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(Received 16 December 2021; revised 12 May 2022; accepted 28 June 2022)

We consider as base flow the stationary vortex filament solution obtained by
Castillo-Castellanos et al. (Phys. Rev. Fluids, vol. 6, 2021, 114701) in the far wake of a rotor
with tip-splitting blades. The cases of a single blade and of two blades with a hub vortex
are studied. In these solutions, each blade generates two closely spaced co-rotating tip
vortices that form a braided helical pattern in the far wake. The long-wave stability of these
solutions is analysed using the same vortex filament framework. Both the linear spectrum
and the linear impulse response are considered. We demonstrate the existence of different
types of instability modes. A first type corresponds to the local pairing of consecutive turns
of the helical pattern, which is well described by the instability of a uniform helical vortex
with a core size given by the mean separation distance of the vortices in the pair. A second
type corresponds to the pairing of consecutive turns of the vortex pair and is observed only
for densely braided patterns, which is well described by the instability of two interlaced
helical vortices by straightening out the baseline helix. A third type of unstable modes
modifies the separation distance between the vortices in each pair and amplifies specific
(linear) wavelengths. These unstable modes also spread spatially with a weaker rate.

Key words: vortex instability

1. Introduction

Rotating blades, such as those of a helicopter rotor or a horizontal-axis wind turbine,
generate concentrated vortices at their tips, which are transported downstream, creating
a distinctive helical pattern. These helical vortices are associated with several practical
issues which are actively investigated. One of these issues is the wake stability with respect
to external disturbances, which has practical relevance since instabilities may accelerate
the vortex break-up and the transition towards turbulent wakes. The interaction between
tip vortices and a solid surface, like a trailing rotor blade, or a wind turbine located
downstream, may cause significant noise, vibration and fatigue problems. Wake stability
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is also fundamental to optimize wind farm design, since wakes may extend up to 50 km
downstream under stable atmospheric conditions (Cañadillas et al. 2020). Strategies to
maximize power generation include dynamically varying the yaw, pitch and tip-speed
ratio to excite the natural instability of helical wakes (see, for instance Huang et al. 2019;
Frederik et al. 2020; Brown et al. 2022).

One alternative to accelerate the vortex breakdown is to modify the wake structure
altogether. Brocklehurst & Pike (1994) introduced a modified vane tip to split the tip vortex
into two co-rotating vortices. The associated spreading of vorticity has been suggested
as indicative of reduced noise and increased aerodynamic efficiency, but there is little
information regarding the change in the wake structure, which is essential to optimize
the air-foil design. The present work aims to fill in some of these gaps by focusing on
the instabilities of closely spaced helical vortices. A recent experimental investigation
of two closely spaced helical vortices generated by single-bladed rotor, Schröder et al.
(2020, 2021) displays a rapid increase of the core radii and subsequent merging related
to the development of a centrifugal instability (Bayly 1988). In this case, the centrifugal
instability is triggered by patches of opposite signed vorticity formed by a protruded fin
during the roll-up process. A theoretical analysis by Castillo-Castellanos, Le Dizès &
Durán Venegas (2021) presented the wake geometry produced by a tip-splitting rotor for
all wind turbine and helicopter flight regimes using a filament approach. The resulting
wake deviates from a helical pattern in favour of an epicycloidal pattern produced by two
interlaced helical vortices inscribed on top of a larger helical curve. From afar, the vortex
structure is reminiscent of a helical vortex, while simultaneously resembling a vortex pair
aligned with the locally tangent flow. Given these similarities, we expect the solutions to
display features from both systems. In particular, similar instability mechanisms.

Studies on the stability of helical vortices started a century ago (see for instance
Levy & Forsdyke 1928) although experimental evidence of short-wave and long-wave
instabilities is quite recent (Leweke et al. 2014). Theoretical predictions for the long-wave
instability have been obtained by Widnall (1972) for a uniform helical vortex. Her work
was extended by Gupta & Loewy (1974) for several helices and by Fukumoto & Miyazaki
(1991) to account the effect of an axial flow within the vortices. As demonstrated by
Quaranta, Bolnot & Leweke (2015) and Quaranta et al. (2019), the long-wave instability
is a local pairing instability (Lamb 1945). The instability modes are associated with a
displacement approaching neighbouring loops at specific locations. Quaranta et al. (2019)
have also shown that their growth rate is well predicted by considering three-dimensional
perturbations on straight vortices (Robinson & Saffman 1982). For several helices,
additional theoretical results have been obtained for the global pairing mode which
preserves the helical symmetry of the flow (Okulov 2004; Okulov & Sørensen 2007) using
Hardin’s expressions for the induced velocity of a helical vortex (Kawada 1936; Hardin
1982). This mode has been further analysed in the nonlinear regime by Selçuk, Delbende
& Rossi (2017). Finally, recent numerical works have also evidenced the presence of the
long-wave instability in the context of rotor-generated vortices (Bhagwat & Leishman
2000; Walther et al. 2007; Ivanell et al. 2010; Durán Venegas, Rieu & Le Dizès 2021).
Helical vortices are also unstable to short-wavelength instabilities, due to the modification
of the core structure by curvature, torsion and strain (Kerswell 2002; Blanco-Rodráguez
& Le Dizès 2016, 2017). This requires detailed information of the inner core structure,
which can be obtained through matched asymptotic techniques (Blanco-Rodríguez et al.
2015), or through direct numerical simulations (Selçuk et al. 2017; Brynjell-Rahkola &
Henningson 2020). Pairs display a variety of complex behaviours (Leweke, Le Dizes &
Williamson 2016). For instance, consider a vortex pair of circulations Γ1 and Γ2 and core
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radii a, separated by a distance d. If d is large enough, the system is expected to translate
with constant speed for Γ1 = −Γ2, and rotate around the vorticity barycentre with constant
rotation rate for all other cases, while a is expected to grow following a viscous law. Pairs
are expected to merge as a critical core size is eventually reached (Meunier et al. 2002;
Josserand & Rossi 2007). This behaviour is modified by the development of short-wave
instabilities (Meunier & Leweke 2005) and long-wave instabilities (Crow 1970; Jimenez
1975). This picture becomes increasingly complex as we consider the interactions between
multiple vortex pairs, like the four-vortex system considered by Crouch (1997); Fabre &
Jacquin (2000); Fabre, Jacquin & Loof (2002).

For this work, we focus on the long-wavelength stability of two closely spaced helical
vortices using a filament approach. This approach has the advantage of filtering the
short-wavelength perturbations. Additionally, we are interested in the regime observed
in the far field, since perturbations are expected to be quickly advected away from
the rotor (Durán Venegas et al. 2021). We shall use as base flow the steady solutions
obtained in Castillo-Castellanos et al. (2021). Depending on the geometric parameters,
these solutions are classified as (i) leapfrogging, (ii) sparsely braided and (iii) densely
braided wakes. From afar, the periodic structure is reminiscent of a helical vortex but up
close, it resembles two interlaced helical vortices aligned with the locally tangent flow.
Given these similarities, we expect the stability of the present system to be understood as
a combination of the pairing modes of

(a) a helical vortex of radius R, pitch H, circulation 2Γ and some effective core size ae;
(b) a pair of helical vortices of radius d/2, pitch hτ , core size a and circulation Γ ;

and by the possible interactions between them. We shall see that both kinds of pairing are
observed, as well as a new kind of unstable mode specific to this configuration.

The paper is organized as follows. In § 2 we present the framework of the vortex
method applied to the pair of helical vortices. We describe the numerical procedures to
obtain the base flow and analyse its stability. In § 3, we apply our numerical approach
to uniform helices for validation. We then consider two different configurations. The
stability properties for a pair of helical vortices without a central vortex hub are presented
in § 4 for the different wake geometries, while the stability properties for two pairs of
helical vortices with a central hub vortex are presented in § 5 for leapfrogging wakes.
In both cases, the structure of the unstable modes is presented in detail and we explore
the influence of the main geometric parameters. Additional information regarding the
spatio-temporal development of the instability is provided in Appendix A, where the linear
impulse response for the first configuration is studied using the approach developed by
Durán Venegas et al. (2021). Finally, we present our main conclusions in § 6.

2. Methodology

2.1. Finding stationary solutions using a filament approach

2.1.1. Filament framework
We use the same vortex filament approach as in Durán Venegas & Le Dizès (2019).
Vorticity is considered to be concentrated along slender vortex filaments moving as
material lines in the fluid according to

dX j

dt
= U(X j)− U∞

z êz, (2.1)
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where X j = (rj, θj, zj) is the position of the jth vortex filament, U∞
z an external velocity

field and U(X j) = (Ur, rjΩ,Uz) is the velocity induced by the vortices at X j. In a frame
with rotation rate ΩR, it is convenient to parametrize the position of vortex filaments in
terms of two angular coordinates, ζ = ΩR(t − t0) and ψ = ΩRt, and transform (2.1) as

∂X j

∂ψ
+ ∂X j

∂ζ
= 1
ΩR

[
U(X j)+ U∞(X j)

]
, (2.2)

where U∞(X j) = (0,−rjΩR,−U∞
z ) contains the contributions from the rotating frame

and a constant free-stream velocity. In this context, ζ is often referred to as the wake age
and corresponds to a spatial coordinate, while ψ is a proxy of time (Leishman, Bhagwat
& Bagai 2002). Filaments are discretized in straight segments [X n

j ,X n+1
j ] in order to

compute the velocity field using the Biot–Savart law. The equation is de-singularized using
a cutoff approach with a Gaussian vorticity profile. Local contributions to the velocity field
at X n

j are obtained by replacing the straight segments by an arc of circle passing through

[X n−1
j ,X n

j ,X n+1
j ] and using the cutoff formula (see Durán Venegas & Le Dizès 2019).

