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Severe COVID‑19‑associated variants 
linked to chemokine receptor gene control 
in monocytes and macrophages
Bernard S. Stikker1, Grégoire Stik2,3†, Antoinette F. van Ouwerkerk4†, Lianne Trap1, Salvatore Spicuglia4, 
Rudi W. Hendriks1 and Ralph Stadhouders1,5*  

Background
Coronavirus disease 2019 (COVID-19) is a potentially life-threatening respiratory dis-
order caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
[1]. Clinical manifestations of SARS-CoV-2 infection range from no or mild symp-
toms to respiratory failure. Life-threatening disease is often associated with an exces-
sive inflammatory response to SARS-CoV-2, involving elevated systemic cytokine levels 
and profound organ infiltration by monocytes and macrophages [2, 3]. Besides clinical 
characteristics such as age and various comorbidities [4], genetic differences play a role 
in predisposing individuals to progress towards severe disease [5, 6]. In genome-wide 
association studies (GWASs), the 3p21.31 locus was strongly associated with increased 
risks of morbidity and mortality - in particular for younger (≤ 60 years) individuals [7]. 
However, it is currently still largely unclear how variants and genes in this locus affect 
the immune response against SARS-CoV-2 and COVID-19 disease pathophysiology.

Abstract 

Genome-wide association studies have identified 3p21.31 as the main risk locus for 
severe COVID-19, although underlying mechanisms remain elusive. We perform an epi-
genomic dissection of 3p21.31, identifying a CTCF-dependent tissue-specific 3D regu-
latory chromatin hub that controls the activity of several chemokine receptor genes. 
Risk SNPs colocalize with regulatory elements and are linked to increased expression of 
CCR1, CCR2 and CCR5 in monocytes and macrophages. As excessive organ infiltration of 
inflammatory monocytes and macrophages is a hallmark of severe COVID-19, our find-
ings provide a rationale for the genetic association of 3p21.31 variants with elevated 
risk of hospitalization upon SARS-CoV-2 infection.

Keywords: SARS-CoV-2, COVID-19, 3p21.31, GWAS, Monocyte, Macrophage, 
Chemokine receptor, 3D genome organization, CTCF, Gene regulation

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// 
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi 
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SHORT REPORT

Stikker et al. Genome Biology           (2022) 23:96  
https://doi.org/10.1186/s13059‑022‑02669‑z

*Correspondence:   
r.stadhouders@erasmusmc.nl 
†Grégoire Stik and Antoinette 
F. van Ouwerkerk contributed 
equally to this work.
1 Department of Pulmonary 
Medicine, Erasmus MC, 
University Medical Center 
Rotterdam, Rotterdam, The 
Netherlands
Full list of author information 
is available at the end of the 
article

http://orcid.org/0000-0002-1060-5607
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-022-02669-z&domain=pdf


Page 2 of 10Stikker et al. Genome Biology           (2022) 23:96 

Results and discussion
COVID-19 GWAS meta-analyses (release 4 by the COVID-19 Host Genetics Initia-
tive [8]) confirmed the strong association between the 3p21.31 locus and COVID-19, 
both when comparing hospitalized COVID-19 patients with healthy control subjects 
(Additional file  1: Fig.S1a) or with non-hospitalized patients (Additional file  1: Fig.
S1b), indicating a stronger link with more severe disease. We focused on the former 
comparison (8638 hospitalized COVID-19 patients vs. 1,736,547 control subjects) to 
maximize the number of associated SNPs available for downstream analysis. Regional 
association plots generated using the Functional Mapping and Annotation (FUMA) 
platform [9] revealed a region of 743 kb with 21 independent significant (P<5e−8) 
GWAS SNPs and hundreds of variants in high linkage disequilibrium (LD; r2>0.8) 
(Fig. 1a). Approximately 96% of these SNPs fall in non-coding regions adjacent to 12 
known protein-coding genes (Fig. 1a).

