular, x̄ ∈ C.

Proof See [(Vinter (2000), Theorem 3.2.1]. ��
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3 �-quasi-weakly Pareto optimality

In this section, we consider a multiobjective program and give necessary condition for ε-
quasi-weakly Pareto solutions, which will play a very important role during the analysis of
the our method later on.

Let hi , i ∈ {1, 2, . . . ,m}, g j , j ∈ {1, 2, . . . , l}, be real-valued functions on a finite
dimensional Riemannian manifold M , C ⊂ M a not empty and closed set and Ω := {x ∈
C | g j (x) ≤ 0, j = 1, 2, . . . , l}. We consider the problem of finding a weakly Pareto
solution of H := (h1, . . . , hm) in Ω , i.e., a point x∗ ∈ Ω such that there does not exist
another point x ∈ Ω with hi (x) < hi (x∗) for all i ∈ {1, . . . ,m}. We denote this constrained
problem as

minωH(x) s.t . x ∈ Ω, (3.1)

and the set of all its weakly Pareto solutions by

Sω(H ,Ω) := argminω{H(x) : x ∈ Ω}.

Definition 2 Let ε ∈ R
m+. A point x∗ ∈ Ω is an ε-quasi-weakly Pareto solution of the problem

in (3.1) if there does not exist another point x ∈ Ω such that

hi (x) + εi d(x, x∗) < hi (x
∗), i = 1, 2, . . . ,m,

where d is the Riemannian distance.

We denote the set of ε-quasi-weakly Pareto solutions H in Ω by Sω
εq(H ,Ω).

Remark 1

(1) Note that Definition 2 is a natural extension of that introduced in the linear setting in
Loridan (1984). See also Chuong and Kim (2016) and references therein;

(2) It is easy to see that, even in the linear context, in general, Sω(H ,Ω) � Sω
εq(H ,Ω) and

Sω(H ,Ω) = Sω
εq(H ,Ω) for ε = 0.

Next, we present an illustrative example in the Riemannian context where it is possible
to notice that an ε-quasi-weakly Pareto Solution is different from a classical weak Pareto
Solution.

Example 1 Let H := {p = (x, y) ∈ R
2 : y > 0}, H : H → R

2 given by H(p) =
(y, x2y−1 + 1) and let us consider G(p) := (gi j (p)), where

g11(p) = g22(p) = 1

y2
, g12(p) = g21(p) = 0.

It is known that H
2 = (H, 〈〈 , 〉〉), with 〈〈u, v〉〉p := vTG(p)u, is a complete Rieman-

nian manifold of sectional curvature -1, called the Poincaré plane. Note that the coordinate
functions of H are locally Lipschitz, but not convex functions on H

2. It can be shown that
the geodesics in H

2 are the semi-lines and the semicircles orthogonal to the line v = 0;
see [(Udriste (1994), page 20]. The Riemannian metric G(·) induces the hyperbolic distance
between the points p = (x, y) and p̃ = (z, w) given by:

dp( p̃) := d(p, p̃) = arccosh

(
1 + (z − x)2 + (w − y)2

2yw

)
.
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Let’s denote θ := 1 +
[
(z − x)2 + (w − y)2

]
/2yw. Thus,

exp−1
(z,w)(x, y) = arccosh(θ)

( wx − wz

y
√

θ2 − 1
,
y2 − w2 + (z − x)2

2y
√

θ2 − 1

)
.

Take Ω = C := {(x, y) ∈ H
2 : x ≥ 1, y ≥ 1}. In this case,

Sω(H ,Ω) = {(1, w) : w ≥ 1} ∪ {(z, 1) : z ≥ 1}.
Given ε1 = ε2 = ε < 1, Definition 2 says us that (x∗, y∗) ∈ Sω

εq(H ,Ω) iff there does not
exist another point (x, y) ∈ Ω such that⎧⎨

⎩
ε.arccosh

(
1 + (x∗−x)2+(y∗−y)2

2yy∗
)

< y∗ − y,

ε.arccosh
(
1 + (x∗−x)2+(y∗−y)2

2yy∗
)

< (x∗)2(y∗)−1 − x2y−1

For ε sufficiently small, it is not difficult to see that P∗ := {(1 + ε2

2 , y∗) : y∗ ≥ 1 + ε2

2 } is
a set that is contained in Sω

εq(H ,Ω) \ Sω(H ,Ω) and, as noted in item ii) of Remark 1, it
follows that Sω(H ,Ω) � Sω

εq(H ,Ω).

From now on, we assume that hi , i ∈ {1, 2, . . . ,m}, g j , j ∈ {1, 2, . . . , l} are locally
Lipschitz functions. Define

x � M �→ φ(x) := max
i=1,...,m
j=1,...,l

{hi (x) − hi (x
∗) + εi d(x, x∗), g j (x) }. (3.2)

The next result presents a Fritz-John type necessary condition for ε-quasi-(weakly) Pareto
solutions associated to the problem in (3.1). For a version of this result in the linear setting,
see Chuong and Kim (2016).

