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Abstract Interactions of developing T cells with Aire+ medullary thymic epithelial cells expressing 
high levels of MHCII molecules (mTEChi) are critical for the induction of central tolerance in the 
thymus. In turn, thymocytes regulate the cellularity of Aire+ mTEChi. However, it remains unknown 
whether thymocytes control the precursors of Aire+ mTEChi that are contained in mTEClo cells or 
other mTEClo subsets that have recently been delineated by single-cell transcriptomic analyses. 
Here, using three distinct transgenic mouse models, in which antigen presentation between mTECs 
and CD4+ thymocytes is perturbed, we show by high-throughput RNA-seq that self-reactive CD4+ 
thymocytes induce key transcriptional regulators in mTEClo and control the composition of mTEClo 
subsets, including Aire+ mTEChi precursors, post-Aire and tuft-like mTECs. Furthermore, these inter-
actions upregulate the expression of tissue-restricted self-antigens, cytokines, chemokines, and 
adhesion molecules important for T-cell development. This gene activation program induced in 
mTEClo is combined with a global increase of the active H3K4me3 histone mark. Finally, we demon-
strate that these self-reactive interactions between CD4+ thymocytes and mTECs critically prevent 
multiorgan autoimmunity. Our genome-wide study thus reveals that self-reactive CD4+ thymo-
cytes control multiple unsuspected facets from immature stages of mTECs, which determines their 
heterogeneity.

Editor's evaluation
This manuscript is of interest to readers in the field of immunology and especially in the induction of 
immune tolerance in the thymus. The work uses several mouse models to substantially broaden the 
current understanding of MHCII/TCR-mediated cell-cell crosstalk in the thymus and suggests a novel 
mechanism that contributes to the generation of functional and self-tolerant T-cells.

Introduction
The thymic medulla ensures the generation of a self-tolerant T-cell repertoire (Klein et  al., 2014; 
Lopes et al., 2015). By their unique ability to express tissue-restricted self-antigens (TRAs) (Derbinski 
et al., 2001; Sansom et al., 2014), medullary thymic epithelial cells (mTECs) promote the develop-
ment of Foxp3+ regulatory T cells and the deletion by apoptosis of self-reactive thymocytes capable of 
inducing autoimmunity (Klein et al., 2019). The expression of TRAs that mirrors body’s self-antigens 
is controlled by Aire (Autoimmune regulator) and Fezf2 (Fez family zinc finger 2) transcription factors 
(Anderson et al., 2002; Takaba et al., 2015). Aire-dependent TRAs are generally characterized by 
a repressive chromatin state enriched in the trimethylation of lysine-27 of histone H3 (H3K27me3) 
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histone mark (Handel et al., 2018; Org et al., 2009; Sansom et al., 2014). In accordance with their 
essential role in regulating the expression of TRAs, Aire-/- and Fezf2-/- mice show defective clonal 
deletion of autoreactive thymocytes and develop signs of autoimmunity in several peripheral tissues 
(Anderson et al., 2002; Takaba et al., 2015).

Based on the level of the co-expressed MHC class II and CD80 molecules, mTECs were initially 
subdivided into mTEClo (MHCIIloCD80lo) and mTEChi (MHCIIhiCD80hi) (Gray et  al., 2006). The rela-
tionship between these two subsets has been established with reaggregate thymus organ cultures 
in which mTEClo give rise to mature Aire+ mTEChi (Gäbler et al., 2007; Gray et al., 2007). Although 
mTEChi express a highly diverse array of TRAs under Aire’s action that releases stalled RNA poly-
merase and modulates chromatin accessibility, mTEClo already express a substantial amount of TRAs 
(Derbinski et al., 2005; Giraud et al., 2012; Koh et al., 2018; Kyewski and Klein, 2006; Sansom 
et al., 2014). Recent single-cell transcriptomic analyses indicate that the heterogeneity of mTECs, 
especially in the mTEClo compartment, is more complex than previously thought (Irla, 2020; Kadouri 
et al., 2020). mTEClo with low or no expression of CD80 have been shown to be divided into three 
main subsets: CCL21+ mTECs, implicated in the attraction of positively selected thymocytes in the 
medulla (Lkhagvasuren et al., 2013), involucrin+TPAhi post-Aire mTECs corresponding to the ultimate 
mTEC differentiation stage (Metzger et  al., 2013; Michel et  al., 2017; Nishikawa et  al., 2010), 
and the newly reported tuft-like mTECs that show properties of gut chemosensory epithelial tuft 
cells expressing the doublecortin-like kinase 1 (DCLK1) marker (Bornstein et al., 2018; Miller et al., 
2018). Based on single-cell transcriptomic analyses, mTECs were then classified into four major groups 
encompassing mTEC I:CCL21+ mTECs, mTEC II:Aire+ mTECs, mTEC III:post-Aire mTECs, and mTEC 
IV:tuft-like mTECs (Bornstein et al., 2018). Furthermore, mTEClo with intermediate levels of CD80 and 
MHCII lie into mTEC single-cell clusters that are defined as proliferating and maturational, expressing 
Fezf2 and preceding the Aire+ mTEChi stage (Baran-Gale et al., 2020; Dhalla et al., 2020). These 
transit-amplifying cells were recently referred as to as TAC-TECs (Wells et al., 2020).

