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Abstract
The variability of phytoplankton distribution has been unraveled by high-frequency measurements. Such a

resolution can be approached by automated pulse-shape recording flow cytometry (AFCM) operating at hourly
sampling resolution. AFCM records morphological and physiological traits as single-cell optical pulse shapes
that can be used to classify cells into phytoplankton functional groups (PFGs). However, the associated manual
post-processing of the data coupled with the increasing size and number of datasets is time-consuming and
error-prone. Machine learning models are increasingly used to run automatic classification. Yet, most of the
existing methods either present a long training process, need to manually design features from the raw optical
pulse shapes, or are dedicated to images only. In this study, we present a convolutional neural network (CNN)
to classify several PFGs using AFCM pulse shapes. The uncertainties of manual classification were first estimated
by comparing experts’ recognition of six PFGs. Consensual particles from the manual PFG classification were
used to train and validate the CNN. The CNN obtained competitive performances compared to other models
used in the literature and remained robust across several sampling areas, and instrumental hardware and set-
tings. Finally, we assessed the ability of this classifier to predict phytoplankton counts at a Mediterranean coastal
station and from a cruise in the South-West Indian Ocean, providing a comparison with the manual classifica-
tion over 3-month periods and a 2h frequency. These promising results strengthen the near real-time observa-
tion of PFGs, especially required with the increasing use of AFCM in monitoring research programs.

Phytoplankton cells are major actors in marine environments
and in biogeochemical cycles. The amount of seawater dissolved
CO2 absorbed by phytoplankton cells per unit of time, called
autotrophic carbon fixation, is estimated to be equivalent to all
of the primary terrestrial production. This is the case even if they
represent less than 1% of the total autotrophic biomass (Field
et al. 1998), suggesting a rapid growth capacity and high turn-
over rates (Fowler et al. 2020). Currently, models estimating pri-
mary production in the ocean present a wide uncertainty range
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(Carr et al. 2006; Saba et al. 2011; Buitenhuis et al. 2012), mainly
due to the coarse resolution of the datasets collected (Lévy
et al. 2012). Indeed, the heterogeneous distributions of phyto-
plankton combined with a high structural and functional diver-
sity highlight the need for infra kilometer spatial resolution and
infra hour temporal resolution (Kavanaugh et al. 2016).

Phytoplankton functional diversity, biomass, and distribution
are listed as essential ocean variables (EOV) (Miloslavich
et al. 2018), but datasets with resolutions inferior to 10 km are
scarce. Automated pulse-shape recording flow cytometry (AFCM)
such as the CytoSense instrument (Cytobuoy, b.v.; Dubelaar
et al. 1999; Dubelaar and Gerritzen 2000) enables vast automated
data acquisition with hourly sampling strategies of several phyto-
plankton groups at a single-cell-level resolution. AFCM is now
involved in numerous oceanographic field studies and benefits
from the growing scientific interest in automated single-cell
approaches (Boss et al. 2020) in monitoring programs.

The CytoSense AFCMs generate a set of pulse shapes or
flow cytometric curves (FCCs), which represent the optical
profiles of scatter and fluorescences emitted by each particle
(detritus, cell, or colony) when crossing a laser beam. Scatter
signals collected at small and large angles (forward scatter
[FWS] and sideward scatter [SWS], respectively) are related to
the particle size and structure (granularity), while red fluores-
cence (FLR) and yellow-orange fluorescence (FLY or FLO) sig-
nals are reflecting pigment contents of the photosynthetic
cells (such as chlorophyll a or phycoerythrin). From the differ-
ence between left-angled and right-angled FWS pulses, a fifth
signal named Curvature is extracted. Instruments can process
up to 10,000 particles per second thanks to a frequency acqui-
sition of 4 MHz, with sampled volume up to 5 mL routinely.

Groups recognition and identification are based on seminal
papers (Olson et al. 1985; Chisholm et al. 1988; Green
et al. 1996; Jacquet et al. 2002; Metfies et al. 2010; Ribeiro
et al. 2016; Hamilton et al. 2017; van den Engh et al. 2017;
Marrec et al. 2018) describing the most common groups
observed by flow cytometry in natural seawater. In addition to
these groups of pico-nanophytoplankton, AFCM resolves micro-
phytoplankton size classes with a coarse taxonomic-level identifi-
cation (typically up to the genus) using the recent integration of
image-in-flow devices (Dugenne et al. 2014). A dedicated vocabu-
lary, relying on these papers, has been recently suggested by a
wide group of flow cytometry experts (http://vocab.nerc.ac.uk/
collection/F02/current/). These size and pigment-related groups
belong to several phytoplankton functional groups (PFGs), since
they fit the initial definition of sets of species sharing similar eco-
logical and biogeochemical functionalities (Le Quere et al. 2005),
and will hereafter be identified as cytometric PFG (cPFG).