For this work, we consider basic flow solutions that satisfy,

drj

dζ
= Ur(X j)

ΩR
,

dθj

dζ
= Ω(X j)−ΩR

ΩR
,

dzj

dζ
= Uz(X j)− U∞

z

ΩR
. (2.3a–c)

These solutions are ψ-independent solutions to (2.2). They are stationary in the moving
frame in the sense that flow remains tangent to the vortex structure at all times:

(U(X j)+ U∞(X j))× T j = 0, (2.4)

where T j is the tangent unit vector. As shown in Castillo-Castellanos et al. (2021), the
spatial evolution of the wake as we move away from the rotor plane is obtained by
numerically solving (2.3a–c) with boundary conditions on the rotor, at ζ = 0, where the
position of each vortex is prescribed and far-field boundary conditions at ζ → ∞. In
the following, we focus on the wake geometry in the far field, where spatially periodic
solutions are obtained.

2.1.2. Periodic solutions in the far field
The solution in the far field has been obtained in Castillo-Castellanos et al. (2021). It was
shown that it is no longer uniform as for a single helix but it nevertheless exhibits a certain
spatial periodicity. In addition to the azimuthal symmetry θ → θ + 2π/N for N vortex
pairs, solutions are invariant by the double operation z → z + h and θ → θ + 2π/β. The
parameters h and β are chosen such that there is a single location in an axial period h
where the vortices of a given pair are at the same azimuth. This azimuth is taken to define
the mean radius R and the separation distance d of each vortex pair. Each vortex pair tends
to form a helical braid on a larger helical structure of radius R and pitch H as illustrated in
figure 1. The pitch of this larger helical structure is directly related to h and β by

H = hβ, (2.5)

and related to the pitch of the vortex pair through

hτ =
√

H2 + (2πR)2/β. (2.6)

Depending on the value of β, the double-helix structure may describe (i) a leapfrog-type
pattern, where vortices trade places every 1/β turns; (ii) a relatively sparse braid; or
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d
x

h

z

R

H

(b)(a)

(c)

Figure 1. (a) Geometric parameters of periodic solutions: separation distance d, radius R, axial pitches H and
h, core size a and β = H/h. Representation of (b) N = 1 pairs without hub vortex and (c) N = 2 pairs with
hub vortex for (R∗ = 7, H∗/N = 5.25, β = 3/4).

(iii) a dense ‘telephone cord’-type pattern. We are typically in situation (i) when β < 1,
and in situation (iii) when β > 10. The parameter β also characterizes the axial periodicity
of the solution. It becomes axially periodic only if β is a rational number p/q. In that case,
it means that the double helix makes q turns on itself as the large helix does p turns. The
axial period is thus pH = qh. In the following, we only consider rational values of β.

As soon as the vortex core size a is fixed, the far field is then defined by 5
non-dimensional parameters which are

R∗ ≡ R
d
, H∗ ≡ H

d
, ε∗ ≡ a

d
, β, N. (2.7a–e)

The solution is obtained by solving the system (2.3a–c) with the prescribed symmetry.
The frame velocities (ΩR,U∞

z ) are unknown quantities. However, these quantities are
proportional to the vortex circulation Γ as it is the unique quantity of the vortex system
involving time. For this reason, we can fix Γ to 1.

As shown in Castillo-Castellanos et al. (2021), the problem can be treated as a nonlinear
minimization problem using an iterative procedure. The convergence is rapid if we start
for each pair from an initial guess given by an undeformed double helix on a larger helix
and estimates for (ΩR,U∞

z ) obtained from uniform helices. The converged solution is
found to exhibit spatial variations but in most cases the initial guess turns out to be a good
approximation of the solution.

In the present study, we consider two different configurations: one composed of a single
helical pair (N = 1) without a central hub vortex (figure 1b), and another composed of
N = 2 helical pairs with a central hub vortex (figure 1c). Also, we fix ε∗ = 0.1 and vary
the remaining parameters (R∗, H∗ and β). In the following, solutions that satisfy (2.3a–c)
are denoted X B

j (ζ ).
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2.2. Inviscid global instability analysis
The stability of X B

j is analysed by considering the evolution of infinitesimal perturbation
displacements

X j(ζ, ψ) = X B
j (ζ )+ X ′

j(ζ, ψ). (2.8)

Equation (2.2) is linearized around X B
j (ζ ) to obtain a linear dynamical system

∂r′
i

∂ψ
= −∂r′

i
∂ζ

+ 1
ΩR

N∑
j=1

[
∂Ur(�XB

i )

∂rj
r′

j + ∂Ur(�XB
i )

∂θj
θ ′

j + ∂Ur(�XB
i )

∂zj
z′

j

]
(2.9a)

∂θ ′
i

∂ψ
= −∂θ

′
i

∂ζ
+ 1
ΩR

N∑
j=1

[
∂Ω(�XB

i )

∂rj
r′

j + ∂Ω(�XB
i )

∂θj
θ ′

j + ∂Ω(�XB
i )

∂zj
z′

j

]
(2.9b)

∂z′
i

∂ψ
= −∂z′

i
∂ζ

+ 1
ΩR

N∑
j=1

[
∂Uz(�XB

i )

∂rj
r′

j + ∂Uz(�XB
i )

∂θj
θ ′

j + ∂Uz(�XB
i )

∂zj
z′

j

]
, (2.9c)

which has the following general form:

∂q′

∂ψ
= L(ζ )q′(ζ, ψ), (2.10)

where q′ = (X 1,X 2, . . .) is the total displacement vector, and L is an N by N block matrix
containing the Jacobian terms. The spatial derivative (on ζ ) is evaluated using the same
finite differences scheme as the base solution, while the velocity gradient is derived from
the discretized Biot–Savart equations.

Each sub-matrix of L can be written as

Lij = −δij
∂

∂ζ
+ 1
ΩR

∂(U(X B
i ))

∂(X j)
(2.11)

and contains 3ns by 3ns elements, where ns is the total number of discretization points of
each vortex. The base flow is periodic with respect to ζ with a period ζB that satisfies
zj(ζB) = h and θj(ζB) = 2π/β. The difference between ζB and θj(ζB) comes from the
induced angular velocity Ω(X j) in (2.3b). For small values of β, the ratio Cθ ≡ ζB/θj(ζB)
is close to 1, but decreases as β increases (figure 2a,b). Each vortex contains 96 points per
period ζB. For the perturbations we consider a longer domain with a period ζp = npζB with
np = 32β such that zj(ζp) = nph = 32H and θj(ζp) = np2π/β = 64π. This gives np = 24
and np = 256 for the values β = 3/4 and β = 8. For densely braided wakes (β > 20), we
use a shorter domain with np = 4β, such that zj(ζp) = nph = 4H and θj(ζp) = np2π/β =
8π. This gives np = 84 and np = 128 for the values β = 21 and β = 32. Our objective
is to apply periodic boundary conditions to the perturbations. We therefore discretize the
operators Lij such that they satisfy this property.

The final problem reduces to a linear system with constant coefficients that admits the
formal solution

q′(ζ, ψ) = exp(Lψ)q′
0(ζ ) (2.12)

for any initial perturbation q′
0(ζ ) = q′(ζ, 0). In standard fashion, treating (2.12) as an

eigenvalue problem can be used to describe the asymptotic limit ψ → ∞. Here, because

946 A10-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

56
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.569


Closely spaced helical vortices: long-wave instability

0.980
0.6 0.8 1.2 1.41.0

0.985

0.990

0.995

1.000

1 2 3 4

β

0.80

0.85

0.90

H∗/R∗ = 0.75
H∗/R∗ = 1.50
H∗/R∗ = 3.00

Cθ

0.95

1.00β = 3/4

H∗/R∗

(a) (b)

Figure 2. Evolution of the ratio Cθ ≡ ζB/θj(ζB) for (N = 1, R∗ = 7): (a) Cθ as a function H∗/R∗ for
β = 3/4, and (b) as a function of β for different H∗/R∗.

the domain is long but periodic, it also means that we consider perturbations that span the
whole calculation domain.