Common disease-associated genetic variants predominantly localize to regulatory 
DNA elements [11]. To identify disease-relevant candidate genes and gene regulatory 
regions at 3p21.31, we integrated GWAS findings with publicly available data from large-
scale transcriptomics and epigenome profiling studies. Special emphasis was placed on 
immune cells, as detrimental hyperinflammation is characteristic of severe COVID-19 
[2, 3]. Analysis of histone 3 lysine 27 acetylation (H3K27Ac) profiles from ENCODE [12] 
and BLUEPRINT [13] databases revealed cell type-specific active gene regulatory ele-
ments (GREs) at 3p21.31, with particularly strong activity seen in monocytes, monocyte-
derived macrophages and neutrophils (Fig. 1b, c, Additional file 1: Fig.S2). The largest 
fraction of disease-associated SNPs overlapped with monocyte  H3K27Ac+ GREs, which 
were concentrated in three active chromatin regions (ACRs) near the CCR1, CCR2, 
CCR3 and CCR5 genes (Fig.  1b, c). CCR1 and CCR2 are critical mediators of mono-
cyte/macrophage polarization and tissue infiltration [14], which are pathogenic hall-
marks of severe COVID-19 [2, 3]. The three ACRs also showed substantial chromatin 
accessibility (as measured by DNAse-Seq) in monocytes (Additional file 1: Fig.S2). Gene 
expression analysis using data from 6 transcriptome repositories (see the “Methods” sec-
tion) confirmed strong transcriptional activity of the 3′ CCR  genes in tissues containing 
haematopoietic cells (e.g. whole blood, spleen), with especially CCR1 and CCR2 being 
highly expressed in classical monocytes, macrophages and neutrophils (Fig.  1d, Addi-
tional file  1: Figs. S2-S3). Of note, several other immune cell subsets, including T cell 
and dendritic cell subsets, also expressed specific CCR  genes (Fig. 1d, Additional file 1: 
Figs. S2-S3). Chromatin interaction profiles from primary immune cells (measured by 
promoter-capture Hi-C [15]) revealed extensive monocyte/macrophage-specific chro-
matin interactions between the three ACRs, as exemplified by CCR1 promoter interac-
tion profiles in monocyte-derived macrophages and T cells (Fig. 1e, Additional file 1: Fig.
S4a-b). In all immune cells profiled by Javierre et al. [15], no significant interactions were 
detected between 3p21.31 gene promoters and the lead SNP region or the most distal 
SNPs in LIMD1 (Additional file  1: Fig.S4c), although HindIII-based promoter-capture 
Hi-C has limited resolution very close (<20 kb) to viewpoints.