Raw data recorded by AFCM has to be manually processed.
This processing, called manual gating of cPFG, is performed
on 2D projections of reduced statistics of the FCCs (such as
pulse maximum height, area under the curve, pulse width).
The long periods of assiduity required, coupled with experts’

diversity of practices and the significant differences in cPFG
abundances can be substantial sources of errors. Furthermore,
the spread of the AFCM technology generates datasets too
numerous to be manually processed, constraining the collec-
tion of valuable high-frequency cPFGs datasets. In order to
facilitate the work of an increasing number of AFCM users and
decrease the uncertainties linked to manual gating, the classifi-
cation of cPFGs has to be semi-automated or fully automated.
The automation can be achieved using supervised machine
learning methods that assign a label to an observation based
on its characteristics, a task named classification.

In the case of phytoplankton, automatic classification gener-
ally relies on image processing and computer vision. One can,
for example, cite the count of coccoliths using shallow neural
networks (Beaufort and Dollfus 2004) or more recent works based
on residual neural networks and transfer learning (Yosinski
et al. 2014) in order to classify images from diverse laboratory
cultures and in situ monitoring (Dunker 2019; Gonz�alez
et al. 2019). However, camera resolution is relatively low for the
identification of pico-nanophytoplankton size classes, which
show limited morphological diversity. As such, using the FCCs
offers an alternative since it deals also with these small particles
that can represent up to 90% of the total phytoplankton biomass
(Li et al. 1983; Detmer and Bathmann 1997; Ribeiro et al. 2016).
A second main advantage in working on the automatic classifica-
tion of optical profiles is the shorter training process due to the
absence of transfer learning (Pan and Yang 2009) required to
fine-tune heavy Neural Networks like Residual Networks
(He et al. 2016) for image recognition.

Automatic recognition of cPFGs from the FCCs has received
less attention than image-based identification and can be gath-
ered in two main types of approaches. The first family of
approaches applies machine learning methods on a set of
reduced statistics derived from the FCCs. Boddy et al. (1994)
started to use neural methods to classify cells at the species level.
Wacquet et al. (2013) developed original statistical methods and
implemented them along with existing statistical methods in the
R package RclusTool. Thomas et al. (2018) and Schmidt
et al. (2020) used Random Forests to respectively discriminate
between phytoplankton cells of different populations and
between phytoplankton and non-phytoplankton particles.
Abdelaal et al. (2019) used linear discriminant analysis (LDA) and
present performances outperforming deep learning approaches.

The second family of approaches, to which this study
belongs, relies on the entire FCC signal to perform classifica-
tion. For example, Malkassian et al. (2011) plunged the FCCs
into a Fourier basis and calculated distances to discriminate
between populations. Del Barrio et al. (2019) created curve
templates to classify AFCM nonmarine cells using Wasserstein
distance and optimal transport. Finally, Caillault et al. (2009)
relied on the elastic matching coupled with standard classi-
fiers. While these two families of approaches attempt to clas-
sify cPFGs in an objective and reproducible manner, they all
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present unique advantages and trade-offs. A comparison of all
these approaches has yet to be reported.

In this article, we provide a comparison of expert manual clas-
sifications of cPFGs detected by AFCM. We used the consensual
particles to develop, for the first time, a convolutional neural net-
work (CNN) trained on pulse shapes recorded by AFCM as
described in Fig. 1. We compared the performance of our CNN,
along with other automatic approaches, and tested its robustness
across two instruments and multiple study areas. Finally, the
CNN was used to generate predictions spanning 3 months in a
coastal station of the Mediterranean Sea and 2 months in the
South-West Indian Ocean, both at a 2h sampling frequency. The
robustness and extremely fast process of the applied CNN open
the way to near real-time cPFG analysis.

Material and procedures
Data origin and collection

Two datasets collected using different approaches were used
in this study. The first one, referred to as SSLAMM data, was
acquired in different Mediterranean areas using the same flow
cytometer and settings: at a coastal marine Mediterranean station
(the SSLAMM, SeaWater Sensing Laboratory At MIO Marseille,
France), between September 2019 and December 2019 and in an
open Mediterranean sea area, during the FUMSECK cruise (DOI
10.17600/18001155) in the Gulf of Genoa from 30 April 2019 to
05 May 2019. The second dataset, named hereafter SWINGS
data, originated from the South-West Indian Ocean and the
Southern Ocean and was collected onboard the R/V Marion
Dufresne II, from 11 January 2021 to 08 March 2021, in the
frame of the MAP-IO project (Marion Dufresne Atmospheric
Program—Indian Ocean, University of la Reunion) during the
GEOTRACES SWINGS cruise (South-West Indian Geotraces Sec-
tion, DOI 10.13155/83989, SWINGS data). Two distinct Cyto-
Sense flow cytometers (Cytobuoy b.v.), hereafter identified as
SSLAMM-AFCM, and MAP-IO-AFCM, were deployed. A map
indicating the location of the different sampling areas is given in
Supporting Information Fig. S1.