We may decompose the linear operator as

LΦ = ΦΛ, (2.13)

where Φ is a matrix whose columns (φ1,φ2, . . .) are the eigenvectors of L, and Λ is a
matrix whose diagonal entries are the corresponding (complex) eigenvalues (λ1, λ2, . . .).
Here, σm ≡ Re(λm) characterizes the temporal growth (or decay) of the perturbations,
while ωm ≡ Im(λm) characterizes the temporal oscillations. We may also introduce a
dimensionless growth rate σ ∗

m and frequency ω∗
m, based on the characteristic advection

time scale of helical pairs tadv = Γ/(H2/N2). Since L is real valued, modes are either real
or come in conjugate pairs. Equation (2.12) can be written as

q′(ζ, ψ) =
∑

m

φm(ζ ) exp {σmψ + iωmψ}bm + c.c., (2.14)

where the coefficients bm correspond to the coordinates of q′
0(ζ ) = q′(ζ, 0) expressed in

the eigenvector basis, and c.c. indicates the complex conjugate.
By construction, eigenvectors have the same dimensionality as q′

φm = (φ(1)m ,φ(2)m , . . .), (2.15)

where φ
(j)
m is the mth eigenvector of the jth vortex filament. These eigenvectors represent

a displacement vector and can be expressed in any coordinate system, e.g.

φ(j)m = (ř(j)m , θ̌
(j)
m , ž(j)m ) (2.16)

indicates the components of φ
(j)
m in global cylindrical coordinates. Conversely,

displacement perturbations may also be expressed in terms of the local radial, azimuthal
and axial coordinates associated with a uniform helix H of radius R and pitch H,

φ(j)m = (ρ̌(j)m , φ̌
(j)
m , š(j)m ). (2.17)

Due to the spatial periodicity, the eigenvectors can be expanded on a discrete Fourier
basis

φm =
ns−1∑
n=0

q̂mn exp
{

i2πnζ
ζp

}
, (2.18)
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where the azimuthal wavenumber (k = nΔk,Δk = β/np) is normalized to ensure that
k = 1 corresponds to one helix turn, and ns the number of points used to discretize each
vortex.

3. Validation of the stability analysis: uniform helices

We validate our approach against existing results on uniform helical vortices of pitch H,
radius R and effective core size ae. A notable difference with respect to Widnall (1972) is
that we must specify a reference frame with rotation rateΩR such that (2.3a–c) is satisfied.
Since the motion of helical vortices is described by constant rotation rate Ω and axial
velocity Uz, these vortices are unperturbed by an additional rotation of angular velocity
Ωa and translation of axial velocity Ua

z provided that

Ua
z

Ωa = ± H
2π

(3.1)

is satisfied, where the sign is positive for right-handed helices and vice versa. For this
comparison, we consider a rotating frame of reference

ΩR = Ω ∓ Uz
2π

H
, U∞

z = 0, (3.2a,b)

which is commonly used in numerical simulations.
The (temporal) frequency spectrum for a helix of pitch H/R = π/5 and ae/R = 0.1

is presented in figure 3(a). By construction, the spectrum is symmetric with respect
to zero, i.e. σ ∗(ω∗) = σ ∗(−ω∗), and only the positive frequencies are displayed. The
most unstable frequencies are located near ω∗ = 3, with additional local maxima at odd
multiples of this frequency (see left column in table 1). Figure 3(b) displays the Fourier
spectrum of žm for the most unstable mode, which is characterized by a single peak at
k = −0.500. We can show that each eigenvector has the form of a complex wave with a
single dominant wavenumber k = k0, such that a direct correspondence between σm, ωm
and k can be established, see figure 3(c).

Axial perturbations propagate along the structure as the sum of travelling waves

z′(ζ, ψ) =
∑

m

ẑm cos(ωmψ + k0ζ/Cθ ) eσmψ (3.3)

with phase velocity
c0 = −ωmCθ /k0. (3.4)

A similar behaviour is observed for radial and azimuthal perturbations. As noted by
Brynjell-Rahkola & Henningson (2020), the frequencies obtained in a frame rotating with
ΩR can be mapped into a second reference frame rotating with Ω ′

R through

ω′
m = ωm + (Ω ′

R −ΩR)k/Cθ . (3.5)

For instance, in our example most of the tangential velocity comes from the moving
frame, i.e. |Ω| 	 |Ω −ΩR|, such that perturbations are advected with c0 close to 1, see
table 1. If, instead, we consider a frame moving with the vortex elements, perturbations
are advected with c0 close to 0 for the same wavenumber (figure 3d).

As seen in figure 4, our numerical results are in good agreement with the stability curves
presented in figure 5(d) by Widnall (1972) and figure 3 by Quaranta et al. (2015) for the
same parameters. As mentioned in § 2.2, our approach differs from previous works in the
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Figure 3. Stability of a uniform helix for H/R = π/5 and ae/R = 0.1: (a) σ ∗ as a function of ω∗ in the rotating
frame; (b) Fourier spectra of the mode indicated as a red mark in (a); (c) σ ∗ and (d) ω∗ in the advection frame
as functions of dominant wavenumber k0.

ae/R = 0.10 ae/R = 0.20 ae/R = 0.33

1st Peak 2nd Peak 3rd Peak 1st Peak 2nd Peak 3rd Peak 1st Peak 2nd Peak 3rd Peak

σ ∗ 1.575 1.511 1.323 1.554 1.497 1.381 1.538 1.485 1.395
ω∗ 3.405 10.202 16.980 3.186 9.639 15.985 3.028 9.160 15.190
k0 −0.500 −1.500 −2.500 −0.500 −1.516 −2.516 −0.500 −1.516 −2.516
c0 1.006 1.004 1.003 1.005 1.003 1.001 1.004 1.002 1.001

Table 1. Growth rate, frequency, wavenumber and phase velocity for the most unstable modes of a uniform
helix for H/R = π/5 and different core sizes. Here, Δk = 0.01625.

way the Jacobian matrix is evaluated. As long as the base flow is (spatially) periodic, it is
allowed to take any shape since (2.9) is evaluated directly from the discretized vortex
segments. This will be useful for studying the more geometrically challenging helical
pairs.

4. Stability of one vortex pair without a central hub vortex

In this section, we describe the unstable modes for the case of one vortex pair without a
central hub vortex. Depending on the geometric parameters, some modes become more
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Figure 4. Dimensionless growth rate σ ∗ of a uniform helix as a function of k0 for H/R = π/5 and different
core sizes. Black thin lines correspond to figure 5(d) reproduced from Widnall (1972), while coloured lines
correspond to our numerical approach.

prominent than others. For clarity, we introduce progressively the unstable modes for
(i) leapfrogging, (ii) sparsely braided and (iii) densely braided wakes. Leapfrogging wakes
display two types of unstable mode: the pairing of the large-scale pattern and a new
type specific to this configuration. Sparsely braided wakes display an additional type,
which becomes more prominent as β increases. Finally, densely braided wakes display
an additional type, which corresponds to the pairing modes of the vortex pair.

4.1. Typical displacement modes for leapfrogging wakes
For each pair, we introduce the following decomposition:

X+ ≡ (X 1 + X 2)/2, X− ≡ (X 1 − X 2)/2, (4.1a,b)

where X+ characterizes the large-scale pattern traced by the vorticity barycentre, while
X− represents the rotation of the vortex pair relative to X+. Figure 1(b) depicts a
leapfrogging wake with β = p/q = 3/4, where X+ is represented as a tube enclosing
the vortex pair. Over a single period, the vortex pair completes p = 3 rotations around H ,
while H completes q = 4 rotations around the z axis. Note that X+ and H are close but
not exactly equal due to the effect of self-induction. In a similar vein, we introduce the
following decomposition:

φ+
m ≡ (φ(1)m + φ(2)m )/2, φ−

m ≡ (φ(1)m − φ(2)m )/2, (4.2a,b)

where φ+
m and φ−

m indicate the displacement modes of X+ and X−, respectively.
Figure 5 presents the frequency spectrum, which is characterized by a set of modes

distributed over three contiguous lobes at low frequencies, and a second set of modes over
an additional lobe at higher frequencies. The maximum growth rate is observed near ω∗ =
4.8, with additional local maxima (in descending order) near ω∗ = 51.9, ω∗ = 14.5 and
ω∗ = 24.0. These values, respectively, correspond to dominant wavenumbers k0 = 0.5,
k0 = 5.4, k0 = 1.5 and k0 = 2.5. Dimensionless growth rates are slightly larger than the
equivalent helical vortex (figure 5b). This can be explained by the change in the effective
distance separating neighbouring loops.
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Figure 5. Stability curves of a leapfrogging wake (R∗ = 7, H∗ = 5.25, β = 3/4): dimensionless growth rate
σ ∗ as a function of (a) ω∗ and (b) k0. For reference, (b) shows the prediction for a uniform helix (H/R = 0.75,
ae/R = 0.1) in red lines. A schematic representation of the two groups of modes is shown in (c), where the
symmetric (respectively anti-symmetric) part is shown in red (respectively green) arrows.
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Figure 6. Functions (z′
1 � z′

1) (a,b) and (z′
1 � z′

2) (c,d) for the case in figure 1(b) and modes: (a,c) S2, and
(b,d) A1.