Together, this analysis reveals the strong transcriptional activity of a CCR  gene cluster 
within the 3p21.31 COVID-19 risk locus in immune cells, especially in monocytes and 
macrophages. Activity is centred around CCR1 and its genomic surroundings, which 
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Fig. 1 The 3p21.31 severe COVID-19 risk locus harbours a 3D chromatin hub that controls 
monocyte-macrophage chemokine receptor expression. a FUMA regional plot of the 3p21.31 locus 
highlighting all variants in high linkage-disequilibrium (r2>0.8, P<0.05) with independent significant 
(P<5e−8) GWAS SNPs. Bar graph denotes SNP distribution. b Number of COVID-19-associated SNPs 
overlapping with  H3K27Ac+ regions in the indicated cell types. c UCSC genome browser view of H3K27Ac 
ChIP-Seq tracks for the indicated cell or tissue types (fibro. = fibroblast, epith. = epithelial, Mph = 
macrophage, mem. B = memory B cell). Genes and FUMA SNPs are shown above, yellow shading indicates 
location monocyte/macrophage-specific active chromatin regions (‘ACR1-3′). d Normalized gene expression 
levels (transcripts per million; TPM) of 3p21.31 candidate genes across various immune cell subsets from 
peripheral blood (DICE and HaemoSphere databases) and in vitro transdifferentiated induced macrophages 
(iMacs [10]). e Circos plots showing significant chromatin interactions with the CCR1 promoter (green 
dashed line) in LPS stimulated macrophages or CD8+ T cells as measured by promoter-capture Hi-C (freq.: 
frequency). ACRs are indicated in orange. f Schematic indicating active chromatin hub formation involving 
the ACRs (enhancer; Enh.), CTCF binding sites and indicated CCR  genes in monocytes/macrophages. g 
Experimental scheme depicting C/EBPα-driven transdifferentiation of B cells carrying CTCF-mAID alleles into 
iMacs. Exposure to auxin induces rapid degradation of CTCF-mAID [10]. h Hi-C interaction matrices (5 kb 
resolution, smoothened) for iMacs before (left) and after (right) auxin-inducible CTCF degradation, resulting 
in weaker interactions (indicated by numbers) between CCR genes and/or ACR1 (colour code as in panel f ). 
CTCF ChIP-Seq peaks in iMacs are indicated below. i Gene expression changes of indicated genes in iMacs 
after CTCF degradation
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are organized in a 3D chromatin hub involving the other active CCR  genes (i.e. CCR2, 
CCR5) and putative enhancer elements (Fig. 1f )—a chromatin conformation often used 
for complex tissue-specific gene regulation [16]. To further substantiate the relevance 
of local 3D chromatin organization for 3p21.31 CCR  gene regulation in myeloid cells, 
we used epigenomics data from the BLaER induced macrophage (iMac) cell line sys-
tem [10]. The iMacs, which morphologically and functionally closely resemble mac-
rophages [17], showed highly comparable H3K27Ac enrichment at the 3p21.31 ACRs 
and expressed high levels of CCR1, CCR2 and CCR5 (Additional file 1: Fig.S5a-b). High-
resolution in-situ Hi-C data [10] of iMacs revealed that the 3p21.31 COVID-19-associ-
ated genomic block resides in the nuclear A compartment (Additional file 1: Fig.S5c), a 
chromosomal compartment located in the nuclear interior that groups together tran-
scriptionally active chromatin [18]. Zooming in, we observed that most of the 3p21.31 
risk variants and all associated chemokine receptor genes localize to a single topologi-
cally associating domain (TAD) (Additional file  1: Fig.S5d), representing an insulated 
genomic neighbourhood that promotes establishing interactions between genes and 
regulatory elements inside the TAD [18]. Interestingly, ACR1 and ACR3 were flanked 
by strong binding sites for the genome architectural CCCTC-binding factor CTCF [19] 
in iMacs and primary monocytes (Additional file 1: Fig.S5a). Together with the presence 
of additional CTCF binding sites within all three ACRs, including the CCR1 promoter 
region (Additional file  1: Fig.S5a), these data suggest that CTCF organizes local 3D 
active chromatin hub formation to insulate the CCR3-CCR1-CCR2-CCR5 gene cluster 
for transcriptional regulation. To test this hypothesis, we leveraged our recently devel-
oped iMac line expressing CTCF fused to an auxin-inducible degron (mAID), which 
allows for rapid degradation of CTCF and disruption of 3D genome architecture (Fig. 1g) 
[10]. Detailed Hi-C analysis confirmed the presence of strong interactions between the 
ACRs and 3′ CCR  genes in iMacs, which were disrupted upon CTCF depletion (Fig. 1h). 
Importantly, chromatin hub decommissioning specifically reduced CCR1, CCR2 and 
CCR5 expression (Fig. 1i), revealing that CTCF-mediated 3D chromatin interactions are 
critical for regulating 3p21.31 CCR  gene activity in macrophages. Of note, expression of 
the CCRL2 gene just downstream of CCR5—encoding an atypical chemokine receptor 
involved in macrophage polarization [20]—was only marginally affected by CTCF deple-
tion  (log2 fold change of 0.23).

