Princeton Summer School on Combustion June 20 - June 26, 2021

Structure and Dynamics of Combustion Waves in Premixed Gases

Paul Clavin Aix-Marseille Université ECM & CNRS (IRPHE)

Lecture VI Thermal quenching of flames and flammability limits

> Copyright 2021 by Paul Clavin This material is not to be sold, reproduced or distributed without permission of the owner, Paul Clavin

Lecture 6: Thermal quenching and flammability limits

6-1. Extinction through thermal loss

6-2. Basic concepts in chemical kinetics Combustion of hydrogen Two-step model. Crossover temperature One-step model with temperature cutoff

6-3. Flame speed near flammability limits

Extinction through thermal loss a small heat loss can quench the flame

Formulation (volumetric heat loss in a planar flame)

Davy 1830

Zeldovich 1941

Asymptotic analysis for small heat loss and a one-step reaction (Joulin Clavin 1976)

$$\beta \to \infty$$
 $\tau_L / \tau_{cool} = h / \beta$ $h = O(1)$ $\beta(1 - \theta_f) = O(1)$ $w(\theta, \psi) = (\beta^2 / 2)\psi \exp[-\beta(1 - \theta)]$

unknown flame temperature < adiabatic flame temperature $: \theta_f < 1$

jumps across the thin reaction zone :

$$d\theta/d\xi|_{\xi=0-} = e^{-\beta(1-\theta_f)/2} \qquad \left[\frac{d\theta}{d\xi} + \frac{1}{Le}\frac{d\psi}{d\xi}\right]_{0-}^{0+} = 0$$

external solutions : w = 0

$$\xi < 0: \begin{cases} \theta_{-}(\xi) &= \theta_{f} e^{[\mu + h/(\beta \mu)]\xi}, \\ \psi_{-}(\xi) &= 1 - e^{\operatorname{Le} \mu\xi}, \end{cases} \qquad \xi > 0: \begin{cases} \theta_{+}(\xi) &= \theta_{f} e^{-[h/(\beta \mu)]\xi}, \\ \psi_{+}(\xi) &= 0, \end{cases}$$

up to first order $O(1/\beta)$

P.Clavin VI

Lecture 6: Thermal quenching and flammability limits

6-1. Extinction through thermal loss

6-2. Basic concepts in chemical kinetics

Combustion of hydrogen Two-step model. Crossover temperature One-step model with temperature cutoff