For both datasets, seawater was continuously pumped in
situ and the flow cytometers ran automated acquisitions
scheduled every 2 h. The SSLAMM coastal seawater was gently
pumped with a VerderFlex40 peristaltic pump at 10 m away
from the coast at a depth of 3 m, and was delivered unaltered

into the laboratory where analyses were conducted. The
FUMSECK data were collected onboard the R/V le Tethys II
from the underway clean seawater supply pumped at 2 m
depth. Onboard the Marion Dufresne II, the seawater was col-
lected from the underway clean seawater supply pumped at
7 m depth, using a centrifugal pump.

The two automated CytoSense flow cytometers (Cytobuoy b.v.)
were operated similarly in the three conditions. They pumped
samples from a dedicated external chamber of 300 mL. The
volume analyzed for each sample was estimated using a cali-
brated peristaltic pump. Before entering the flow cell, the sam-
ple was surrounded by a 0.1-μm filtered seawater sheath fluid
and the generated laminar flow aligned each particle before
crossing a 488-nm laser beam (Coherent, 120 mW). Both
instruments recorded the optical pulse shapes emitted resulting
in FWS, SWS, and two fluorescences. The SSLAMM-AFCM col-
lected wavebands of > 652 nm (red fluorescence, FLR) and
between 552 and 652 nm (orange fluorescence, FLO). The
MAP-IO-AFCM collected wavebands between 668 and 726 nm
(FLR) and 516 and 650 nm (yellow fluorescence, FLY). Particles
were recorded in the size range < 1–800 μm in width and up to
a few mm in length for chain-forming cells.

Laser scattering at frontal angles (FWS) was collected by two
distinct photodiodes to check for the sample core alignment.
The difference between left and right photodiodes signatures
generated the Curvature curve. SWS, FLR, and FLY were collected
with photomultiplier tubes. To follow the stability of the flow
cytometers, 2.0-μm fluorescing polystyrene beads (Polyscience®)
were regularly analyzed. Silica beads (1.01, 2.56, 3.13, 5.02, and
7.27 μm in diameter, Bangs Laboratory®) were also used to cali-
brate FWS into particle size.

Because of the current memory and computational limita-
tions, optimally sampling the entire size range of the phyto-
plankton community in natural marine waters requires some
compromises. To collect small cells, the AFCM settings were
set on high sensitivity: the red fluorescence trigger threshold
was set at 6 mV (FLR6) for SSLAMM-AFCM and at 5 mV
(FLR5) for MAP-IO-AFCM. As a result, the sample was filled
with a majority of small and/or dimly fluorescent particles
and electrical background noise, hereafter simply called noise.
Since the smallest phytoplankton cells are the most abundant
in natural samples, they were counted in volumes between 0.5
and 1 mL.

Fig. 1. Explanatory scheme of the predictive pipeline. (a) Particles are sampled from seawater by AFCM. (b) The five flow cytometric curves
(FCCs = SWS, FWS, FLR, FLO, Curvature) generated for each particle as they cross a laser beam are interpolated to a fixed length and stacked together
into matrices. (c) The CNN predicts the class of each particle using Convolutional layers (red) and Dense layers (blue). (d) The number of particles per
group (phytoplankton or background noise) is computed and returned.
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To collect the largest but less concentrated cells, a second
protocol was applied with a red fluorescence trigger threshold
(high trigger level) set up to 25 mV (FLR25) for SSLAMM-
AFCM, and to 20 mV (FLR20) for MAP-IO-AFCM and a volume
analyzed reaching 5 mL. With this setting, the small particles
and background noise generating acquisition limitations were
not recorded. Except for their use of two different thresholds,
the two protocols (FLR5/FLR6 and FLR20/FLR25) used the
same AFCM settings (same sample pump speed, similar filter
mesh sizes, same optical chamber, similar sampling frequency,
similar gains).

Flow cytometry groups nomenclature
A set of six phytoplankton functional groups determined by

their optical properties were selected in this study. They were
identified and labeled using the flow cytometry consensual
nomenclature (http://vocab.nerc.ac.uk/collection/F02/current/):
Redpicopro, Orgpicopro, Redpicoeuk, Rednano, Orgnano,
Redmicro, Orgmicro. A correspondence table between this new
nomenclature and previous denominations observed in the liter-
ature is given in Supplemental Information Table S1. There were
not enough Redmicro and Orgmicro cells in situ to distinguish
between these two groups and they will be gathered together in
the sequel under the name “Micro” cells. The HSnano,
Redredpico, Redrednano, and Orgpico groups defined in the
nomenclature were not abundant enough to be resolved or not
found in our case.