Theorem 2 Let x∗ ∈ Sω
εq(H ,Ω). Then, there exist τ > 0 and ξi ≥ 0, i = 1, . . . ,m, μ j ≥ 0,

j = 1, . . . , l with
∑m

i=1 ξi + ∑l
j=1 μ j = 1, such that

0 ∈
m∑
i=1

ξi∂hi (x
∗) +

l∑
j=1

μ j∂g j (x
∗) +

m∑
i=1

ξiεiBx∗ + τ∂dC (x∗).

Proof From the definition of φ in (3.2), it is easy to see that φ(x∗) = 0 and φ(x) ≥ 0, for all
x ∈ C and, hence,

φ(x∗) = inf
x∈C φ(x).

Since hi , i ∈ {1, 2, . . . ,m}, g j , j ∈ {1, 2, . . . , l} are locally Lipschitz functions, then φ(·)
is also a locally Lipschitz function. Let us suppose that L is a Lipschitz constant of φ(·) at x∗.
From Theorem 1 follows that x∗ is a local minimal for φ(·)+τdC (·), whenever τ ≥ L . From
the first-order optimality condition and using the sum rule for the limiting subdifferential,
see [Ledyaev & Zhu, (2007), Theorem 4.13(A.1)], we obtain

0 ∈ ∂φ(x∗) + τ∂dC (x∗). (3.3)

By the definition of φ in (3.2), [Ledyaev & Zhu, (2007), Theorem 4.16(A2)] applied to
φ implies that there exist non-negative real numbers ξi , μ j with i ∈ {1, 2, . . . ,m} and
j ∈ {1, 2, . . . , l} such that ∑m

i=1 ξi + ∑l
j=1 μ j = 1 and

∂φ(x∗) ⊂
∑

{i | ξi �=0}
ξi∂

(
hi (·) + εi d(·, x∗)

)
(x∗) +

∑
{ j | μ j �=0}

μ j∂g j (x
∗).

6



Hence, using again [(Ledyaev & Zhu, (2007), Theorem 4.13(A.1)] and [(Ledyaev & Zhu,
(2007), Theorem 5.2], we get

∂φ(x∗) ⊂
∑

{i | ξi �=0}
ξi∂hi (·) +

∑
{i | ξi �=0}

ξiεiBx∗ +
∑

{ j | μ j �=0}
μ j∂g j (x

∗), (3.4)

and the desired result follows by combining (3.3) with (3.4). ��
Remark 2 From the last result it is possible retrieves the Fritz-John type necessary condition
for weakly Pareto solutions which was introduced, in the Riemannian context, by Bento et
al. in (2018).

Definition 3 Let Ω ⊂ M be a not empty, closed and convex set. A point x̄ ∈ Ω is said to be
Pareto critical of H inΩ iff for any y ∈ Ω , there are an index i ∈ {1, . . . ,m} and u ∈ ∂hi (x̄)
such that

〈u, exp−1
x̄ y〉 ≥ 0.

Remark 3 (1) Note that, when M is a Hadamard manifold and Ω = M , the last definition
retrieves the Pareto critical point notion introduced in Bento and Cruz Neto (2013);

(2) If x̄ is not a Pareto critical point of H in Ω , then there exists y ∈ Ω such that for all
i ∈ {1, 2, . . . ,m} and ui ∈ ∂hi (x̂), 〈ui , exp−1

x̄ y〉 < 0.

4 Inexact proximal algorithm for multiobjective and convergence
analysis

In this section, we introduce an inexact proximal point method for the multiobjective frame-
work and we show that the accumulation points, if any, of each generated sequence are Pareto
critical points. Moreover, in the convex case, we show full convergence of any generated
sequence to a weak Pareto point.

Throughout this section, we assume that C ⊂ M is a nonempty, convex, closed set and
F := ( f1, . . . , fm) : M → R

m such that each component function fi : M → R, i ∈
{1, . . . ,m}, is a locally Lipschitz function. For x, y ∈ R

m+, x � y means that y − x ∈ R
m+

and x ≺ y means that y − x ∈ R
m++.

4.1 Inexact proximal point algorithm

In the following, we formally state an inexact proximal point algorithm for solving a con-
strained optimization problem as in (3.1).

Algorithm 1 (Inexact Proximal Algorithm)
Initialization: Take (λk)k,⊂ R++, (ςk)k ⊂ R

m++ such that ‖ςk‖ = 1 for all k ∈ N, and
choose x0 ∈ C .
Stopping rule: Given xk , if xk is a Pareto critical point, then set xk+p = xk , for all p ∈ N.
Iterative step: Start with x0, x1, . . . , xk . Take xk+1 as any x ∈ C such that there exists
εk ∈ R

m+ satisfying:

x ∈ Sω
εkq(Fk,Ωk), (4.1)

εk � σk
λk

2
d(xk, x)ςk, (4.2)

7



where Fk(x) := F(x) + λk
2 d

2(xk, x)ςk, Ωk := {x ∈ C | F(x) � F(xk)}, and (σk)k ⊂
[0, 1).