6-3. Flame speed near flammability limits

VI-2) Basic concepts in chemical kinetics Law 2006

Combustion of hydrogen Sanchez Williams 2014

units: moles/cm ³ , s ⁻¹ and Kelvin	Label	Reaction	\tilde{k}_j	$ ilde{B}_j$	$ u_j$	T_{aj}	shuffle reactions
$dc_{ij}/dt = -\omega_j$ $\omega_j = \tilde{k}_j c_{1j} c_{2j} \text{or} \omega_j = \tilde{k}_j c_{1j} c_{2j} c_{3j}$	1	$O_2 + H \rightleftharpoons OH + O$	$ \tilde{k}_{1f} \\ \tilde{k}_{1b} $	3.52×10^{16} 7.04×10^{13}	-0.7 -0.264	$8590 \\ 72$	(1f), (2f), (3f) chain branching
$\tilde{k}_j = \tilde{B}_j T^{\nu} \mathrm{e}^{-T_{aj}/T}$	2	$H_2 + OH \rightleftharpoons H_2O + H$	$rac{ ilde{k}_{2f}}{ ilde{k}_{2b}}$	1.17×10^9 1.29×10^{10}	$1.3 \\ 1.196$	$1825 \\ 9412$	$\begin{array}{c} \mathrm{O}_2 + 3\mathrm{H}_2 \rightarrow 2\mathrm{H}_2\mathrm{O} + 2\mathrm{H} \\ \mathrm{rate:} \ \omega_{1f} \equiv c_{\mathrm{H}}c_{\mathrm{O}_2}k_{1f} \end{array}$
	3	$H_2 + O \rightleftharpoons OH + H$	$rac{ ilde{k}_{3f}}{ ilde{k}_{3b}}$	$\begin{array}{c} 5.06\times10^4\\ 3.03\times10^4\end{array}$	$2.67 \\ 2.63$	$\frac{3165}{2433}$	(4f) chain breaking
	4f	$O_2 + H + M \rightarrow HO_2 + M$	\tilde{k}_{4f}	5.79×10^{19}	-1.4	0	$M + H + O_2 \rightarrow M + HO_2$
	5f	$\rm H + \rm H + \rm M \rightarrow \rm H_2 + \rm M$	$\underset{\sim}{k_{5f}}$	1.30×10^{18}	-1	0	rate : $\omega_{4f} = c_{\rm H} c_{\rm O_2} n k_{4f}$
	6f	$H + OH + M \rightarrow H_2O + M$	k_{6f}	4.00×10^{22}	-2	0	$k_{4f} = B_{4f}$
	$7\mathrm{f}$	$\mathrm{HO}_2 + \mathrm{H} \to \mathrm{OH} + \mathrm{OH}$	k_{7f}	7.08×10^{13}	0	148	
	8f	$\mathrm{HO}_2 + \mathrm{H} \to \mathrm{H}_2 + \mathrm{O}_2$	k_{8f}	$1.66 imes 10^{13}$	0	414	(8b) initiation
	9f	$\mathrm{HO}_2 + \mathrm{OH} \rightarrow \mathrm{H}_2\mathrm{O} + \mathrm{O}_2$	\tilde{k}_{9f}	2.89×10^{13}	0	-250	$\mathrm{H}_2 + \mathrm{O}_2 \rightarrow \mathrm{HO}_2 + \mathrm{H}$
$c_R B_B e^{-E/k_B T} \qquad S$	impl	ified two-step mo	del:	Crossov	ver te	empe	erature

mplified two-step model: crossover temperature Zeldovich 1961, Liñan 1971, Peters Williams 1987, Peters 1997 (B) $R + X \rightarrow 2X$, $\omega_B = c_R c_X B_B e^{-E/k_B T}$, $E \gg k_B T$ (R) $M + X \rightarrow P + Q$, $\omega_R = c_X n B_R$, $E_R = 0$ $c_R B_B e^{-E_1/k_B T^*} = n B_R$ $T^* \in [900K - 1400K]$

hydrogen combustion:

$$k_{1f}(T^*) \equiv \frac{B_{1f} e^{-E_1/k_B T^*}}{B_{1f}} = nB_{4f}$$

Flammability limit

$$T_b = T^* \Rightarrow \boxed{q_R Y_u^* \equiv c_p (T^* - T_u)}$$

Methane-air flame

$$\vartheta_F^+ F + \vartheta_o^+ O_2 \rightleftharpoons P$$

Equivalence ratio $\phi = \frac{N_F / N_{O_2}}{\vartheta_F^+ / \vartheta_{O_2}^+}$ $\phi = 1: \text{ stoichiometry}$

 $\phi>1: \text{ fuel rich}$

 $\phi < 1:$ fuel lean

near to the flammability limit

P.Clavin VI Two-step model for rich hydrogen flames near the flammability limit

Label	Reaction	\tilde{k}_j	$ ilde{B}_j$	$ u_j$	T_{aj}
1	$O_2 + H \rightleftharpoons OH + O$	\tilde{k}_{1f}	3.52×10^{16}	-0.7	8590
		k_{1b}	7.04×10^{13}	-0.264	72
2	$H \rightarrow OH \rightarrow H \rightarrow H$	\tilde{k}_{2f}	1.17×10^9	1.3	1825
	$\Pi_2 + \Theta\Pi \leftarrow \Pi_2 \Theta + \Pi$	\tilde{k}_{2b}	$1.29 imes 10^{10}$	1.196	9412
3 H ₂	$H \rightarrow OH + H$	\tilde{k}_{3f}	5.06×10^4	2.67	3165
	$\Pi_2 + O \rightleftharpoons O\Pi + \Pi$	\tilde{k}_{3b}	3.03×10^4	2.63	2433
4f	$O_2 + H + M \rightarrow HO_2 + M$	\tilde{k}_{4f}	$5.79 imes 10^{19}$	-1.4	0
5f	$\rm H + \rm H + \rm M \rightarrow \rm H_2 + \rm M$	\tilde{k}_{5f}	1.30×10^{18}	-1	0
6f	$\rm H + OH + M \rightarrow \rm H_2O + M$	\tilde{k}_{6f}	4.00×10^{22}	-2	0
7f	$\rm HO_2 + \rm H \rightarrow \rm OH + \rm OH$	\tilde{k}_{7f}	$7.08 imes 10^{13}$	0	148
8f	$\rm HO_2 + \rm H \rightarrow \rm H_2 + \rm O_2$	\tilde{k}_{8f}	1.66×10^{13}	0	414
9f	$\rm HO_2 + OH \rightarrow \rm H_2O + \rm O_2$	\tilde{k}_{9f}	2.89×10^{13}	0	-250