In addition to these six phytoplankton functional groups,
the datasets contained non-phytoplankton particles thereafter
called noise particles or events. Noise events were heteroge-
neous and have been subdivided into <1 and ≥1 μm groups
using silica beads as a size reference (Supporting Information
Fig. S2). The ≥1 μm noise group mainly contained large detri-
tal particles or predators such as ciliates or flagellates cells that
have ingested some phytoplankton cells. Conversely, <1 μm
noise group often contained optical noise from the sensors,
non-fluorescing heterotrophic prokaryotes, or decaying cells.

The total number of Orgpicopro and Redpicopro cells was
obtained from the FLR5/FLR6 files and the total number of
Orgnano, Redpicoeuk, Rednano, and Micro cells was obtained
from the corresponding FLR20/FLR25 files.

Manual gating methodology and heterogeneity estimation
The raw data collected by the AFCM are composed of a

series of five curves exhibiting variable heights, areas, and
lengths. Experts use a dedicated software, CytoClus4©, and
single values for each curve, typically the area under the curve
or the maximal value of the curve, to perform their gating.
With the summary statistics, experts obtain a point of dimen-
sion five for each observation and the dataset can be represen-
ted by a series of 2D projections. For example, experts
commonly project the Total FLR (the area under the FLR
curve) against the Total FLO or FLY (the area under the FLO or
FLY curve) to separate Orgpicopro and Orgnano from red only

fluorescing particles. Total FLR vs. Total FWS are commonly
used to separate Redpicoeuk, Rednano and Micro size classes,
while Total FLR vs. Total SWS (or Maximal height of SWS) can
help in gating the Redpicopro group. The manual gating pro-
cedure is illustrated in Supporting Information Fig. S3.

The heterogeneity among 6 AFCM manual classifications
was assessed on multiple SSLAMM and SWINGS acquisitions
(6 and 20, respectively), spanning multiple seasons, study
areas, and times of the day. The list of the cPFGs was given,
along with two acquisitions of 2.0-μm polystyrene beads
(Polyscience®) and 3.13-μm silica beads (Bangs Laboratory®).

The heterogeneity was measured by computing the Adjusted
Rand Indices (ARIs) Steinley (2004) on the experts’ overall classi-
fication and the coefficients of variation (CVs) of each cPFG
count. The ARIs indicate the similarity between two experts’
overall classifications. The closest the ARI is to 1, the more simi-
lar the classifications between two experts are. The ARIs have
been computed for all pairs of experts and all files.

In addition, the coefficient of variation of each cPFG is
computed as the standard error divided by the mean of the
expert counts for that cPFG. The closest it is to zero, the more
the experts agreed on the count of the given cPFG. As a result,
the ARIs assessed the overall agreement between experts’ clas-
sifications whereas the CVs summarized the similarities of
manual classifications at the cPFG level.

Beyond the initial training samples, one of the experts has
manually gated 3 months of data from the SSLAMM station
(from mid-September 2019 to mid-December 2019) and the
entire dataset from the MAP-IO-SWINGS cruise. The classifica-
tion obtained from the CNN was then compared with the man-
ual gating.

Data processing for automatic classification
Only the consensual particles, defined as particles for

which 2/3 of the experts assigned the same label were kept to
train and evaluate statistical models.

Due to the acquisition limitations of the two cytometers and
because they present dim fluorescence in surface waters, the Red-
picopro are hard to distinguish from <1 μm noise events and a
curve shape criterion was used to distinguish between them.
Indeed, Redpicopro cells are likely to be spherical cells, and their
SWS signals are expected to look like bell curves, whereas <1 μm
noise events can present a significant variety of shapes. Therefore
among the consensual Redpicopro cells, only the bell-curved
SWS cells were kept to train and validate the models.

The consensual particles were split into three sets: the train-
ing set, the validation set, and the test set. The training set is
used by the models to learn how to distinguish between
cPFGs, the validation to compare several specifications of a
given model, and the test set to compare the best specifica-
tions of different models. In order to reach a substantial total
dataset size and to reduce the imbalance between groups that
affect the training process, the over-represented groups were
undersampled in the training set.
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Yet, as Fig. 2 highlights it, the density of points is not uni-
form in 2D cytograms. Pure random particle sampling tends
to let some of the low-density areas of 2D cytograms nearly
empty, preventing machine learning models to learn which
class to predict for particles in these areas. Hence, additional
particles were sampled to fill low-density areas in the limit of
5% of the dataset size. The impact of these zones on the confi-
dence of the CNN cPFG predictions can for instance be seen
in Supporting Information Fig. S4.

Before undersampling, the number of particles of the most
represented group in the training set was 130 times higher
than the less represented one. After undersampling, it was
only eight times higher at most for the two datasets.