It is worth mentioning that for εk = 0 we recover the proximal method proposed by
Bento et al. in (2018). We note that some proposals for an inexact proximal point method for
multiobjective optimization have also appeared, for example, in Souza (2018), Quiroz et al.
(2020). In both references the authors consider a scalar iterative scheme and an approach fully
based on scalarization to find possible weak Pareto of the original multiobjective problem.

We now make the following assumption on the map F which is common when dealing
with non-convex problems:

A1 : F � 0.
There is no loss of generality in considering assumption A1 since the vectorial functions
F(·) and eF(·) := (e f1(·), . . . , e fm (·)) have the same set of Pareto critical points, where eα

denotes the exponential map valued at α ∈ R. This fact was first observed by Huang and
Yang in (2004) and, in the Riemannian context, it can be verified in a similar way.

Proposition 6 The Algorithm 1 is well defined.

Proof From [Bento et al. (2018), Proposition 4.1], we have Sω(Fk,Ωk) �= ∅. Therefore, the
desired result follows from Remark 1 item ii). ��

Note that if Algorithm 1 terminates after a finite number of iterations, then it terminates at
a critical Pareto point. From now on, we will assume that (λk)k , (εk)k and (xk)k are infinite
sequences generated by Algorithm 1.

4.2 Convergence analysis

The next result plays an important role in our subsequent considerations and our prove follows
straight as application of Theorem 2.

Proposition 7 For all k ∈ N, there exist αk, βk ∈ R
m+, uki , vk, wk ∈ Txk M and τk ∈ R++

such that
m∑
i=1

(αk
i + βk

i )uki − λk−1 exp
−1
xk

xk−1
m∑
i=1

αk
i ς

k−1
i + vk

m∑
i=1

αk
i ε

k−1
i + τkw

k = 0, (4.3)

where
∑m

i=1(α
k
i + βk

i ) = 1, vk ∈ Bxk , u
k
i ∈ ∂ fi (xk), and wk ∈ ∂dC (xk).

Proof Let us denote Fk−1(x), Gk−1(x) two functions defined by

Fk−1(x) := F(x) + λk−1

2
d2(xk−1, x)ςk−1 and Gk−1(x) := F(x) − F(xk−1).

As F is a locally Lipschitz function, it follows that the coordinates functions

(Fk−1)i (·) = fi (·) + λk−1

2
d2(xk−1, ·)ςk−1

i , and (Gk−1)i (·) = fi (·) − fi (x
k−1)

of Fk−1 and Gk−1, respectively, are locally Lipschitz functions.
Therefore, since xk is an εk−1-quasi-weak Pareto efficient for the problem min Fk−1(x)

s.t. Gk−1(x) � 0, applying Theorem 2 with H(·) = Fk−1(·) and g j (·) = (Gk−1) j (·), there
exist real non-negative numbers αk

i , β
k
i , i = 1, 2, . . . ,m and a positive number τk , for every

k, with
m∑
i=1

(αk
i + βk

i ) = 1
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and such that

0 ∈
m∑
i=1

(αk
i + βk

i )∂ fi (x
k) − λk−1 exp

−1
xk

xk−1
m∑
i=1

αk
i ς

k−1
i +

m∑
i=1

αk
i ε

k−1
i Bxk + τk∂dC (xk).

Thus, there exist uki ∈ ∂ fi (xk), vk ∈ Bxk and wk ∈ ∂dC (xk) satisfying the desired result. ��
As an immediate consequence of Proposition 7 we get the following stopping rule for

Algorithm 1:

Corollary 1 Let k0 ∈ N be such that αk0 = 0. Then, xk0 is a Pareto critical point of F.

Proof If there exists k0 ∈ N such that αk0 = 0 then, from (4.3), we have
m∑
i=1

β
k0
i uk0i + τk0w

k0 = 0,

wherewk0 ∈ Bxk0 ∩NC (xk0),uk0i ∈ ∂ fi (xk0) and
∑m

i=1 β
k0
i = 1withβk0 ∈ R

m+. Suppose that
xk0 is not a Pareto critical point of F . Then there exists y ∈ C so that, for all i ∈ {1, 2, . . . ,m}
and uk0i ∈ ∂ fi (xk0), 〈uk0i , exp−1

xk0
y〉 < 0. Since, βk0 ∈ R

m+,
∑m

i=1 β
k0
i = 1 it holds

m∑
i=1

β
k0
i 〈uk0i , exp−1

xk0
y〉 < 0,

which contradicts the fact that −∑m
i=1 β

k0
i uk0i ∈ NC (xk0). Hence, xk0 is a Pareto critical

point of F . ��
Corollary 2 If xk+1 = xk , then xk is a Pareto critical of F.