We next sought to directly link COVID-19-associated genetic variants to altered 3′ 
CCR  gene expression in myeloid immune cells. To this end, we used FUMA to sys-
tematically analyze previously reported expression quantitative trait loci (eQTLs) 
overlapping with the 958 COVID-19-associated (P<5e−8) SNPs. As eQTL sources, 
we focused on disease-relevant tissues rich in monocytes/macrophages (i.e. whole 
blood and lung tissue) and studies using purified monocytes or in  vitro differenti-
ated macrophages (see the “Methods” section). The 3′ 3p21.31 CCR  genes showed 
highly significant eQTL associations (FDR <0.05) with COVID-19-associated vari-
ants, especially in monocytes and macrophages (Fig. 2a, b). Multiple risk SNPs were 
identified as eQTLs for CCR1, CCR2, CCR3 and CCR5 in monocytes/macrophages, 
with the majority correlating with increased gene expression (Fig.  2c, d). No eQTL 
associations were detected for CCRL2. To further prioritize variants with potential 
biological significance we used RegulomeDB [21] and CADD [22] SNP annotations. 
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Stringent filters for both scores were combined with localization within a putative 
monocyte regulatory region  (H3K27Ac+ and  DNAse+), yielding four unique candi-
date causal SNPs of which three were associated with increased CCR1, CCR2 and/or 
CCR5 expression (Fig. 2e, f ). These variants did not engage in significant interactions 
with sequences far outside the susceptibility region, e.g. beyond the CCR gene cluster 
(Additional file  1: Fig.S6). Candidate causal variants mostly clustered within ACR2 
and altered putative transcription factor binding motifs, readily providing testable 
hypotheses for future investigations (Additional file 1: Fig.S7). For example, two SNPs 
within the CCR1 promoter affected binding motifs of known regulators of the mac-
rophage inflammatory expression programme (Additional file  1: Fig.S7a-b). Variant 

Fig. 2 3p21.31 COVID-19 risk variants are linked to increased monocyte-macrophage chemokine receptor 
gene expression. a, b Heatmap depicting statistical association strength (using adjusted P values) for the 
peak eQTL SNP in whole blood and lung tissue (panel a, GTEx v8) or in monocytes and macrophages (panel 
b, see the “Methods” section for eQTL sources). Only variants in high linkage-disequilibrium (r2>0.8, P<0.05) 
with independent significant (P <5e−8) GWAS SNPs were considered. c Number of eQTL SNPs associated 
with the indicated 3p21.31 genes in monocytes and macrophages. d Percentage of eQTL SNPs associated 
with increased expression of the indicated 3p21.31 genes in monocytes and macrophages. e CADD 
and RegulomeDB scores for all FUMA SNPs across the 3p21.31 locus. Red dashed lines indicate selected 
thresholds. SNPs passing the threshold are indicated in orange; those within monocyte H3K27Ac+/DNAse+ 
regulatory regions are in red. Below is depicted a UCSC genome browser view of H3K27Ac ChIP-Seq and 
DNAse-seq signals in the indicated cell types centred on the four candidate causal variants in ACR1 and 
ACR2. f eQTL analysis showing the three candidate causal variants that are also eQTLs for CCR1, CCR2 and 
CCR5. Direction of the association, P values and tissue/cell types are indicated. g Schematic indicating 
how 3p21.31 variants may increase risk of severe disease upon SARS-CoV-2 infection through altered 
monocyte-macrophage chemotactic receptor expression. See text for details
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rs3181080 optimizes a composite Interferon Regulatory Factor (IRF)-Activator Pro-
tein 1 (AP1) motif, which is used for cooperative binding of IRF and AP1 family tran-
scription factors that promote monocyte/macrophage activation [23]. In line with 
CCR1 activation by IRF/AP1 factors, binding of AP1 proteins and IRF4 to rs3181080 
was detected in CCR1-expressing GM12878 lymphoblastoid cells (Additional File 1: 
Fig.S7c). Previous experiments in mouse macrophages [24] confirmed IRF binding to 
the Ccr1 promoter (Additional file  1: Fig.S7d). The second CCR1 promoter variant, 
rs34919616, disrupts a critical nucleotide in a motif for BCL6 (Additional file 1: Fig.
S7a-b), a suppressor of inflammatory gene expression in macrophages [25].