Low-frequency modes are clearly reminiscent of the unstable modes for the equivalent
uniform helices, while those at higher frequencies are specific to this geometry.
The two groups differ in the relative alignment between the displacements of the
pair: predominantly aligned displacements (or symmetric with respect to the vorticity
barycentre, figure 5(c) top) for low-frequency modes and predominantly opposed
displacements (or anti-symmetric with respect to the vorticity barycentre, figure 5(c)
bottom) for those at higher frequencies. A more quantitative way to illustrate this
difference is through the spatial cross-correlation

(z′
i � z′

j)(Δθ) ≡
∫ ∞

∞
z′

i(ζ/Cθ )z
′
j(ζ/Cθ +Δθ) dζ, (4.3)

where Δθ is the delay in angular position. For instance, for S2 the displacements between
neighbouring turns, i.e. Δθ = 2π, are well anti-correlated since perturbations are in
opposition to the phase (figure 6a,c). Conversely, for mode A1 the auto-correlation between
consecutive turns is negative, while the cross-correlation is positive (figure 6b,d), meaning
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Figure 7. Complex eigenvectors for the case in figure 5. Perturbations in the local axial direction (a,c) š+
m ,

and (b,d) š−
m shown for modes (a,b) S1, and (c,d) A1.

that vortices move in opposite directions, but one of them is aligned with one of the
vortices in the neighbouring loop.

Figure 7 shows the eigenvectors š+
m and š−

m corresponding to the most unstable modes S1
and A1. Here, š+

m (respectively š−
m) corresponds to the component of φ+

m (respectively φ−
m)

along the local axial direction. For the symmetric mode, š+
m is dominant and has a nearly

constant envelope, while š−
m has a sinusoidal envelope, whereas the anti-symmetric mode

displays the opposite behaviour.
Each mode displays a dominant wavenumber k0 with additional peaks (typically in

descending order of magnitude) at wavenumbers kn ≈ k0 ± nβ for integer values of n (see
Fourier spectra in figure 8(a–c) and table 2). This pattern is also observed in the spectra
of the axial and radial components, žm and řm. From these observations, we infer that
perturbations propagate along the structure as

s′
j(ζ, ψ) ≈

∑
m

[[
ŝm0 +

∑
n=1

ŝmn cos (nβζ/Cθ + ϕ̂mn)

]
cos(ωmψ + k0ζ/Cθ ) eσmψ

]
,

(4.4)

where ŝmn and ϕ̂mn are the amplitudes and phase differences measured with respect to
k0. Consider the leading terms in (4.4). For symmetric modes s′+ roughly corresponds
to a travelling wave, whereas s′− approximates a wave that is modulated in amplitude
by a cosine function of period ζB, i.e. the periodicity of the base flow (figure 8a,b).
Anti-symmetric modes display the opposite behaviour: s′− approximates a travelling wave,
whereas s′+ is modulated in amplitude by a function of period ζB (figure 8c). In both
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Figure 8. Fourier spectrum of modes: (a) S1, (b) S2 and (c) A1, for the case in figure 5.

Mode Frequency Wavenumbers Phase velocity

ω∗ k0 k1 k2 k3 c0

S1 4.824 −0.500 (−1.250,+0.250) (−2.000,+1.000) (−2.750,+1.750) 1.002
S2 14.451 −1.500 (−2.250,−0.750) (−3.000,+0.000) (−3.750,+0.750) 1.000
A1 51.849 −5.406 (−6.156,−4.656) (−6.906,−3.906) (−7.656,−3.156) 0.996

Table 2. Leading wavenumbers of the modes shown in figure 8. Here, Δk = 0.03125.

cases, the contributions from higher-order terms also correspond to waves modulated in
amplitude by multiples of ζB in decreasing order of magnitude.

Figure 9(a) presents the deformation due to the symmetric mode S1 by plotting
the perturbed geometry X j = X B

j + X ′
j for some arbitrary amplitude. A developed plan

view illustrates p = 1 localized pairing events for every q = 2 neighbouring turns of
the large-scale pattern (seen as dashed lines in figure 9a,b). An additional example
corresponding to mode S2 is shown in figure 9(c,d), where p = 3 localized pairing events
are observed every q = 2 neighbouring turns. This behaviour was expected since the
predominantly aligned displacements result in a block displacement of the vortex pair.
As a result, the large-scale pattern behaves like a uniform helix where perturbations with
wavenumber k0 = p/q repeat after p cycles and display local pairing events at q azimuthal
locations (Widnall 1972).

Anti-symmetric modes behave in a different manner. Here, the two vortices move
towards (or away from) one another such that X+ deforms much less and only at specific
positions (figure 10a). In other words, the pair predominantly displays an anti-symmetric
motion with respect to the helical structure, hence the name. Displacements are localized
and not necessarily aligned with the rotation of the pair. For instance, at the azimuths,
where displacements are perpendicular to the line connecting the two vortices, the
structure is twisted back and forth, whereas when displacements are parallel, the separation
distance expands and contracts. The latter could potentially trigger the merging of the
vortex pair. This localization can be deduced from the envelopes of the corresponding
eigenvectors, illustrated as dashed lines enclosing each vortex in figure 10(b). If we
consider a longitudinal cut, we can see that displacements of a given vortex are paired
with one of the vortices in the neighbouring turn but not with its companion (see arrows at
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Figure 9. Base state from figure 1(b) perturbed by modes (a,b) S1 and (c,d) S2. (a,c) Three-dimensional and
(b,d) developed plan views illustrating the local pairing modes.
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Figure 10. Base state from figure 1(b) perturbed by mode A1. (a) Three-dimensional and (b) developed plan
view. Arrows indicate the displacements at the centre plane in (a).

the bottom part of figure 10a). However, the choice of the characteristic wavenumber k0 is
not obvious. For instance, doubling H∗ from 5.25 to 10.5 shifts mode A1 from k0 = 5.406
to k0 = 5.938, while increasing β from 3/4 to 7/2 shifts the wavenumber to k0 = 5.552.
However, perturbations between consecutive pairs remain anti-correlated, suggesting the
dominant wavenumber is selected by the geometry as the one that amplifies the local
pairing. We shall explore this relation in the following section.

In Appendix A, we also analyse the long-wave instability of our solutions using the
linear impulse response approach developed in Durán Venegas et al. (2021). The idea is to
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Figure 11. Growth rates and dominant wavenumbers for β = 3/4. (a–c) shown as a function of H∗/R∗ for
R∗ = 7; and (d–f ) shown as a function of R∗ for H∗/R∗ = 0.75.

solve the linear perturbation equation (2.12) using a Dirac function as initial condition and
analyse the spatio-temporal growth of the resulting wavepacket. A sufficiently long domain
is considered so that the wavepacket does not reach the boundaries during the length of the
simulations. As shown in Appendix A, the temporal modes can be recovered but their study
is more difficult to perform with the linear impulse response as all the instability modes
are simultaneously excited. However, the linear impulse response provides additional
information by telling us how the instability spreads in space. In particular, we are able to
show that, although the most unstable anti-symmetric perturbations propagate at a similar
speed as the symmetric perturbations, their spreading in space is much less important. The
transition from convective to absolute instability is therefore expected to be associated with
the symmetric perturbations. Moreover, as for the linear spectrum, we also demonstrate
that the spatio-temporal evolution of these symmetric perturbations can be well described
by the spatio-temporal evolution of the linear impulse response on a uniform helical vortex
of large core size.

4.2. Influence of H∗ and R∗ on the modes of leapfrogging wakes
Since the two kinds of pairing modes described in § 4.1 seem to involve neighbouring
turns of H , growth rates are expected to display a strong dependency on the relative
pitch H∗/R∗. In general, the maximum growth rate is larger than the maximum growth
rate obtained for uniform helices with the total circulation of the vortex pair (figure 11a),
which is slightly larger than σ = (π/2)(Γ/H2) obtained for an array of point vortices
of circulation 2Γ and separated by a distance H. For the range of values considered,
symmetric and anti-symmetric modes have comparable growth rates (figure 11a,b). For
symmetric modes, σ ∗ initially increases for mode S1 before vanishing, while modes S2, S3
and so on, gradually vanish as the pitch increases. For anti-symmetric modes, σ ∗ initially
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Figure 12. Stability of sparsely braided wakes for R∗ = 10 and H∗/R∗ = 1. (a) Growth rates and dominant
wavenumbers; and (b) maximum growth rates as function of β.

increases at a faster rate, but also vanishes more quickly, while the dominant wavenumber
is approximated by k0 = 0.45H∗/R∗ for H∗/R∗ > 2, see figure 11(c).

It is also interesting to fix the relative pitch H∗/R∗ and change the separation distance
through R∗ ≡ R/d (figure 11d). Stability curves are essentially unchanged for modes S1
and S2, while the growth rate of S3 is observed to decrease as the separation distance
becomes smaller (figure 11c). This is also reminiscent of uniform helical vortices, where
the maximum growth rates also decrease as the effective core size becomes smaller (see,
for instance figure 4). For mode A1, the growth rate remains constant (figure 11e), while k0
seems to evolve linearly with k0 ∼ 0.89R∗ and overlaps the symmetric modes for R∗ < 6
(figure 11 f ).