Proof Suppose that xk+1 = xk , then the error condition implies εk = 0. Furthermore, from
expression (4.3) it follows

m∑
i=1

(αk+1
i + βk+1

i )uk+1
i + τk+1w

k+1 = 0,

i.e., −∑m
i=1(α

k+1
i + βk+1

i )uk+1
i ∈ NC (xk+1), and the desired result follows by using argu-

ments similar to those used in the proof of Corollary 1. ��
Remark 4 Since the sequences (λk)k , (εk)k and (xk)k were assumed to be infinite sequences,
then αk �= 0 and xk+1 �= xk for all k ∈ N, in view of Corollary 1 and 2, respectively.

In the sequel, we present and prove the main theorem of the section.

Theorem 3 Assume that A1 holds and there exist scalars a1, a2, a3, a4 ∈ R++ such that
a1 ≤ λk ≤ a2, a3 ≤ ςk

i and σk ≤ a4 < 1, for all k ∈ N and i = 1, . . . ,m. Then, every
cluster point of (xk)k , if any, is a Pareto critical point of F.

Proof Since xk+1 ∈ Sω
εkq

(Fk,Ωk) (this follows from (4.1)) there does not exist another

decision point x ∈ Ωk such that (Fk)i (x)+εki d(x, xk+1) < (Fk)i (xk+1), for i = 1, 2, . . . ,m.
Hence, for any k, there exists some index i := i(k) such that (Fk)i (xk+1) ≤ (Fk)i (xk) +
εki d(xk, xk+1) and, using the definition of Fk , the last inequality takes the following form

fi (x
k+1) + λk

2
d2(xk, xk+1)ςk

i ≤ fi (x
k) + εki d(xk, xk+1).
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Now, after some algebra, we obtain

λk

2
d2(xk, xk+1)ςk

i − εki d(xk, xk+1) ≤ ‖F(xk) − F(xk+1)‖,
which, combined with (4.2) yields

(1 − σk)
λk

2
d2(xk, xk+1)ςk

i ≤ ‖F(xk) − F(xk+1)‖.

From the iterative step (4.1) combined with the definition of Ωk , it follows that (F(xk))k is
nonincreasing. Hence, by assumption A1 and taking into account that 0 < σk ≤ a4 < 1 and
(λk)k , (ςk)k are bounded sequences, we conclude that (d(xk, xk+1))k converges to zero as
k goes to infinity.

Take x̂ a cluster point of (xk)k . Thus, there exists K ⊂ N such that the sequence (xk)k∈K
converges to x̂ as k goes to infinity. Therefore, applying Proposition 7 for every k ∈ K we
have existence of sequences⎧⎨

⎩
(uki )k ⊂ ∂ fi (xk), i ∈ {1, 2, . . . ,m};
(αk)k, (βk)k ⊂ R

m+; (τk)k ⊂ R++;
(wk)k ⊂ Txk M ; (vk)k ∈ Bxk ,

satisfying

wk ∈ Bxk ∩ NC (xk),
m∑
i=1

(αk
i + βk

i ) = 1

and
m∑
i=1

(αk
i + βk

i )uki − λk−1 exp
−1
xk

xk−1
m∑
i=1

αk
i ς

k−1
i + vk

m∑
i=1

αk
i ε

k−1
i + τkw

k = 0. (4.4)

From the convergence of (xk)k∈K we obtain boundedness. Using the locally Lipschitz con-
tinuity of F , Proposition 3 and previous conditions, it follows that sequences (uki )k , (v

k)k ,
(αk)k , (βk)k , (wk)k are bounded. Thus, equality (4.4) implies that (τk)k is also bounded. In
this case, we can assume, without loss of generality, that these sequences converge to ui , v,
α, β, w and τ (take subsequences, if necessary), respectively. Note also that the sequence
(λk

∑m
i=1 αk

i ς
k
i )k is bounded and, letting k goes to infinity in (4.4), we obtain

m∑
i=1

(αi + βi )ui + τw = 0, (4.5)

because (εk)k converges to zerodue condition (4.2) combinedwith the fact that (d(xk , xk+1))k
converges to zero as k goes to infinity. Since w ∈ Bx̂ ∩ NC (x̂), from (4.5) it follows that

−
m∑
i=1

(αi + βi )ui ∈ Bx̂ ∩ NC (x̂). (4.6)

Assume by contradiction that x̂ is not a Pareto critical point of F . Then, there is y ∈ C such
that for all i ∈ {1, 2, · · · ,m} and ui ∈ ∂ fi (x̂) it holds 〈ui , exp−1

x̂ y〉 < 0. Therefore,

m∑
i=1

(αi + βi )〈ui , exp−1
x̂ y〉 < 0,
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because α, β ∈ R
m+ and

∑m
i=1(αi + βi ) = 1. But this contradicts (4.6) and the desired result

is proved. ��

4.3 Full convergence

In this section, under the convexity assumption on F and assuming that M is a Hadamard
manifold, we establish the full convergence of the inexact proximal method point.