Conversely, the validation set was undersampled in a strati-
fied manner, that is, non-rebalanced. Finally, the test set was

constituted of three genuine files to give the best representa-
tion possible of in situ conditions at different seasons and
times of the day. The total size of the training, validation, and
test sets were 33,791, 50,682, and 134,313 particles for the
SSLAMM data, and 57,241, 365,863, and 224,426 particles for
the SWINGS data. Supporting Information Tables S2 and S3
describe the number of particles of each group in the training,
validation, and test sets.

The length of each AFCM curve is closely linked to the size of
the particle (the bigger the particle the longer the sequence). The
size distribution of the FCCs suggested that 75% of our observa-
tions were recorded with 120 or fewer values.

In order to train the CNN, which needs a fixed data format
for all observations, the curves have been all interpolated to
the fixed length of 120 values using quadratic interpolation

Fig. 2. 2D cytograms showing the particles contained in two files from the SSLAMM data (a,b) and two files from the SWINGS data (c,d). Cytograms
(a) and (c) present the total red fluorescence (a.u., Total FLR) as a function of the total forward scatter (a.u., Total FWS) and cytograms (b) and (d) show
the total orange/yellow fluorescence (a.u., Total FLO, Total FLY) as a function of the total red fluorescence (a.u., Total FLR). Total refers to the area under
the curve of the optical variable. Each dot represents a particle. A particle is considered consensual if 2/3 of the experts have voted for the same cPFG for
this particle. Non-consensual particles are represented in black.
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(see Supporting Information Fig. S5 for an illustration). The
choice of the 3rd quartile was motivated by the fact that, intui-
tively, less information is destroyed when small curves are
interpolated to be bigger than the reverse. Besides, as the cur-
ves were not truncated and the profile shapes were preserved,
the choice of this length is not expected to be of prime impor-
tance regarding the performance of the model.

CNN specification
The core of the predictive pipeline is a CNN initially

designed for image recognition. The general idea of such a net-
work is to learn a series of filters that detect some patterns in
images and help to discriminate between the classes. More for-
mally, these filters are tables of coefficients iteratively used to
compute convolutional operations on the data going through
the layers. Compared to Dense layers, the Convolutional ones
rely on the assumption that regions in the images convey use-
ful information and that close pixels often carry redundant
information. As a result, the total number of parameters of the
model is reduced and the training of the model is kept tracta-
ble. The Convolutional layers automatically extract features
from the signal, which are then used by Dense layers at the
end of the network to perform the classification itself.

As both images and AFCM data can be represented as tables
of coefficients, the same CNNs can be used to treat both data
types with minor adjustments. The CNN architecture is pres-
ented in Supporting Information (see Fig. S6). The architecture
was inspired by the VGG architecture (Simonyan and
Zisserman 2014). Other architectures such as the Inception
Architecture (Szegedy et al. 2015) have been implemented but
brought no additional performance (result not shown). The
number of observations was not sufficient to implement
deeper architectures such as residual networks (He et al. 2016).

In our network, features are first extracted by three blocks
of convolutional layers separated by “local” average pooling
layers to reduce the redundant parts of the signal and to auto-
matically design features useful for the classification. These
convolutional features are then pooled together using a global
average pooling layer so that they can be treated by two dense
layers. At the end of the dense layers, a softmax activation
function computes the probabilities that an observation
belongs to each class and the loss of the model is evaluated.

The loss measures the gap existing between the class proba-
bilities outputted by the model and the actual class of the
observation. This gap represents an error, back-propagated to
update the parameters of the network accordingly. The
negative-likelihood also called the categorical cross-entropy is
the most widely used loss for single-label multivariate classifi-
cation (each observation belongs to one class only) and is
the one used here. More refined versions of the categorical
cross-entropy such as the weighted version of the categorical
cross-entropy, the focal loss (Lin et al. 2017) or the focal class-
balanced loss (Cui et al. 2019) have been implemented but
brought no additional performances.

Beyond the choice of the loss specification, another important
choice is the one of the optimizer which deals with how the net-
work parameters are updated with respect to the loss. Ranger, a
generalization of the widely used Adam optimizer (Kingma and
Ba 2014), was here used. Ranger comes from the combination of
two recent publications: RectifiedAdam (or Radam) (Liu
et al. 2019) and Lookahead (Zhang et al. 2019).

In order for the optimization process not to remain stuck in
very local minima, it is a common practice to slowly update the
parameters of the models at the beginning of the training, when
promising parameter regions are not yet identified. This adapta-
tion rate of the parameters with respect to the loss is called the
learning rate of the model and is hence often chosen to be small
in the early stages of the training process (Popel and Bojar 2018).
Radam adapts the learning rate to avoid the learning rate vari-
ance to grow too substantially, which is often detrimental to the
learning process according to the authors. On the other hand,
Lookahead enables the network to get a better understanding of
the loss topology. To do so, two sets of weights are used by
Lookahead: a faster set of weights that is frequently updated to
“explore” the loss surface and a slower set of weights (less fre-
quently updated) to ensure the stability of the learning process.
The faster set of weights is updated using not all the data but
only a set of several observation batches to get a raw idea of the
promising regions to explore. In the Ranger case, these fast
weights are updated thanks to the Radam optimizer.