From this dependency on H∗ and R∗, we may deduce the following: (i) σ scales with
Γ/H2 for modes A1 and S1 whatever H∗ and R∗. This is consistent with a local pairing
acting over a distance comparable to H; and (ii) the wavenumber most amplified by A1
increases linearly with H∗/R∗ (for constant R∗) and with R∗ (for constant H∗/R∗). In other
words, mode A1 deviates from the classical pairing of uniform helices, and amplifies a
linear wavelength l0 = 2πRk0 ∼ d−1 instead. This is reminiscent of a four-vortex system
involving two co-rotating pairs separated by a distance b = O(H) (see, for instance Crouch
1997; Fabre & Jacquin 2000). We shall revisit this matter in § 5 with the case of N = 2
helical pairs.

4.3. Typical displacement modes for sparsely braided wakes
Figure 12(a) presents the stability curves as we move from leapfrogging to sparsely braided
wakes (1 < β < 10). Modes S1, S2 and A1, behave as leapfrogging wakes. Some modes
may act on the large-scale pattern and on the distance separating the vortex pair (see,
for instance mode S1 in figure 13a,c,e). For these modes, small oscillations in σ ∗(β)
can be explained by a change in the effective distance between neighbouring vortices,
which varies by a factor d cos(φ) due to relative orientation of the vortex pairs, where
φ = 2π/q for β = p/q. For S1 and S2, the unstable frequencies and leading wavenumbers
are unchanged, while the wavenumber most amplified by A1 displays some dependency
on β.

We observe an additional set of low-frequency modes (figure 12a). Of this set of modes,
the maximum growth corresponds to the zero-frequency mode A0, which is almost a
linear function of β (figure 12b). The displacement produced by A0 is characterized
by a radial expansion of the vortex pair and a translation along the helical coordinate
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Figure 13. Base state from figure 12 and β = 7 perturbed by modes (a) S1 and (b) A0. (b) Inset includes the
base state (in dashed lines) for reference.

(see developed plan view in figure 13(b,d, f ) and corresponding insets). The resulting
perturbed state would correspond to a similar braided wake but one with slightly larger
d and R. Other modes in the same branch display a similar displacement, but one where
radial expansion and the translation along H are modulated in amplitude by a wavenumber
k0. For the case of two uniform helices, an equivalent displacement would yield two
uniform helices of slightly larger radius. In such a case, the initial displacement is not
amplified and the system remains in neutral equilibrium. However, for helical braids, the
perturbed state is not necessarily a solution of (2.4), explaining the positive growth rate.
This branch is not always present and, given the size of the parameter space (H∗, R∗ and β),
it is unclear how σ ∗ varies. For instance, for the case presented in figure 12(b) and β = 4,
σ ∗ = σ(H2/Γ ) is close to 1.5. For the same (R∗, β) and H∗/R∗ = 2, σ ∗ is nearly four
times larger, suggesting these modes no longer scale with Γ/H2. This behaviour extends
to the case of densely braided wakes.

4.4. Typical displacement modes for densely braided wakes
Densely braided wakes correspond to the case β > 10, when the pitch hτ becomes of the
same order as the separation distance d and the pairing modes of the vortex pair become
dominant. The stability curves in figure 14(a,b), display nearly all of the modes introduced
so far. Modes S1, S2 and A1 remain unchanged but are dwarfed by the other modes. For
β = 21, the branch containing mode A0 is still present, and now contains a new local
maximum around k0/β = 2, denoted Ã2 in figure 14(b). For β = 24, the branch containing
both modes splits in two. Modes A0 and Ã2 display a similar scaling and seem to vanish for
large β (figure 14c). The spatial structure of A0 is unchanged (see, figure 13(b,d, f ) insets
and 15(a)), while mode Ã2 displays a radial expansion modulated in amplitude with some
spatial frequency (figure 15b).

Finally, we have the pairing modes of the vortex pair. For these modes, the scaling
of the growth rate is different since the pairing acts over a distance comparable to hτ /2
instead of H. The maximum growth rate is comparable to the predictions for two interlaced
helices and σ = (π/2)(2Γ/h2

τ ) obtained for an array of point vortices of circulation Γ
and separated by hτ /2 (figure 14c). Here, mode B0 corresponds to a special case with
ω = 0 and k0 = 0. As shown in figure 15(c), displacements are characterized by a radial
expansion of the vortex pair and a translation along the helical coordinate for one vortex,
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Figure 14. Stability of densely braided wakes for R∗ = 10 and H∗/R∗ = 1: growth rate as a function of (a) ω
and (b) k0 for different β; and (c) growth rate of modes identified in (a,b) as a function of β.
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Figure 15. Stability of densely braided wakes. Schematic representation of the displacement modes identified
in figure 14: (a) A0, (b) Ã2, (c) B0 and (d) B1. For reference, each figure also includes the base state (in dashed
lines).

and a radial contraction and a translation in the opposite direction for the other one. This
results in a form of uniform pairing along the helical coordinate, analogous to the global
pairing mode of two uniform helices. For β > 25, a second maximum, denoted B1, is
observed near k0/β = 1. As shown in figure 15(d), displacements approach the vortices
in neighbouring turns at specific intervals, analogous to the local pairing mode of two
uniform helices.

5. Stability of two vortex pairs with a central hub vortex

A similar stability analysis can be performed for the case of two interlaced vortex pairs
with a central hub vortex, illustrated in figure 1(c). For this analysis, we considered
the hub as a straight vortex. Contributions from the hub are taken into account for the
stability analysis but the hub itself was not allowed to deform. We present only the modes
corresponding to leapfrogging wakes and focus on the differences with respect to the case
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Figure 16. Stability curves for the case of two helical pairs (a) without and (b) with a central hub vortex
and (R∗ = 7, H∗/R∗ = 1.5, β = 3/4). Colour indicates the phase difference between the two helical pairs:
ϕ = 0 (in black), ϕ = π (in red). For reference, (a) include the values for two uniform helices (H/R = 1.5,
ae/R = 0.1) in dashed lines.
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Figure 17. (a) Three-dimensional view of the base state from figure 1(c) perturbed by mode S0, and
(b) developed plan view illustrating the global pairing.

of one helical pair. Unstable modes associated with braided wakes are not discussed, but
we expect them to display roughly the same behaviour described in § 4.

5.1. Typical displacement modes for leapfrogging wakes
We consider similar geometric parameters as in § 4.1, but increase the pitch so as to
preserve the mean axial distance between neighbouring turns. The results are summarized
in figures 16–18. The frequency spectra presented in figure 16(a,c) are characterized by a
first set of modes distributed over three overlapping lobes at low frequencies, and a second
set distributed over two additional lobes at higher frequencies and a small lobe containing
A0. As in the previous case, the former are symmetric modes, the latter are anti-symmetric.
The structure of the eigenvectors is the same as before with dominant wavenumbers at k0
and additional harmonic terms at kn = k0 ± nβ, see table 3. In general, the maximum
growth rate is larger than the maximum growth rate obtained for two uniform helices with
the total circulation of each vortex pair, which is slightly larger than σ = (π/2)(2Γ/H2)
obtained for an array of point vortices of circulation 2Γ and separated by a distance H/2.

As expected, symmetric modes are reminiscent of the unstable modes obtained for two
equivalent helical vortices. Displacements between neighbouring turns are out of phase

946 A10-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

56
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.569


A. Castillo-Castellanos and S. Le Dizès

k0

0.5

1.0

1.5

2.0
S0 S1

S2

S3

A1

R∗ = 6

R∗ = 8

R∗ = 10

H∗ = 2R∗
H∗ = 4R∗

H∗ = 6R∗
H∗ = 8R∗

R∗
0

0.5

1.0

1.5

2.0

A1, N = 1

A1, N = 2

S0, N = 2

0 2 4 6 8 5 6 7 8 9 10 5 6 7 8 9 10

R∗

0

2

4

6

8

10

k0

k0

2.5

5.0

7.5

10.0

12.5

15.0

S0 S1

A1

H∗/NR∗ H∗/R∗

1

2

3

4

5

0 2.5 5.0 7.5 10.0 0 1 2 3 4 0 1 2 3 4

0

2

4

6

8

k0σ∗

σ∗ σ∗

σ
 Γ

/4
π

R2

(a) (b) (c)

(d) (e) ( f )

Figure 18. (a,d) Stability curves, (b,e) growth rates and (c, f ) dominant wavenumbers as functions of R∗ for
(H∗/R∗ = 1.5, β = 3/4) (a–c), and as functions of H∗/R∗ for (R∗ = 7, β = 3/4) (d–f ).