The function F is said to be convex on C iff for every x, y ∈ C

F(γ (t)) � (1 − t)F(x) + t F(y), t ∈ [0, 1],
where γ : [0, 1] → C is the geodesic segment joining x to y. In the particular case where
C = M , this definition coincides with the notion of convexity introduced in Bento et al.
(2012). In the particular case where F is convex, it is known that the limiting subdifferential
coincideswith the classical subdifferential for convex analysis and that criticality is equivalent
to weak optimality; see Bento et al. (2018).

We now make the following assumption:
A2 : Ω̄ := ∩+∞

k=0Ωk �= ∅.

The assumption A2 is naturally verified when assuming the known R
m+ - completeness

on (F(x0) − R
m+) ∩ F(C), for each x0 ∈ C [see (Luc, (1989), Section 19]), which was also

made in various studies on proximal algorithms; see, for instance, (Bonnel et al., 2005; Bento
et al., 2018; Ceng & Yao, 2007 for references in the linear setting and (Bento et al., 2018,
2018b) for references in the Riemannian context.

Theorem 4 Let M be a Hadamard manifold. If F : M → R
m is convex,

∑∞
k=0 σk < +∞

and assumption A2 holds, then, for all x∗ ∈ U:

(i) d2(x∗, xk+1) ≤ d2(xk, x∗) + δk where δk > 0 and
∑∞

k=1 δk < +∞;
(ii) (xk)k converges to a weak Pareto efficient solution of F.

Proof Take x∗ ∈ Ω̄ (this is possible from the assumptionA2). Consider the geodesic triangle
�(xk xk+1x∗). By the law of cosines, we have

d2(xk, xk+1) + d2(x∗, xk+1) − 2〈exp−1
xk+1 x

k, exp−1
xk+1 x

∗〉 ≤ d2(xk, x∗). (4.7)

On the other hand, Proposition 7 tells us that for each k ∈ N, there exist{
αk+1, βk+1 ∈ R

m+; τk+1 ∈ R++; uk+1
i ∈ ∂ fi (xk+1);

vk+1 ∈ Bxk+1 and wk+1 ∈ Bxk+1 ∩ NC (xk+1),

which verify the equality

m∑
i=1

(αk+1
i + βk+1

i )uk+1
i − λk exp

−1
xk+1 x

k
m∑
i=1

αk+1
i ςk

i + vk+1
m∑
i=1

αk+1
i εki + τk+1w

k+1 = 0.

Hence, this last identity combined with inequality (4.7) yields

λk

m∑
i=1

αk+1
i ςk

i

[
d2(xk, x∗) − d2(xk, xk+1) − d2(x∗, xk+1)

]
≥ −2τk+1〈wk+1, exp−1

xk+1 x
∗〉

−2
m∑
i=1

(αk+1
i + βk+1

i )〈uk+1
i , exp−1

xk+1 x
∗〉 − 2

m∑
i=1

αk+1
i εki 〈vk+1, exp−1

xk+1 x
∗〉.
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The characterization of normal cone, i.e., 〈wk+1, exp−1
xk+1 x

∗〉 ≤ 0, jointly with the convexity

of F , x∗ ∈ U and uk+1
i ∈ ∂ fi (xk+1) imply

λkbk
[
d2(xk, x∗) − d2(xk, xk+1) − d2(x∗, xk+1)

]
≥ −2

m∑
i=1

αk+1
i εki 〈vk+1, exp−1

xk+1 x
∗〉,

where bk = ∑m
i=1 αk+1

i ςk
i . Since r + s ≥ 2

√
rs holds for r , s ≥ 0, taking s :=

d2(xk, xk+1), r := d2(x, xk+1), after some algebraic manipulations and using (4.2), we
get:

d2(xk, x∗) − d2(xk, xk+1) − d2(x∗, xk+1) ≥ −σk

2

[
d2(xk, xk+1) + d2(x∗, xk+1)

]
.

Thus,

d2(x∗, xk+1) ≤
(
1 + σk

2 − σk

)
d2(xk, x∗) − d2(xk, xk+1). (4.8)

Since
∑∞

k=0 σk < ∞, it follows that

K0 :=
∞∑

k=k0

σk

2 − σk
< ∞ and K1 :=

∞∏
j=k0

(
1 + σ j

2 − σ j

)
< ∞.

By (4.8), observe that for all k ≥ k0

d2(x∗, xk+1) ≤
(
1 + σk

2 − σk

)
d2(xk, x∗)

≤
(
1 + σk−1

2 − σk−1

) (
1 + σk

2 − σk

)
d2(, xk−1, x∗)

...