Taken together, these data show that the COVID-19-associated 3p21.31 locus har-
bours a CTCF-dependent tissue-specific 3D chromatin hub that controls chemotactic 
receptor expression in monocytes and macrophages. Several 3p21.31 variants localize 
to gene regulatory elements within this chromatin hub and are associated with elevated 
CCR1, CCR2, CCR3 and CCR5 expression, which is further supported by a recent tran-
scriptome-wide association study in lung tissue [6]. Mechanistically, these risk variants 
may modulate transcription factor binding at CCR  gene regulatory elements. CCR1, 
CCR2 and CCR5 upregulation could enhance lung infiltration by monocytes and mac-
rophages upon viral infection [14], contributing to the rapid and deleterious hyperin-
flammation observed in COVID-19 patients suffering from severe disease [2, 3] (Fig. 2g). 
In support of this notion, single cell transcriptomics revealed increased levels of CCR1 
and CCR5 as well as their ligands CCL2/CCL3 specifically in pulmonary macrophages 
from critical COVID-19 patients [26, 27]. Additionally, CCL2 plasma levels showed the 
highest predictive value for mortality in a COVID-19 patient cohort [28]. These findings 
are in line with excessive pulmonary influx of monocytes and subsequent differentiation 
into inflammatory tissue macrophages as a hallmark of severe COVID-19 (Fig. 2g) [26].

Our analysis has several limitations. Although we provide compelling evidence for 
monocyte-macrophage 3’ CCR  gene activity linked to 3p21.31 risk variants, several other 
immune cell types involved in antiviral immunity also express some of these chemokine 
receptors (e.g. CCR1 on neutrophils, CCR5 on T cell subsets) and may therefore also be 
affected by the genetic variants. Moreover, although our analysis detected fewer non-
coding regulatory activity in the 5′ part of the 3p21.31 COVID-19-associated genomic 
block, this region harbours the lead SNP and several actively transcribed genes with 
more housekeeping-like expression patterns, which may also be relevant for COVID-
19 pathophysiology. Indeed, Downes et al. recently reported that a variant in high LD 
with the lead SNPs affects an enhancer of LZTFL1 in non-immune cells, with potential 
implications for anti-viral responses [29]. Although variants in the lead SNP region were 
also reported as eQTLs for CCR2 and CCR5 in monocytes and macrophages, this likely 
reflects the high LD (r2>0.8) of these variants with the 3′ CCR  SNPs (Fig. 1a). In support 
of this notion, genetic deletion of a 68kb region around the lead SNP in a myeloid cell line 
did not affect 3′ 3p21.31 CCR  gene expression [30] and Downes et al. found no evidence 
of these SNPs disrupting gene regulatory mechanisms in immune cells [29]. Another 
study integrating loss-of-function experiments in an airway epithelial carcinoma cell line 
with eQTL data implicated SLC6A20 and CXCR6 in COVID-19 pathophysiology [31], 
whereas deleting the lead SNP region resulted in reduced CCR9 and SLC6A20 expres-
sion in leukemic T cells [30]. Future investigations including additional (non-immune) 
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cell types are required to further elucidate the candidate causal genes operating in differ-
ent cell types and/or under different microenvironmental circumstances.

Conclusions
Our data support a scenario in which common genetic variants increase susceptibil-
ity to develop severe COVID-19 by affecting gene regulatory control of monocyte-
macrophage chemotactic receptor expression. As a consequence, elevated migratory 
capacity of monocytes and macrophages could contribute to aggravated inflammatory 
responses and more severe disease. These data add to our understanding of the genetic 
basis of COVID-19 disease heterogeneity and support exploring therapeutic targeting of 
monocyte-macrophage 3p21.31 CCR activity in hospitalized COVID-19 patients.

Methods
GWAS data retrieval

Version 4 COVID-19 GWAS meta-analysis data was retrieved from The COVID-19 
Host Genetics Initiative at https:// www. covid 19hg. org/. GWAS data (GRCh37/hg38 
genome build) was obtained from two studies: B1_ALL (hospitalized COVID-19 vs. 
non-hospitalized COVID-19; 2430 cases versus 8478 controls) and B2_ALL (hospital-
ized COVID-19 vs. population; 8638 cases versus 1,736,547 controls). GWAS summary 
statistics files were used to generate input files for FUMA using standard data frame pro-
cessing functions in Rstudio v.1.3.