 $(B_{1f} e^{-E_1/k_B T} - nB_{4f})/nB_{4f} \ll 1$

$$\begin{array}{ll} \nu_{j} & T_{aj} \\ \hline \nu_{j} & T_{aj} \\ \hline 0.7 & 8590 \\ .264 & 72 \\ 1.3 & 1825 \\ 196 & 9412 \\ .67 & 3165 \\ .63 & 2433 \\ 1.4 & 0 \\ -1 & 0 \\ \frac{-2}{0} \\ 0 & 148 \\ 0 & 414 \\ 0 & -250 \end{array} \qquad \begin{array}{ll} O_{2} + 3H_{2} \rightarrow 2H_{2}O + 2H, \\ \omega_{1f} = c_{H}c_{O_{2}}k_{1f}(T), \quad k_{1f}(T) = B_{1f}e^{-E_{1}/k_{B}T} \\ H + H \rightarrow H_{2} + Q, \\ \omega_{4f} + \omega_{5f} = nc_{H}c_{O_{2}}B_{4f} + \frac{nc_{H}^{2}B_{5f}}{nc_{H}^{2}B_{5f}} \\ \hline \frac{dc_{H}}{dt} = \left[B_{1f}e^{-E_{1}/k_{B}T} - nB_{4f}\right]c_{O_{2}}c_{H} - nB_{5f}c_{H}^{2} \\ \end{array}$$
tri molecular recombination reaction (5f) \Rightarrow H in quasi-steady stated

(consumption of hydroperoxide included)

$$T > T^*: c_{\rm H} \approx c_{\rm O_2} \frac{[B_{1f} e^{-E_1/k_B T} - nB_{4f}]}{nB_{5f}} \qquad T < T^*: c_{\rm H} = 0$$

One-step model (near the flammability limit) $c_H B_5 \ll c_{O_2} B_{4f} \Rightarrow \omega_{5f} \ll \omega_{4f}$ $nB_{4f} = B_{1f} e^{-E_1/k_B T^*}$ $1/\tau^* \equiv (nB_{4f}^2 c_{O_2u}^*)/B_{5f}$ $m\frac{d\theta}{dx} - \rho D_T \frac{d^2\theta}{dx^2} \approx \frac{\rho}{\tau^*} \psi^2 J(T)$ $m\frac{d\psi}{dx} - \rho D_{O_2} \frac{d^2\psi}{dx^2} \approx -\frac{\rho}{\tau^*} \psi^2 e^{-\frac{E}{k_B}(\frac{1}{T} - \frac{1}{T^*})} J(T)$ $x = -\infty: \ \theta = 0, \qquad x = +\infty: \ \theta = 1$ reaction of order 2 with a temperature cutoff

very close to the flammability limit $\frac{T_b - T^*}{T^*} \ll \frac{k_B T^*}{E} \Rightarrow [e^{-\frac{E}{k_B}(\frac{1}{T} - \frac{1}{T^*})} - 1] \approx \frac{E}{k_B}(\frac{1}{T^*} - \frac{1}{T}) \ll 1$