Comparison with other classification algorithms
The CNN has been benchmarked against other supervised

models to compare the performance of individual machine
learning algorithms. The benchmark models have been publi-
shed in the literature: the k-nearest neighbors (kNN) and the
LDA (Abdelaal et al. 2019). Tree-based methods such as Ran-
dom Forest were represented by the light gradient boosting
machine (LGBM) (Ke et al. 2017), which is more recent and
takes advantage of gradient-boosting methods.

The data from the manual classifications comparison experi-
ment were used for model evaluation. Once interpolated to a
fixed length, the CNN was trained over the five FCCs per parti-
cle, while the benchmark models (which cannot deal with the
raw curves) were trained on the hand-designed features com-
puted from these FCCs (commonly referred to as “Listmode fea-
tures”). The choice of the features created from the signal highly
influences the performances of the models and has to be consid-
ered when presenting the results. We rely on the 13 features per
curve created by default by the CytoClus4© software. The feature
list is given in Supporting Information (see Section S1).

Most parts of statistical models are ruled by a set of hyper-
parameters chosen by the user (e.g., number of neurons and
layers, number of neighbors, learning rate, batch size). The
number of possible combinations is far too high for all the
combinations to be tested and then to select the best model
specifications.
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One popular approach relies on Bayesian Hyperoptimization
algorithms (Bergstra et al. 2013), implemented in our case in the
Python libraries Hyperopt and Hyperas (Hyperopt for Keras). The
idea of Hyperoptimization methods is to consider hyper-
parameters as statistical random variables with a prior and to
identify posterior regions that present a low loss value. Hence,
some draws are taken from the prior distributions, the model is
evaluated and low loss regions are identified and focused on. It
avoids spending substantial computational efforts on non-
promising regions of the hyper-parameters space as it is often the
case using standard line search. The hyperparameters spaces used
are given in Supporting Information Section S2.

The performances of the CNN and of benchmark models
were evaluated using the standard per-class precision and
recall metrics. The precision is the proportion of particles actu-
ally belonging to class k among all those identified as belong-
ing to class k by the algorithm. The recall is the proportion of
particles effectively belonging to class k among all the particles
of class k existing in the dataset. The closer both precision and
recall are to 100%, the closer the classification of a model is to
the “true” labels.

The Python code used to produce the results of this work is
freely available as a Github repository named phyto_-
curves_reco (https://github.com/RobeeF/phyto_curves_reco)
with the following DOI: 10.5281/zenodo.5681642.

Results
Manual gating uncertainty estimation

The main groups observed by AFCM are represented in
Fig. 2. It presents descriptive 2D cytograms associated with
two files for each data source. The non-consensual
particles—on which less than 2/3 of the experts agreed—
were located mainly at the frontiers between groups. The
less consensual demarcation lines were between Rednano
and Redpicoeuk and between Redpicopro and the back-
ground noise events.

The uncertainties of manual classification for individual
cPFGs are reported in Supporting Information (Figs. S7, S8).
The patterns observed in terms of ARIs and CVs were similar
between SSLAMM and SWINGS data. For both data sources,
75% of the pairwise ARIs were higher than 0.78. However,

Fig. 3. Precision (a) and recall (b) (%) of the benchmarked models on SSLAMM data.

Fig. 4. Precision (a) and recall (b) (%) of the benchmarked models on SWINGS data.
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Fig. 5. Automatic classification count (number of particles) as a function of the manual gating count (number of particles) for each cPFG: the Micro (a), the
Rednano (b), the Redpicoeuk (c), the Orgnano (d), the Orgpicopro (e), the Redpicopro (f). Blue dots are for SSLAMM data, Orange dots are for SWINGS
data. For each cPFG a linear regression has been fitted and the corresponding regression coefficients and R2 are reported. The resulting 95% confidence
intervals are illustrated as light orange and blue bands. The black dashed line indicates a 1 : 1 ratio between the manual and automatic classifications.
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these high ARIs were driven by several over-represented cPFGs
which were also well identified.

This was the case of Orgpicopro cells that obtained CVs
between 0.01 and 0.14 for the SSLAMM data and between
0.02 and 0.50 for the SWINGS data and the case of
Redpicoeuk (SSLAMM CV � [0.05, 0.44] and SWINGS
CV � [0.03, 0.28]). Conversely, Micro cells (SSLAMM
CV � [0.27, 1.55] and SWINGS CV � [0.12, 1.26]), Orgnano
(SSLAMM CV � [0.50, 0.85] and SWINGS CV � [0.21, 1.75]),
Rednano (SSLAMM CV � [0.25, 0.92] and SWINGS
CV � [0.10, 1.34]), and Redpicopro (SSLAMM CV � [0.13,
2.45] and SWINGS CV � [0.56, 1.07]) were far less identified
(Supporting Information Fig. S8).