Identification of a high LD block of COVID‑19 associated SNPs

FUMA [9] was performed for both B1_ALL and B2_ALL GWASs (version 4 summary 
statistics downloaded from https:// www. covid 19hg. org/) using default settings, with 
exception of the r2 (LD) used to define independent significant SNPs, which was set 
to ≥0.8. Manhattan and regional plots were generated by FUMA’s SNP2GENE func-
tion. Significant FUMA SNPs were converted to GRCh38/hg38 using UCSC LiftOver 
(https:// genome. ucsc. edu/ cgi- bin/ hgLif tOver) to allow aligning variants to the epig-
enomic profiles.

ChIP‑Seq, DNAse‑Seq and (promoter‑capture) Hi‑C data analysis

ChIP-Seq and DNAse-Seq epigenomic data used were retrieved from public ENCODE 
[12] and BLUEPRINT [13] databases. Data were visualized in the UCSC Genome 
Browser (https:// genome. ucsc. edu). The intersect function of BEDTools [32] was used 
to determine the number of FUMA SNPs overlapping with  H3K27Ac+ regions in the 
indicated cell types. Peak calling files for each H3K27Ac dataset were directly obtained 
from the ENCODE website (https:// www. encod eproj ect. org/). Circos plots visualiz-
ing promoter-capture HiC data from the BLUEPRINT consortium [15] were generated 
using https:// www. chicp. org/ chicp/, with a threshold normalized interaction value of 7. 
ChIP-Seq and in-situ Hi-C data from in vitro transdifferentiated macrophages (induced 
macrophages or iMacs), both prior to and after auxin-inducible CTCF degradation, were 
obtained from GSE140528 and analysed as previously described [10].

https://www.covid19hg.org/
https://www.covid19hg.org/
https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://genome.ucsc.edu
https://www.encodeproject.org/
https://www.chicp.org/chicp/
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Gene expression analysis

RNA-Seq profiles from a broad spectrum of selected relevant cell types were 
obtained from public ENCODE [12] and BLUEPRINT [13] databases and visualized 
in the UCSC Genome Browser. Expression value heatmaps from various collection 
of (immune) cell types were obtained from DICE [33] (https:// dice- datab ase. org/), 
GTEx v8 [34] (via FUMA’s GENE2FUNCTION function), BioGPS [35] (http:// biogps. 
org/), Haemosphere [36] (https:// www. haemo sphere. org/) and Monaco et  al. [37] 
(GSE107011). Transcripts per million (TPM) values were visualized as averaged val-
ues using Morpheus (https:// softw are. broad insti tute. org/ morph eus/). RNA-Seq and 
TPM values for iMacs were obtained from GSE140528 and analysed as previously 
described [10].

Candidate causal variant filtering

The Combined Annotation Dependent Depletion (CADD [22]) and RegulomeDB [21] 
scores for all significantly associated SNPs were also obtained from FUMA. As thresh-
olds to identify candidate causal variants, we used CADD scores >14 and RegulomeDB 
scores <3. SNPs were further filtered based on their combined overlap with H3K27Ac 
ChIP-Seq and DNAse-seq peaks in monocytes (data obtained from ENCODE [12]). 
Transcription factor binding motifs were obtained using HOMER [38].

Expression quantitative trait locus (eQTL) analysis

eQTL analysis was performed using FUMA, focusing on tissues relevant for COVID-
19 pathophysiology and enriched for monocytes/macrophages (i.e. whole blood and 
lung from GTEx v8 [34]) or studies using monocytes and/or in vitro differentiated mac-
rophages [39–41]. Thresholds for statistical significance were set to FDR<0.05.
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sortium was visualized using https:// www. chicp. org/ chicp/; iMac Hi-C and RNA-Seq data was obtained from GSE140528; 
heatmaps were generated using Morpheus (https:// softw are. broad insti tute. org/ morph eus/). Database accession 
numbers of individual datasets used and accompanying citations can be found in Additional file 2: Table S1.
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