P.Clavin VI Two-step model for rich hydrogen flames near the flammability limit

Label	Reaction	\tilde{k}_j	$ ilde{B}_j$	$ u_j$	T_{aj}
1	$O_{+} + H \rightarrow OH + O$	\tilde{k}_{1f}	3.52×10^{16}	-0.7	8590
	$O_2 + \Pi = O\Pi + O$	\tilde{k}_{1b}	7.04×10^{13}	-0.264	72
2	$H \rightarrow OH \rightarrow H \rightarrow H$	\tilde{k}_{2f}	1.17×10^9	1.3	1825
	$\Pi_2 + \Theta\Pi \leftarrow \Pi_2 \Theta + \Pi$	\tilde{k}_{2b}	1.29×10^{10}	1.196	9412
9	$H_{1} + O \rightarrow OH + H$	\tilde{k}_{3f}	5.06×10^4	2.67	3165
9	$\Pi_2 + O = O\Pi + \Pi$	\tilde{k}_{3b}	$3.03 imes 10^4$	2.63	2433
4f	$O_2 + H + M \rightarrow HO_2 + M$	\tilde{k}_{4f}	$5.79 imes 10^{19}$	-1.4	0
5f	$\rm H + \rm H + \rm M \rightarrow \rm H_2 + \rm M$	\tilde{k}_{5f}	$1.30 imes 10^{18}$	-1	0
6f	$\rm H + OH + M \rightarrow \rm H_2O + M$	\tilde{k}_{6f}	4.00×10^{22}	-2	0
$7\mathrm{f}$	$\rm HO_2 + \rm H \rightarrow \rm OH + \rm OH$	\tilde{k}_{7f}	7.08×10^{13}	0	148
8f	$\rm HO_2 + \rm H \rightarrow \rm H_2 + \rm O_2$	\tilde{k}_{8f}	1.66×10^{13}	0	414
9f	$\mathrm{HO}_2 + \mathrm{OH} \rightarrow \mathrm{H}_2\mathrm{O} + \mathrm{O}_2$	\tilde{k}_{9f}	$2.89 imes 10^{13}$	0	-250

One-step model (near the flammability limit) $c_H B_5 \ll c_{O_2} B_{4f} \Rightarrow \omega_{5f} \ll \omega_{4f}$ $nB_{4f} = B_{1f} e^{-E_1/k_B T^*}$ $1/\tau^* \equiv (nB_{4f}^2 c_{O_2u}^*)/B_{5f}$ $m \frac{d\theta}{dx} - \rho D_T \frac{d^2\theta}{dx^2} \approx \frac{\rho}{\tau^*} \psi^2 J(T)$ $m \frac{d\psi}{dx} - \rho D_{O_2} \frac{d^2\psi}{dx^2} \approx -\frac{\rho}{\tau^*} \psi^2 e^{-\frac{E}{k_B}(\frac{1}{T} - \frac{1}{T^*})} J(T)$ $x = -\infty: \ \theta = 0, \qquad x = +\infty: \ \theta = 1$

reaction of order 2 with a temperature cutoff

 $\begin{array}{ll} \text{very close to the flammability limit} & \frac{T_b - T^*}{T^*} \ll \frac{k_B T^*}{E} & \Rightarrow \quad [\mathrm{e}^{-\frac{E}{k_B}(\frac{1}{T} - \frac{1}{T^*})} - 1] \approx \frac{E}{k_B}(\frac{1}{T^*} - \frac{1}{T}) \ll 1 \\ & m \frac{\mathrm{d}\theta}{\mathrm{d}x} - \rho D_T \frac{\mathrm{d}^2\theta}{\mathrm{d}x^2} \approx \frac{\rho}{\tau^*} \psi^2 J(T) \\ & m \frac{\mathrm{d}\psi}{\mathrm{d}x} - \rho D_{\mathrm{O}_2} \frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} \approx -\frac{\rho}{\tau^*} \psi^2 J(T) \end{array} \qquad \qquad \begin{cases} T > T^*: \quad J(T) \approx \frac{T_u}{T^*} \frac{E}{k_B T^*} \frac{T - T^*}{T^*} \\ T < T^*: \quad J(T) = 0 \end{cases}$