Mode Frequency Wavenumbers Phase velocity

ω∗ k0 k1 k2 k3 c0

S0 0.015 0.000 (−0.781,+0.719) (−1.531,+1.469) (−2.281,+2.219) 0.952
S1 9.863 −1.031 (−1.781,+0.281) (−2.531,+0.469) (−3.281,+1.219) 0.987
S2 19.086 −2.000 (−2.750,−1.250) (−3.500,−0.500) (−4.250,+0.250) 0.984
A1 51.846 −5.468 (−6.219,−4.719) (−6.969,−3.969) (−7.719,−1.719) 0.978

Table 3. Leading wavenumbers of the modes shown in figure 16. Here, Δk = 0.03125.

for modes in the branch containing S0 and S2 (in black), and phase aligned for modes in
the branches containing S1 and S3 (in red). These displacements result in a local pairing at
2k azimuthal positions per turn of the large-scale helix. Mode S0 corresponds to a special
case. Displacements between neighbouring turns are out of phase, where one vortex pair
expands in the radial direction, while the other one contracts, resulting in a uniform pairing
of the large-scale pattern along the azimuthal direction (figure 17a,b). This is analogous
to the global pairing mode k = 0 of the interlaced helices (see, for instance Okulov &
Sørensen 2009; Quaranta et al. 2019).

Additionally, we note that anti-symmetric modes are observed over a similar range of
values as in the case of one vortex pair. One notable difference is that two modes are now
obtained for the same k0 (each using a different colour in figure 16a,c), where each pair
has a similar structure but shifted in phase (not shown).

The introduction a central hub vortex ensures the total circulation is zero and the angular
velocity vanishes as r → ∞. This has a small effect on the frame velocity and the base
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states with and without a central hub are qualitatively similar. The presence of a central
hub modifies the stability properties to a small degree (figure 16b,d). For instance, the
case with a central hub vortex has generally larger growth rates than the case without by
2 %–3 %. Additionally, the branches containing A0 are suppressed by the hub vortex, while
the out-of-phase perturbations are no longer neutrally stable near k0 = 1. In the following,
we consider only the case with a central hub.

5.2. Geometric dependency of the most unstable modes
As expected, symmetric and anti-symmetric modes display a different behaviour as we
vary the geometric parameters. Varying the separation distance has a small influence on
the symmetric modes. As in the case of one vortex pair, the change in growth rates is
reminiscent of that of varying the effective core size in uniform helices: small for S0 and
S1, but more important for higher wavenumbers (figure 18a). For anti-symmetric modes,
the change in growth rates is also small (figure 18b), while the dominant wavenumber k0
increases linearly with R∗ (figure 18c). For H∗/R∗ = 1.5, k0 was found to be roughly the
same as in the case of one vortex pair with equal effective pitch, suggesting the modes are
selected by the same pairing mechanism described in § 4.

Varying the relative pitch shows the transition between two different regimes. For small
H∗/R∗, stability curves have a similar structure as before: symmetric modes distributed
over two or more branches with small k0 and anti-symmetric modes distributed over two
overlapping branches with larger k0. Growth rates are larger than predicted rates for the
equivalent uniform helices, but still close to the point vortex prediction σ ∼ ΓN2/H2. For
large H∗/R∗, the stability curves are characterized by two branches at small k0 containing
modes S0 and S1, and a single branch containing A1 at larger k0. Modes S1 and A1 are
shifted towards larger wavenumbers. Instead of vanishing, the dimensionless growth rate
σ ∗ proceeds to increase, pointing to a different scaling law with σ ∼ Γ/R2 for large H∗/R∗
(figure 18d,e). A similar transition is observed for the most unstable wavenumber k0: k0 ∼
H∗/NR∗ for small H∗/R∗, and k0 ∼ H∗/R∗ for large H∗/R∗ (figure 18 f ).

This change of regime can be understood as follows. For the case of a single pair
(N = 1), the limit of large H∗/R∗ leads to a pair of parallel co-rotating vortices which
are known to be stable with respect to long-wavelength perturbations (Jimenez 1975).
For the case of N = 2 vortex pairs with a central hub, the same limit provides a system
composed of two co-rotating pairs of vortices of circulation Γ and one counter-rotating
vortex of circulation −4Γ at the centre. For this configuration, the instability is necessarily
controlled by the distance between the vorticity centroids (b = 2R in our current notation),
and the separation distance d. This configuration is similar to four-vortex systems (Crouch
1997; Fabre et al. 2002), which are known to be unstable, with a maximum growth rate
scaling with Γ/b2, and a most unstable wavenumber varying with b and d.

6. Discussion

In this article, we have studied the long-wave stability properties of closely spaced helical
vortex pairs using a cutoff filament approach. The considered base flow configuration
corresponds to the far wake produced by a rotor emitting two distinct vortices near the
tips of each blade which was studied previously in Castillo-Castellanos et al. (2021). Both
the temporal linear spectrum and the linear impulse response have been analysed, but
the linear spectrum has been found to be much more convenient to identify the different
instability modes.
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We have classified these modes into different groups. Symmetric modes are
characterized by a block displacement of the vortex pair, analogous to the local pairing
modes in helical geometries. Anti-symmetric modes are characterized by a mirrored
displacement with respect to the vorticity centre of the pair, with the most unstable
mode corresponding to a local pairing between one member of a pair with the other
member of a pair in the neighbouring turn. These modes are particularly important since
they could trigger the merging of vortex pairs. Additional modes are observed as we
increase the twist parameter β: one corresponds to a radial expansion of the pair and a
displacement along the centreline helix, while the other corresponds to the global and
local pairing modes of the vortex pair, analogous to the case of two interlaced helices
obtained by straightening the centreline helix. We have also considered the dependency of
the stability properties with respect to the relative pitch, the separation distance and the
twist parameter. We have identified the regions in the parameter space where each mode
is dominant. Our observations also suggest that the pairing mechanism associated with
the anti-symmetric modes amplifies a specific axial wavelength (in the developed plane)
instead of an azimuthal wavelength, reminiscent of the anti-symmetric modes observed in
four-vortex systems. A similar pairing mechanism has also been observed for the case of
two pairs of helical vortices with one central hub. However, in this case, the instability does
not disappear in the limit of large pitch and exhibits a maximum growth rate scaling with
R/d. Additionally, the central hub was found to have only a small influence on the stability
properties. Experimental devices of 8 and 24 cm radius by Schröder et al. (2020, 2021)
successfully generated a pair of tip vortices. Their main objective was to obtain a larger and
less intense tip vortex. In their case, tip vortices were unstable with respect to a centrifugal
instability due to patches of opposite signed vorticity remaining from the roll-up process.
This instability triggered the vortex merging long before the long-wave instabilities could
be observed. We speculate that it could be possible to delay such instability by carefully
tuning the blade geometry, or by considering a larger rotor. Since core sizes typically
scale with the chord length, very large rotors could generate well-separated tip vortices
with stable cores. Because of the vortex diffusion, merging is expected even in the
absence of external perturbations and would depend on the ratio between the core radii
and the separation distance. External perturbations would only accelerate this process.
Anti-symmetric modes are expected to trigger the merging faster than symmetric modes.
However, this would require a form of active control. Since anti-symmetric modes are
excited by larger temporal and spatial frequencies, it is possible they could be more easily
excited by atmospheric turbulence than symmetric modes.

Helical pairs are not necessarily limited to the case of a tip-splitting rotor. One
alternative to generate a helical pair would be to consider asymmetric rotors. As shown
in Quaranta et al. (2019), a radial asymmetry excites the global pairing mode to obtain
a remarkably coherent structure like the one displayed in figure 19(a). From a topology
perspective, this structure is consistent with a leapfrogging wake with d ∼ H/2 and
β 	 1, where the value of β is controlled by the radial offset. This is a promising approach
since existing wind turbines could be easily modified. A similar result can be obtain using
an axial offset, as in the case of two in-line wind turbines considered by Kleine et al.
(2019). If the axial offset is not too large and is a multiple of the pitch, we may expect
the interaction between tip vortices to result in N pairs of helical vortices downstream,
like the ones displayed in figure 19(b). As observed in figure 5 of Kleine et al. (2019),
unstable dynamical modes are either in phase alignment or in phase opposition, similar to
the symmetric and anti-symmetric modes presented here.

946 A10-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

56
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.569


Closely spaced helical vortices: long-wave instability

0 1 2 3 4 5 6 7z

x

8 9 10 11 12 13 14

0

5

10

15

20

25

–1

–1.5

–1.0

–0.5

0.5

1.0

1.5

0

(a)

(b)

Figure 19. (a) Experimental dye visualization for a two-bladed rotor with 1.5 % radial rotor offset taken
(Quaranta et al. 2019). (b) Vorticity contours for two in-line wind turbines from Kleine et al. (2019). A close-up
of the vortex interaction is shown at the bottom.

Our analysis assumes the wavelength of the displacement perturbations to be large
with respect to the core size. For helical vortices, Quaranta et al. (2015) estimated the
limit of validity in the form of the wavenumber k ≤ kl. For the values used in figure 10,
this upper limit corresponds to kl ≈ 0.40(ae/R)−1 and kl ≈ 1.60(ae/d)−1. Since we
consider slender vortex filaments (ae/R ∼ 0.01 and ae/d ∼ 0.1), the limit of validity of the
long-wave approximation should not be a concern. Unlike Quaranta et al. (2015), which
uses analytical expressions, our approach considers the filaments as a sequence of straight
segments to compute the Jacobian matrix using semi-analytical expressions. This approach
has been validated using known results for the long-wave instability of uniform helices.
However, it is more general as it does not require prior knowledge of the spatial structure of
the instability modes. It also provides the complete spectrum and applies to any stationary
vortex solution, like the ones in figure 19.