≤
k∏

j=k0

(
1 + σ j

2 − σ j

)
d2(xk0 , x∗)

≤
∞∏
j=k0

(
1 + σ j

2 − σ j

)
d2(xk0 , x∗)

This shows that (xk) is bounded. Set K = supk d(xk, x∗). Then again from (4.8), we obtain

d2(x∗, xk+1) ≤ d2(xk, x∗) + σk

2 − σk
K 2, (4.9)

and the item (i) follows for considering δk = σk

2 − σk
K 2.

Let us now prove item (i i). Since (xk)k is bounded, from the Hopf-Rinow’s Theorem this
sequence has some accumulation point x̄ ∈ M . It follows from the definition of the iterative
step in (4.1) that F(xk+1) � F(xk) for all k and, consequently, we can conclude that x̄ ∈ Ω̄ .
Given η > 0, there exists k1 ∈ N such that

∞∑
k=k1

δk <
1

2
η2 and d2(xk1 , x̄) <

1

2
η2. (4.10)
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For k > k1, using (4.9) it yields

d2(xk, x̄) ≤ d2(xk1 , x̄) +
∞∑
j=k1

δk .

Combining the inequality above with expressions in (4.10) we have d(xk, x̄) < η, for all
k > k1. Therefore, the item (i i) follows as consequence of Theorem 3 jointly with the
assumption of convexity of the function F . ��

Next it is considered an ilustrative example for Algorithm 1 in Poincaré plane.

Example 2 Let us consider H
2 = (H, 〈〈 , 〉〉), with 〈〈u, v〉〉p := vTG(p)u, F := H : H →

R
2 given by F(p) = (y, x2y−1 + 1) and C = {(x, y) ∈ H

2 : x ≥ 1, y ≥ 1} as introduced
in Example 1. Thus, H

2 = (H, 〈〈 , 〉〉) is a complete Riemannian manifold of sectional
curvature -1, called the Poincaré plane, the coordinate functions of F are locally Lipschitz,
but not convex functions, onH

2 andC is a convex set. Take ςk = (1, 1), for all k ∈ {1, 2, . . .}
and (x0, y0) ∈ C . If (xk, yk)k is a sequence generated from Algorithm 1 with x0, y0 > 1,
then (xk+1, yk+1) is determined as follows:

(xk+1, yk+1) ∈ Sω
εkq(Fk,Ωk),

εk � σk
λk

2
d((xk, yk), (xk+1, yk+1))ςk,

where Ωk := {x ∈ C | Gk(x) � 0}, Gk(x, y) :=
(
y − yk, x2y−1 − (xk)2(yk)−1

)
,

(σk)k ⊂ [0, 1) and

Fk(x, y) :=
(
f1(x, y) + λk

2
d2
(xk ,yk )((x, y)), f2(x, y) + λk

2
d2
(xk ,yk )((x, y))

)
.

From Proposition 7, there exist αk+1
i , βk+1

i ∈ R+, i = 1, 2, wk+1 ∈ ∂dC (xk+1, yk+1) and

τk+1 > 0 such that
∑2

i=1(α
k+1
i + βk+1

i ) = 1 and

2∑
i=1

(
αk+1
i + βk+1

i

)
grad fi (x

k+1, yk+1) +

−λk exp
−1
(xk+1,yk+1)

(xk, yk)
2∑

i=1

αk+1
i − vk+1

m∑
i=1

αk+1
i εki + τk+1w

k+1 = 0,

where vk+1 ∈ B(xk+1,yk+1). Note that

∂dC (x, y) =
⎧⎨
⎩

{(w, t) ∈ R
2− : w2 + t2 ≤ 1}, x = y = 1,

{(w, 0) : −1 ≤ w ≤ 0}, x = 1, y > 1,
{(0, 0)}, x > 1, y ≥ 1.

Due to the vector improvement steps, characterized by the constraint set Ωk , it follows that
(F(xk, yk))k is decreasing. For each (x0, y0) ∈ C fixed Ωk is bounded. Besides, A1 holds
and, hence, for σk ≤ λk := 1/2 Theorem 3 implies that each cluster point of (xk, yk)k is a
Pareto critical point of F in C .
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5 Application: weak pareto points as limits of traps in behavioral
sciences

At the application level the main message of this paper is that weak Pareto points of a
multidimensional optimization problem can be reached as limits of traps of a perturbed
multiobjective proximal point algorithm.

5.1 The variational rationality approach

The concept of trap is one of the building block of the recent (VR) Variational rationality
approach of stay and change human dynamics; see Soubeyran (2009, 2010, 2021a, b, c, d).
This recent theory provides, in the context of Variational analysis in mathematics, a general
and formalized reformulation of the theory of motivation, emotion and behavior in psychol-
ogy. The general problem of motivation theory is why, how and when individuals do what
they do. Why, how and when, they stop, continue and start doing things each day of their
lives. Why, how and when they disengage, reengage or engage in different goals and activ-
ities. This new approach is driven by only one concept. This is the concept of worthwhile
move which provides a new and generalized formulation of sufficient descent conditions in
a lot of different and recent optimizing algorithms including proximal algorithms. Thus, the
VR approach is, both, able to illustrate and to generalize almost all of the main concepts
of variational analysis in mathematics and, to provide a general and mathematical theory of
motivation, emotion and behavior in psychology.