Model benchmark on the test set
Figures 3 and 4 report the precision and the recall obtained

by the four models for each cPFG and noise classes.
Based on the specific precision and recall values, the CNN

and the LGBM obtained the best performances on the quasi-
totality of cPFGs. The kNN presented the worst performances
for both datasets. The LDA results are mixed as it distin-
guished noise events from phytoplankton particles classified
but got the worst precision on three cPFGs on the
SWINGS data.

The best manually identified cPFGs were also the best clas-
sified by machine learning models, i.e. Orgpicopro and
Redpicoeuk cells. Similarly, the Redpicopro and Orgnano cells
were weakly manually identified and less well gated by
machine learning models. Finally, Micro and Rednano cells
that experienced poor manual identifiability presented good
precision and recall values for near all methods.

The generalization capacity of the models was tested by
training them on one data source (SSLAMM or SWINGS) and
by making predictions on the other data source. Results are
given in Supporting Information Figs. S9 and S10.

When the models were trained on the SWINGS data and
used to predict SSLAMM data, the CNN obtained the best
performances, with precisions higher than 90% for five out
of the eight classes and kNN the worst performances. Con-
cerning the cPFGs, noise events and Orgpicopro were the
best classified, and Redpicopro and Micro cells were the less
well gated.

When trained on the SSLAMM data and used to predict
SWINGS data, the LGBM obtained the best performances and
LDA the worst. Redpicopro cells and noise events ≥1 μm were
the worst identified by the models. Rednano cells obtained
precisions lower than 34% but recall values higher than 87%.
The opposite pattern was observed for the Redpicoeuk class,
denoting that a significant number of manually identified
Redpicoeuk cells were predicted as Rednano cells by the
models.

The running time of the models is given in Supporting
Information (Table S4).

Automatic classification on the full datasets
Figure 5 presents the regression between the automatically

and manually counted cPFGs particles from the SSLAMM files
and the SWINGS files.

The R2 and the slope coefficients in Fig. 5 are close to 1.0
for the majority of the cPFGs of both data sources: The
counts resulting from the manual and CNN gatings are in
adequation. The main exceptions are the Micro and
Rednano cells from the SSLAMM data and the Redpicopro
cells from the SWINGS data. In the SSLAMM data, Micro
cells were scarce (less than 300 cells per file) which made
the identification of this population difficult. The CNN
counted twice as many Micro cells as the manual expert,
but the counts seemed to be proportional (R2 = 0.84). Con-
cerning the Rednano cells, the R2 of 0.61 is partly explained
by a different Redpicoeuk/Rednano frontier between the
CNN and the expert. This is confirmed by the 0.84 slope
coefficients of the SSLAMM Redpicoeuk cells: the largest
manually gated Redpicoeuk cells were regarded as Rednano
cells by the CNN. The automatic Redpicopro count from
SWINGS data presented a strong correlation with the man-
ual count (R2 = 0.91). However, the CNN was more conser-
vative and considered some of the manually gated
Redpicopro cells as noise < 1 μm cells. Finally, the R2 for the
noise particles was equal to 1.0 for both data sources (data
not shown). The CNN and the manual expert hence dis-
criminated similarly between phytoplankton and non-
phytoplankton particles (the counts only differed by 2.5%).

The CNN average prediction time for each file of the
series was 66 s (7 s for the prediction itself and more than a
minute for the pre-processing steps). We ran the pipeline
on two machines in parallel and the total prediction time
was of 15 CPU usage hours for the 1639 files of the SSLAMM
time series and 10 h for the 1184 files of the SWINGS time
series.

Discussion
The use of automated sensors is often mandatory to get res-

olutive datasets, common in the field of physical oceanography,
but still limited in marine microbial ecology. Microbial
populations in marine environments are influenced by physics,
chemistry, and biological interactions that shape their distribu-
tion. Yet, they also have internal clocks and specific
physiological–morphological characteristics that affect their fit-
ness and require sensors integrating biodiversity and dynamic
processes (Dutkiewicz et al. 2020). Flow cytometry measurements
of phytoplankton cell abundances and single-cell morphological
traits have already provided numerous insights into their interac-
tion with environmental factors (Ribalet et al. 2015; Hyun
et al. 2020), such as physical conditions (Partensky et al. 1999;
Marrec et al. 2018; Louchart et al. 2020) and trophic network
interactions (Christaki et al. 2011). The collected morphological
traits have also enabled hourly growth rates and primary
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production assessments per phytoplankton group (Sosik
et al. 2003; Dugenne et al. 2014; Hunter-Cevera et al. 2014).