By using a filament approach, we have neglected what is occurring in the vortex
cores. Yet, vortex cores are expected to be distorted by curvature and straining effects
(Blanco-Rodríguez et al. 2015). Moreover, these deformations are also responsible for
the short-wave instabilities developing in vortex cores. Depending on the geometric
parameters, these short-wave instabilities can become dominant. For instance, the elliptical
instability is expected to grow with Γ/d2 instead of Γ/H2 although with different
pre-factors (Roy et al. 2008; Blanco-Rodráguez & Le Dizès 2016), while the curvature
instability (Blanco-Rodráguez & Le Dizès 2017) is also expected to be present and
important if the vortex core exhibits an axial jet. None of these have been considered here.
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However, Brynjell-Rahkola & Henningson (2020) have shown that it is indeed possible
to analyse the stability of uniform helical vortices with respect to both short and large
wavelengths using direct numerical simulations from an initial condition obtained by
the filament solutions together with a prescribed vortex model in the cores. It would be
interesting to implement such an approach to our configurations in order to analyse the
competition between the two instabilities.
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Appendix A. Space–time impulse response

A.1. Methodology
The space–time impulse response of X B

j is studied as in Durán Venegas et al. (2021).
We introduce a Dirac impulse so as to excite all the wavenumber components with equal
amplitude and follow the evolution of the resulting wavepacket. We consider two types of
initial perturbation so as to preferentially excite the symmetric and anti-symmetric modes

q′
0(ζ ) =

{
(0, 0,A0δ(ζ − ζp), 0, 0,A0δ(ζ − ζ0)) Case A (in phase)
(0, 0,A0δ(ζ − ζp), 0, 0,−A0δ(ζ − ζ0)) Case B (out of phase)

(A1)

where A0 and ζ0 indicate the amplitude and wake coordinate of the initial perturbation and
δ is the Dirac delta function. Then, we use (2.12) recursively to obtain q′(ζ, ψ = mΔψ)
for (m = 1, 2, . . .) until the exponential regime is established. In general, the exponential
regime is established quickly and our calculation domain is considered to be long enough
to avoid boundary effects.

Temporal growth rates are estimated from the impulse response as follows. At each time
ψ , we apply the spatial Fourier transform along ζ to the axial displacement. Then, for each
azimuthal wavenumber k we can monitor the amplitude of each Fourier mode and estimate
its growth rate by

σj(k) ≈
∂(log‖ẑ′

j(k)‖)
∂ψ

. (A2)

It is also interesting to consider the growth rate

σV(Vψ) ≈
log(|z′

j(ψ, ζ0 + Vψψ)|)
ψ

(A3)

in the frame moving along the vortex structure with an angular velocity Vψ . In particular,
we are interested in the velocity Vmax

ψ at which the growth rate is maximum and the
upper and lower limits at which the perturbation grows, V+

ψ and V−
ψ . This provides

a quantitative criterium to identify convectively unstable and absolutely unstable flows
(Huerre & Monkewitz 1990).
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Figure 20. Linear impulse response for (R∗ = 10, H∗/R∗ = 0.75, β = 1); (a,b) l2-norm of the perturbations
for cases A and B, respectively.
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Figure 21. Fourier amplitudes of (a) z′+ and (b) z′− for case A, where each line corresponds to a different
instant at regular intervals, and (c) corresponding growth rates obtained using (A2) compared with results from
the eigenvalue problem.

A.2. Stability curves from the impulse response
Consider the propagation of the initial perturbation corresponding to case A. The norm
of the total displacement q′ grows exponentially with constant rate σ ∗ while the axial
displacements z′

1 and z′
2 display variable growth rates with a period comparable to

the characteristic time of the vortex pair (figure 20a). The symmetric component z′+
is dominant and displays a constant growth rate equal to σ ∗. A similar behaviour is
observed for radial and angular displacements (not shown). The spatio-temporal evolution
corresponding to case B provides similar growth rates, but z′− is now dominant and
the oscillations in z′

1 and z′
2 are less pronounced (figure 20b). Cases A and B have

slightly different growth rates, illustrating a clear dependency on the initial conditions
(figure 20a,b). The observed growth rates correspond to the predicted rates for the most
unstable symmetric and anti-symmetric modes, S1 and A1, respectively. As expected, if
we observe for long enough, both cases eventually arrive at whichever one has the largest
growth rate.

Figure 21(a) (respectively 21b) displays the Fourier spectra of z′+ (respectively z′−)
taken at regular intervals, where the most unstable wavenumbers are clearly identified.
For each wavenumber k, the corresponding growth rate obtained using (A2) is shown
in figure 21(c). Results are in good agreement with the eigenvalue problem (dash-dotted
lines). For instance, in z′+ the most unstable wavenumbers correspond to the dominant
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Figure 22. Fourier amplitudes of (a,d) z′+ and (b,e) z′−, where each line corresponds to a different instant, and
(c,d) growth rates obtained using (A2). (a–c) Correspond to case A with a high-pass filter, and (d–f ) to case B
with a low-pass filter, see text.

wavenumbers of S1 and S2. Additional peaks in z′+ (in blue) correspond to even harmonics,
while peaks in z′− (in orange) correspond to odd harmonics of S1. Similar results are
observed for mode A1 and to a smaller degree for mode S2.

Issues in recovering the harmonics of mode S2 can be explained by the overlap with
other modes. We may take advantage of the separation in temporal frequency to reduce
this effect. For instance, applying a high-pass filter to the wavepackets from case A before
evaluating the Fourier coefficients, i.e. filtering the anti-symmetric modes, we recover
the growth rates of symmetric modes over a wider range of wavenumbers (figure 22a–c).
Conversely, applying a low-pass filter to the wavepackets from case B, i.e. filtering the
symmetric modes, we recover the growth rates of anti-symmetric modes over a similar
range (figure 22d–f ). Superimposing the growth rates obtained from cases A and B, we
obtain a more complete picture of the stability curves, in good agreement with results from
§ 4.

A.3. Space–time evolution of perturbations
Figures 23(a) and 23(b) display the space–time evolution of the initial perturbation
corresponding to case B. In both cases, perturbations initially propagate in a narrow
wavepacket of high (temporal) frequency content associated with anti-symmetric modes,
before a second wavepacket with lower frequencies typical of symmetric modes is
observed. The case in figure 23(a) corresponds to a convective instability, while the one
in figure 23(b) illustrates the transition to an absolute instability. Despite the overlap of
frequencies and wavenumbers, it is still possible to estimate the front velocities using
(A3) by considering separately the symmetric and anti-symmetric parts, z′+ and z′−.
The maximum growth rate corresponds to a velocity Vψ = Vmax

ψ close to the phase
velocity c0 of the most unstable modes (see peak value in figure 23(c) and black lines in
figure 23a,b). In general, the anti-symmetric wavepacket (in dashed red lines) spreads more
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Figure 23. Impulse response for (R∗ = 10, β = 1) and case B: contours of log(|z′
1|) for (a) H∗/R∗ = 0.75 and

(b) H∗/R∗ = 0.5; and (c) σ ∗
V as function of Vψ for the case in (b). Here, z′+ and z′−, spread at different rates

shown by green and red lines.

slowly than the symmetric part (in dash-dotted green lines), suggesting that the transition
from convective to absolute instability can be monitored by following the spread of the
symmetric part. As expected, the growth rate σ ∗

V of the symmetric part behaves similarly
to the equivalent helical vortex and is well approximated by the predicted growth rate for
a periodic array of point vortices as proposed by (Durán Venegas et al. 2021)

σ ∗
V = (π/2)(1 − (V∗

rel)
2), (A4)

where V∗
rel = (Vψ − Vmax

ψ )(2π/ΩR)/tadv is the frame velocity relative to the advection
frame.

REFERENCES

BAYLY, B.J. 1988 Three-dimensional centrifugal-type instabilities in inviscid two-dimensional flows. Phys.
Fluids 31 (1), 56–64.

BHAGWAT, M.J. & LEISHMAN, J.G. 2000 Stability analysis of helicopter rotor wakes in axial flight. J. Am.
Helicopter Soc. 45 (3), 165–178.

BLANCO-RODRÍGUEZ, F.J. & LE DIZÈS, S. 2016 Elliptic instability of a curved batchelor vortex. J. Fluid
Mech. 804, 224–247.

BLANCO-RODRÍGUEZ, F.J. & LE DIZÈS, S. 2017 Curvature instability of a curved batchelor vortex. J. Fluid
Mech. 814, 397–415.

BLANCO-RODRÍGUEZ, F.J., LE DIZÈS, S., SELÇUK, C., DELBENDE, I. & ROSSI, M. 2015 Internal structure
of vortex rings and helical vortices. J. Fluid Mech. 785, 219–247.