5.1.1 Making a worthwhile move

To save a lot of space, and to directly meet the concept of worthwhile move, we start our
presentation starting from the proof of Theorem 3 which is one of the main result of this
paper. For each k, it exists i = i(k) such that

fi (x
k) − fi (x

k+1) ≥ (λk/2)d
2(xk, xk+1)ζ k

i − εki d(xk, xk+1). (5.1)

Let g̃i (x) be the utility of member i ∈ I of an organization or group of individuals I :=
{1, 2, . . . ,m}. Given that x ∈ X = M is a vector of collective activities done by all members
of this group, let g̃∗

i = sup {g̃i (x), x ∈ X} < +∞ be the aspiration level of member i ∈ I.
That is, the highest level of utility he can hope to get as a member of the group. Then, the
difference fi (x) = g̃∗

i −g̃i (x) ≥ 0models the frustration, or unsatisfacton feeling, ofmember
i , relative to the collective action x . Suppose that this organization moves from having done
the collective action xk in the previous period k to doing the collective action xk+1 in the
current period k + 1. Then, given that fi (x) − fi (y) = g̃i (y) − g̃i (x), inequality in (5.1)
becomes:

g̃i (x
k+1) − g̃i (x

k) ≥ (λk/2)d
2(xk, xk+1)ζ k

i − εki d(xk, xk+1). (5.2)

Note that the inequality in (5.2) is a direct consequence of the condition (4.1), while condition
(4.2) requires that

εki ≤ σk(λk/2)d(xk, xk+1)ζ k
i , i ∈ I,

i.e., εki d(xk, xk+1) ≤ σk(λk/2)d2(xk, xk+1)ζ k
i . This implies the fundamental condition

fi (x
k) − fi (x

k+1) = g̃i (x
k+1) − g̃i (x

k) ≥ (1 − σk)(λk/2)d
2(xk, xk+1)ζ k

i . (5.3)
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5.1.2 A simple VR structure

Using the (VR) variational rationality approach, we are now in a good position to gives a clear
interpretation of condition (5.3) in term of a worthwhile move. The VR approach compares,
each current period k + 1, two alternatives: to stay or to change, i.e.,

(1) to stay at the status quo xk, making the stay xk � xk+1 = xk;
(2) to change, making the change xk � xk+1, xk+1 �= xk .

Then, the VR approach defines the following list of concepts relative to a move mk = xk �

xk+1:

(a) advantages to move (change rather than stay) are, for each member i of the group,
Ai (xk, xk+1) = g̃i (xk+1) − g̃i (xk) = fi (xk) − fi (xk+1). These advantages refer to the
difference between the utility to change from xk to xk+1 and the utility to stay at xk ;

(b) inconveniences to move Ii (xk, xk+1) = Ci (xk, xk+1) − Ci (xk, xk) ≥ 0 represent the
difference between costs to change Ci (xk, xk+1) and costs to stay Ci (xk, xk). The con-
struction of such costs to move is complex and requires a lot of justifications; see
Soubeyran (2021a,b, c, d).Costs tomove are not symmetric. That is,Ci (y, x) �= Ci (x, y).
In the present paper inconveniences to move Ii (xk, xk+1) are higher or proportional to
the Riemannian distance between xk and xk+1, namely, d(xk, xk+1). Then, we will sup-
pose that Ii (xk, xk+1) ≥ ζ k

i d(xk, xk+1), for all k ∈ N. This means that inconveniences
to move must be high enough in the large, i.e., when the length d(xk, xk+1) of moves
are high enough;

(c) motivation to move is Mi (xk, xk+1) = Ui
[
Ai (xk, xk+1)

]
, where Ui [Ai ] is the utility

of advantages to move;
(d) resistance to move is Ri (xk, xk+1) = Di

[
Ii (xk, xk+1)

]
, where Di [Ii ] is the disutility of

inconveniences to move. Resistance to move is strong when Di [Ii ] = I β
i , 0 < β ≤ 1. It

is weak when β > 1.
(e) a worthwhile balance Bi (xk, xk+1) = Mi (xk, xk+1) − ξi Ri (xk, xk+1) is a weighted

difference between motivation and resistance to move. The importance that member i
gives to resistance to move is the weight ξi > 0.

Then, for member i , a move is worthwhile if Bi (xk, xk+1) ≥ 0. This condition means that
motivation to move is high enough relative to resistance to move. Thus, condition in (5.3)
defines a worthwhile move.

This paper supposes implicitly a linear -quadratic variational structurewhereUi [Ai ] = Ai

and Di [Ii ] = I 2i for all Ai , Ii ∈ R+.