Although AFCM is a powerful tool for the study of phyto-
plankton functional groups and benefits from recent techno-
logical advances, AFCM data post-processing is often
performed manually. Yet, this post-processing (also named
manual gating) is prone to subjectivity, and assessments of
the heterogeneity between experts classifications are rarely
performed in flow cytometric studies. Garcia et al. (2014)
evidenced up to 20% variability between two experts on two
groups of bacterioplankton. In the present study, a consensus
between six experts from different laboratories was evaluated
on six cPFGs and noise events. The overall classification meth-
odology was shared by the experts as confirmed by the high
pairwise ARIs. On the contrary, the uncertainties existing in
the exact manual gates frontiers coupled with the under-
representation of several cPFGs led to significant differences in
cPFG counts.

The most abundant cPFGs, Orgpicopro and Redpicoeuk, were
identified by all experts with small error margins. This can be
attributed to the high number of cells, combined with the very
characteristic orange fluorescence of Orgpicopro particles. On the
contrary, there was a lack of consensus concerning the bound-
aries between Redpicoeuk and Rednano, with counts variations
of more than 100% between experts for Rednano cells. The ori-
gin of this discrepancy came from the nonconsensual criteria
used to differentiate these groups using 2D projections. Some
experts used the 3.13-μm silica beads provided to them for
the experiment, while other experts used a threshold between
the 2- and 3.13-μm beads. The choice of a criterion to distinguish
Redpicoeuk from Rednano is an issue already reported in
Buitenhuis et al. (2012). In addition, the observation of Red-
picopro cells by AFCM has been enabled only recently thanks to
advances in filtration of the sheath fluid or more powerful lasers
Marrec et al. (2018). Yet, these particles still remain close to the
flow cytometer detection limits and Redpicopro cells were hardly
distinguished from the noise < 1 μm by the experts. Finally, the
differences in cPFG relative abundances made the manual classi-
fication of rare cPFGs equivocal and entailed divergences in
Micro, Rednano, and Orgnano counts.

As such, the intercomparison highlighted the necessity of
consensual rules and criteria to distinguish groups and the
need for peer-reviewed data to obtain reliable cPFG observa-
tions for automation purposes. Such multi-reviewed datasets
are increasing in popularity in the machine learning commu-
nity, the best example being the ImageNet repository (Deng
et al. 2009).

Despite the heterogeneity in manual gating, a robust and
reliable dataset has been built by keeping the particles that
were consensual between experts. Using the consensual obser-
vations, three statistical models were trained and their perfor-
mances compared with the ones of the CNN presented here.

On the SSLAMM and SWINGS test sets, the CNN model
proposed in this study achieved precision and recall values

competitive with the ones of the LGBM and higher than the
ones of the kNN and the LDA. It exhibited performances
higher than 90% in a vast majority of cases. When compared
to a manual expert gating the CNN has evidenced its reliabil-
ity to track the cPFG abundance in near real time in two very
different contexts. The small discrepancies between manual
and automatic classifications can be considered marginal
when compared to the length and the high temporal and
functional diversity resolution of the predicted time series.
Furthermore, the CNN exhibited significant generalization
properties when trained on the SWINGS data and used for pre-
diction on the SSLAMM data. When trained on the SSLAMM
data to predict SWINGS data, the generalization power of the
CNN was still solid but lower. This may be due to the lower
diversity and number of observations of SSLAMM data, where
pico-nanophytoplankton cells dominated all over the year,
compared to the SWINGS data collected in very contrasted
areas of the South-West Indian and Southern oceans, the latter
being considered as dominated by nano-microphytoplankton
cells (Rembauville et al. 2017).

More generally, the training sets used in this study are of
moderate sizes (�104 observations compared to �106 observa-
tions generally encountered in CNN image classification as in
Simonyan and Zisserman (2014)). Yet, deep learning methods
seem to take a bigger advantage of dataset sizes than tradi-
tional machine learning methods (Ng 2017), at least when the
dataset size grows from a moderate to substantial size (several
millions of observations) (Hestness et al. 2017; Neyshabur
et al. 2017; Sun et al. 2017). Thus, the current increase in
AFCM dataset sizes and dataset number should give an addi-
tional edge to the CNN over the LGBM which currently pre-
sent comparable performances.

In summary, this preliminary and highly promising work
applies a CNN on interpolated raw pulse shapes acquired on an
hourly basis by pulse-shape recording flow cytometry. It opens
the way to the integration of cPFGs into forecasting biogeo-
chemical models, depending on near real-time data inputs.
High-frequency sampling of phytoplankton and determination
of the communities structure and abundances will permit a bet-
ter integration of pulsed events and response capacities of some
functional groups in these models. It will also enable to adjust
near real-time spatial sampling strategies where influences of
physical structures such as fronts and eddies directly affect the
distribution of phytoplankton groups (d’Ovidio et al. 2019).
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