BROCKLEHURST, A. & PIKE, A.C. 1994 Reduction of BVI noise using a vane tip. In AHS Aeromechanics
Specialists Conference. American Helicopter Society.

BROWN, K., HOUCK, D., MANIACI, D., WESTERGAARD, C. & KELLEY, C. 2022 Accelerated wind-turbine
wake recovery through actuation of the tip-vortex instability. AIAA J. 60 (5), 1–13.

BRYNJELL-RAHKOLA, M. & HENNINGSON, D.S. 2020 Numerical realization of helical vortices: application
to vortex instability. Theor. Comput. Fluid Dyn. 34 (1), 1–20.

CAÑADILLAS, B., et al. 2020 Offshore wind farm wake recovery: airborne measurements and its representation
in engineering models. Wind Energy 23 (5), 1249–1265.

CASTILLO-CASTELLANOS, A., LE DIZÈS, S. & DURÁN VENEGAS, E. 2021 Closely spaced corotating
helical vortices: general solutions. Phys. Rev. Fluids 6, 114701.

CROUCH, J.D. 1997 Instability and transient growth for two trailing-vortex pairs. J. Fluid Mech. 350, 311–330.
CROW, S.C. 1970 Stability theory for a pair of trailing vortices. AIAA J. 8 (12), 2172–2179.
DURÁN VENEGAS, E. & LE DIZÈS, S. 2019 Generalized helical vortex pairs. J. Fluid Mech. 865, 523–545.
DURÁN VENEGAS, E., RIEU, P. & LE DIZÈS, S. 2021 Structure and stability of Joukowski’s rotor wake

model. J. Fluid Mech. 911, A6.
FABRE, D. & JACQUIN, L. 2000 Stability of a four-vortex aircraft wake model. Phys. Fluids 12 (10),

2438–2443.

946 A10-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

56
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.569


A. Castillo-Castellanos and S. Le Dizès

FABRE, D., JACQUIN, L. & LOOF, A. 2002 Optimal perturbations in a four-vortex aircraft wake in
counter-rotating configuration. J. Fluid Mech. 451, 319–328.

FREDERIK, J.A., DOEKEMEIJER, B.M., MULDERS, S.P. & VAN WINGERDEN, J. -W. 2020 The helix
approach: using dynamic individual pitch control to enhance wake mixing in wind farms. Wind Energy
23 (8), 1739–1751.

FUKUMOTO, Y. & MIYAZAKI, T. 1991 Three–dimensional distorsions of a vortex filament zith axial velocity.
J. Fluid Mech. 222, 369–416.

GUPTA, B.P. & LOEWY, R.G. 1974 Theoretical analysis of the aerodynamic stability of multiple, interdigitated
helical vortices. AIAA J. 12 (10), 1381–1387.

HARDIN, J.C. 1982 The velocity field induced by a helical vortex filament. Phys. Fluids 25 (11), 1949–1952.
HUANG, X., MOGHADAM, S.M.A., MEYSONNAT, P.S., MEINKE, M. & SCHRÖDER, W. 2019 Numerical

analysis of the effect of flaps on the tip vortex of a wind turbine blade. Intl J. Heat Fluid Flow 77, 336–351.
HUERRE, P. & MONKEWITZ, P.A. 1990 Local and global instabilities in spatially developing flows. Annu.

Rev. Fluid Mech. 22 (1), 473–537.
IVANELL, S., MIKKELSEN, R., SØRENSEN, J.N. & HENNINGSON, D. 2010 Stability analysis of the tip

vortices of a wind turbine. Wind Energy 13 (8), 705–715.
JIMENEZ, J. 1975 Stability of a pair of co-rotating vortices. Phys. Fluids 18 (11), 1580–1581.
JOSSERAND, C. & ROSSI, M. 2007 The merging of two co-rotating vortices: a numerical study. Eur. J. Mech.

B/Fluids 26 (6), 779–794.
KAWADA, S. 1936 Induced velocity by helical vortices. J. Aeronaut. Sci. 3 (3), 86–87.
KERSWELL, R.R. 2002 Elliptical instability. Annu. Rev. Fluid Mech. 34 (1), 83–113.
KLEINE, V.G., KLEUSBERG, E., HANIFI, A. & HENNINGSON, D.S. 2019 Tip-vortex instabilities of two

in-line wind turbines. J. Phys.: Conf. Ser. 1256, 012015.
LAMB, H. 1945 Hydrodynamics. Dover.
LEISHMAN, J.G., BHAGWAT, M.J. & BAGAI, A. 2002 Free-vortex filament methods for the analysis of

helicopter rotor wakes. J. Aircraft 39 (5), 759–775.
LEVY, H. & FORSDYKE, A.G. 1928 The steady motion and stability of a helical vortex. Proc. R. Soc. Lond.

A 120, 670–690.
LEWEKE, T., LE DIZES, S. & WILLIAMSON, C.H.K. 2016 Dynamics and instabilities of vortex pairs. Annu.

Rev. Fluid Mech. 48 (1), 507–541.
LEWEKE, T., QUARANTA, H.U., BOLNOT, H., BLANCO-RODRIÍGUEZ, F.J. & LE DIZÈS, S. 2014 Long-

and short-wave instabilities in helical vortices. J. Phys.: Conf. Ser. 524, 012154.
MEUNIER, P., EHRENSTEIN, U., LEWEKE, T. & ROSSI, M. 2002 A merging criterion for two-dimensional

co-rotating vortices. Phys. Fluids 14 (8), 2757–2766.
MEUNIER, P. & LEWEKE, T. 2005 Elliptic instability of a co-rotating vortex pair. J. Fluid Mech. 533, 125–159.
OKULOV, V.L. 2004 On the stability of multiple helical vortices. J. Fluid Mech. 521, 319–342.
OKULOV, V.L. & SØRENSEN, J.N. 2007 Stability of helical tip vortices in a rotor far wake. J. Fluid Mech.

576, 1–25.
OKULOV, V.L. & SØRENSEN, J.N. 2009 Applications of 2d helical vortex dynamics. Theor. Comput. Fluid

Dyn. 24 (1–4), 395–401.
QUARANTA, H.U., BOLNOT, H. & LEWEKE, T. 2015 Long-wave instability of a helical vortex. J. Fluid Mech.

780, 687–716.
QUARANTA, H.U., BRYNJELL-RAHKOLA, M., LEWEKE, T. & HENNINGSON, D.S. 2019 Local and global

pairing instabilities of two interlaced helical vortices. J. Fluid Mech. 863, 927–955.
ROBINSON, A.C. & SAFFMAN, P.G. 1982 Three-dimensional stability of vortex arrays. J. Fluid Mech. 125,

411–427.
ROY, C., SCHAEFFER, N., LE DIZÈS, S. & THOMPSON, M. 2008 Stability of a pair of co-rotating vortices

with axial flow. Phys. Fluids 20 (9), 094101.
SCHRÖDER, D., LEWEKE, T., HÖRNSCHEMEYER, R. & STUMPF, E. 2020 Experimental investigation of a

helical vortex pair. In Deutscher Luft-und Raumfahrtkongress 2020.
SCHRÖDER, D., LEWEKE, T., HÖRNSCHEMEYER, R. & STUMPF, E. 2021 Instability and merging of a helical

vortex pair in the wake of a rotor. J. Phys.: Conf. Ser. 1934 (1), 012007.
SELÇUK, C., DELBENDE, I. & ROSSI, M. 2017 Helical vortices: quasiequilibrium states and their time

evolution. Phys. Rev. Fluids 2 (8), 084701.
WALTHER, J.H., GUÉNOT, M., MACHEFAUX, E., RASMUSSEN, J.T., CHATELAIN, P., OKULOV, V.L.,

SØRENSEN, J.N., BERGDORF, M. & KOUMOUTSAKOS, P. 2007 A numerical study of the stabilitiy of
helical vortices using vortex methods. J. Phys.: Conf. Ser. 75, 012034.

WIDNALL, S.E. 1972 The stability of a helical vortex filament. J. Fluid Mech. 54 (4), 641–663.

946 A10-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

56
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.569

	1 Introduction
	2 Methodology
	2.1 Finding stationary solutions using a filament approach
	2.1.1 Filament framework
	2.1.2 Periodic solutions in the far field

	2.2 Inviscid global instability analysis

	3 Validation of the stability analysis: uniform helices
	4 Stability of one vortex pair without a central hub vortex
	4.1 Typical displacement modes for leapfrogging wakes
	4.2 Influence of H* and R* on the modes of leapfrogging wakes
	4.3 Typical displacement modes for sparsely braided wakes
	4.4 Typical displacement modes for densely braided wakes

	5 Stability of two vortex pairs with a central hub vortex
	5.1 Typical displacement modes for leapfrogging wakes
	5.2 Geometric dependency of the most unstable modes

	6 Discussion
	Appendix A. Space--time impulse response
	A.1 Methodology
	A.2 Stability curves from the impulse response
	A.3 Space--time evolution of perturbations

	References