5.1.3 Worthwhile stop and go group dynamics

Starting from the status quo x0, these group dynamics can be:

(a) over one period (the current period),

• A collective stay at a weak desired collective end x∗ = x0 ∈ X (collective desire) if
there does not exist an other collective action y ∈ X such that Ai (x∗, y) > 0 for all
i ∈ I;

• A collective stationary trap x∗ = x0 ∈ if there does not exist an other collective
action y ∈ X such that Bi (x∗, y) > 0 for all i ∈ I;

• A collective worthwhile move going from x0 to y if Bi (x0, y) ≥ 0 for all i ∈ I.
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(b) over two periods,

• A collective variational trap x∗ �= x0 ∈ X if, starting from x0 ∈ X ,

(1) Bi (x∗, x0) ≥ 0 for all i ∈ I in the current period and, i.e., it is collectively
worthwhile to change from x0 to x∗ for all members of the group;

(2) x∗ is a collective stationary trap in the future period, i.e., it is not worthwhile to
move from x∗.

5.2 Interpretations of themain concepts and results

5.2.1 �-quasi-weakly Pareto solutions as global traps

In the context of the VR approach, the concept of ε-quasi-weakly Pareto solution introduced
in Definition 2 models a trap when resistance to move is strong (β = 1, see above the
definition of resistance to move). That is, there is no way to make a collective worthwhile
move x∗

� x, x �= x∗ such that hi (x∗) − hi (x) > εi d(x, x∗), for all x �= x∗, i ∈ I, where
ε := (ε1, . . . , εm) ∈ R

m+ is taken a priori.

5.2.2 Succession of traps of successive perturbation functions

Each period, the proximal point algorithm introduced in Sect. 4 considers functions hi (·) = 
(Fk )i (·) = fi (·)+(λk /2)d2(xk , ·)ζik . They can be seen as perturbations of the initial functions 
fi (·), i ∈ I. This means that, each period, (4.1) models a succession of moves mk : xk 

� 
xk+1 going from a trap xk to a next trap relative the vectorial perturbation function (Fk )(·). 
This algorithm is a specific instance of the algorithm given by inequality in (5.3). This last 
algorithm defines a succession of worthwhile moves, for at least, each period, one member 
of the group i = i(k). Condition xk ∈ Ωk requires that, each period, the payoff fi (·) of 
any other member of the group i �= i(k) improves or be the same as before. Condition 
(4.2) requires that each worthwhile move must be large enough to accelerate convergence: 
d(xk , xk+1) large enough.

5.2.3 Succession of large enough worthwhile moves

The main result of Sect. 4, namely, Theorem 3, shows that every cluster point of a succession 
of large enough worthwhile moves (see (4.1) and  (4.2)) is a Pareto critical point of the initial 
function F(·). As noted earlier, full convergence to a weak Pareto optimum of F(·) is obtained 
in Theorem 4 when the problem is assumed to be convex.

5.2.4 An illustration of Lewin’s change management model

Moving from one trap to an other one refers to the famous Lewin’s unfreezing, change, 
refreezing model of change; see Lewin (1952, 1959). Lewin believed a successful change 
project involved three steps:

1. Unfreezing. For Lewin, human behavior was based on a quasi-stationary equilibrium sup-
ported by a complex field of forces. Before old behavior can be discarded (unlearnt) and 
new behavior successfully adopted, the equilibrium needs to be destabilized (unfrozen). 

This first stage of change involves preparing the organization to accept that change is
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necessary, which involves breaking down the existing status quo before you can build up
a new way of operating;

2. Change. After the uncertainty created in the unfreeze stage, the change stage is where
people begin to resolve their uncertainty and look for new ways to do things. People start
to believe and act in ways that support the new direction;

3. Refreezing. This seeks to stabilize the group at a new quasi-stationary equilibrium in
order to ensure that the new behaviors are relatively safe from regression.

It is worth mentioning that the present paper and Bento et al. (2021) provide two variants
of such Lewin’s model when resistance to move is weak, with two different formulations of
resistance to move. Then, both papers give an application to the theories of collective desires,
showing how a group must escape to a succession of temporary traps to be able to reach, at
the end, his desires.

6 Conclusions

We have given a definition of approximate Pareto efficient solution and a necessary condi-
tion for such solutions in multiobjective optimization on Riemannian manifolds. We also
propose an inexact version of the algorithm given by Bento et al. (2018) using the notion of
approximate solution. We have presented a convergence analysis, which proves that every
accumulation point, if any, is a critical Pareto of the problem. Furthermore, under the assump-
tion of convexity one has convergence to weakly Pareto of the problem. As an application,
we show how a Pareto critical point can be reached as a limit of traps in the context of the
variational rationality approach of stay and change human dynamics.

As future perspectives we intend to extend our convergence analysis by considering the
subproblem of the iterative process presented in Bento et al. (2018) regularized by a Rie-
mannian version of the proximal distance introduced in Auslender and Teboulle (2006). In
the linear context an approach of the proximal method for multiobjective optimization with
proximal distance was considered in Bento et al. (2018a).
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