Lecture 6: Thermal quenching and flammability limits

6-1. Extinction through thermal loss

6-2. Basic concepts in chemical kinetics

Combustion of hydrogen

Two-step model. Crossover temperature

One-step model with temperature cutoff

6-3. Flame speed near flammability limits

Flame speed near flammability limits

$$\begin{split} \theta &\equiv \frac{(T-T_u)}{(T_b-T_u)} \in \boxed{[\theta^*,1]} \qquad \theta^* \equiv \frac{(T^*-T_u)}{(T_b-T_u)} \qquad T_b > T^* \Rightarrow \boxed{\theta^* < 1 \text{ but close to } 1} \\ m\frac{\mathrm{d}\theta}{\mathrm{d}x} - \rho_b D_T \frac{\mathrm{d}^2\theta}{\mathrm{d}x^2} \approx \frac{\rho_b}{\tau^*} \psi^2 j(\theta) \qquad \left\{ \begin{aligned} \theta > \theta^* : & j(\theta) \approx b^*(\theta-\theta^*) \\ \theta < \theta^* : & j(\theta) = 0 \end{aligned} \right. \qquad b^* \equiv \frac{T_u}{T^*} \frac{E}{k_B T^*} \frac{T_b - T_u}{T^*} \\ e^{-T_u} \frac{\mathrm{d}\psi}{\mathrm{d}x} - \rho_b D_{\mathrm{O}_2} \frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} \approx -\frac{\rho_b}{\tau^*} \psi^2 j(\theta) \end{aligned}$$
reaction zone: $\psi = \mathrm{Le}(1-\theta), \qquad D_T \frac{\mathrm{d}^2\theta}{\mathrm{d}x^2} = \frac{\mathrm{Le}^2 b^*}{\tau^*} (1-\theta)^2 [(\theta-1)-(\theta^*-1)] \qquad \mathrm{Le} \equiv D_T / D_{\mathrm{O}_2} \end{aligned}$

$$\times \frac{\mathrm{d}\theta}{\mathrm{d}x} + \int_{\theta^*}^1 \mathrm{d}\theta + \text{matching} \Rightarrow D_T \left. \frac{\mathrm{d}\theta}{\mathrm{d}x} \right|_{-} \approx \mathrm{Le}\sqrt{\frac{b^*}{6}}(1-\theta^*)^2 \sqrt{\frac{D_T}{\tau^*}} \qquad \frac{\rho_u}{\rho_b} \frac{U_L}{\sqrt{D_T/\tau^*}} \approx \mathrm{Le}\sqrt{\frac{b^*}{6}}(1-\theta^*)^2$$

$$0 < \frac{T_b - T^*}{T_b - T_u} \ll 1 \quad \Rightarrow \quad \left| \frac{\rho_u}{\rho^*} \frac{U_L}{\sqrt{D_T / \tau^*}} \approx \text{Le}\sqrt{\frac{b^*}{6}} \left(\frac{T_b - T^*}{T^* - T_u} \right)^2 \right| \quad \text{Peters 1997}$$

the flame velocity decreases smoothly to zero when approaching the flammability limit $T_b \to T^*$ the flame thickness d_L^* diverges, $T_b \to T^*$: $\frac{d_L^*}{d_L} \propto \frac{1}{\beta^2} \left(\frac{T^* - T_u}{T_b - T^*}\right)^2$ 40

Divergence of the thermal sensitivity: Thermal quenching $\underbrace{\widetilde{b}}_{U_{L}}^{30}$ $\frac{T_{b}}{U_{L}} \frac{\mathrm{d}U_{L}}{\mathrm{d}T_{b}} = \frac{2T_{b}}{T_{b} - T^{*}} \swarrow^{\infty}$

$$\frac{T_b}{U_L} \frac{\mathrm{d}U_L}{\mathrm{d}T_b} = \frac{2T_b}{T_b - T^*} \quad \checkmark \quad \propto$$

the least heat loss quenches the flame at a non zero velocity

Methane flames Peters Williams 1987 Peters 1997

 ${
m H}_2-{
m O}_2$ flames Sanchez Williams 2014