In the postnatal thymus, while mTECs control the selection of thymocytes, conversely CD4+ thymo-
cytes control the cellularity of Aire+ mTEChi by activating RANK and CD40-induced NF-κb signaling 
pathways (Akiyama et al., 2008; Hikosaka et al., 2008; Irla, 2020; Irla et al., 2008). These bidirec-
tional interactions between mTECs and thymocytes are commonly referred to as thymic crosstalk 
(Lopes et al., 2015; van Ewijk et al., 1994). However, it remains unknown whether CD4+ thymocytes 
act exclusively on mature Aire+ mTEChi or upstream on their TAC-TEC precursors contained in mTEClo 
and whether the development of the newly identified Fezf2+, post-Aire, and tuft-like subsets is regu-
lated or not by CD4+ thymocytes.

In this study, using high-throughput RNA-sequencing (RNA-seq), we show that self-reactive CD4+ 
thymocytes induce in mTEClo pivotal transcriptional regulators for their differentiation and function. 
Accordingly, self-reactive CD4+ thymocytes control the composition of the mTEClo compartment, 
that is the precursors of Aire+ mTEChi, post-Aire cells, and tuft-like mTECs. Our data also reveal that 
self-reactive CD4+ thymocytes upregulate in mTEClo the expression of TRAs, chemokines, cytokines, 
and adhesion molecules involved in T-cell development. This gene activation program correlates with 
increased levels of the active trimethylation of lysine-4 of histone 3 (H3K4me3) mark, including the 
loci of Fezf2-dependent and Aire/Fezf2-independent TRAs, indicative of an epigenetic regulation 
for their expression. Finally, we demonstrate that disrupted MHCII/TCR interactions between mTECs 
and CD4+ thymocytes lead to the generation of mature T cells containing self-specificities capable of 
inducing multiorgan autoimmunity. Altogether, our genome-wide study reveals that self-reactive CD4+ 
thymocytes control the developmental transcriptional programs of mTEClo, which conditions their 
differentiation and function as inducers of T-cell tolerance.

Results
CD4+ thymocytes induce key transcriptional programs in mTEClo cells
Several NF-κb members are involved in Aire+ mTEChi development (Burkly et  al., 1995; Lomada 
et  al., 2007; Riemann et  al., 2017; Shen et  al., 2019; Zhang et  al., 2006). However, it remains 
unclear whether the NF-κb or other signaling pathways are activated by CD4+ thymocytes specifically 
in mTEClo cells. To investigate the effects of CD4+ thymocytes in mTEClo, we used mice deficient 
in CD4+ thymocytes (ΔCD4 mice) because they lack the promoter IV of the class II transactivator 
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(Ciita) gene that controls MHCII expression in cortical TECs (cTECs) (Waldburger et al., 2003). We 
first analyzed by flow cytometry the total and phosphorylated forms of IKKα, p65, and RelB NF-κb 
members and p38 and Erk1/2 MAPK proteins in mTEClo from ΔCD4 mice according to the gating 
strategy shown in Figure 1—figure supplement 1A. Interestingly, the phosphorylation level of IKKα 
and p38 MAPK was substantially reduced in ΔCD4 mice (Figure 1A and B, Figure 1—figure supple-
ment 2), indicating that CD4+ thymocytes may have an impact in mTEClo by activating the IKKα inter-
mediate of the nonclassical NF-κB pathway and the p38 MAPK pathway.

To gain insights into the effects of CD4+ thymocytes in mTEClo, we analyzed by high-throughput 
RNA-seq the gene expression profiles of mTEClo purified from WT and ΔCD4 mice (Figure 1—figure 
supplement 1B). We found that CD4+ thymocytes upregulated 989 genes (fold change [FC]  >2) 
reaching significance for 248 of them (Cuffdiff p<0.05) (Figure 1C). 957 genes were also downreg-
ulated (FC < 0.5) with 178 genes reaching significance (Cuffdiff p<0.05). We analyzed whether the 
genes significantly up- or downregulated by CD4+ thymocytes corresponded to TRAs, as defined 
by an expression restricted to 1–5 of peripheral tissues (Sansom et  al., 2014). Interestingly, the 
genes upregulated by CD4+ thymocytes exhibited approximately fourfold more of TRAs over non-
TRAs (Figure  1D, left panel). The comparison of the proportion of TRAs among the upregulated 
genes with those of the genome revealed a strong statistical TRA overrepresentation (p=5.2 × 10–10) 
(Figure 1D, right panel). Most of the TRAs upregulated by CD4+ thymocytes were sensitive to the 
action of Aire (Aire-dependent TRAs) or controlled by Aire and Fezf2-independent mechanisms (Aire/
Fezf2-independent TRAs) (Figure 1E, Supplementary file 1). The upregulation of some of these TRAs 
by CD4+ thymocytes was confirmed by qPCR in mTEClo purified from ΔCD4 mice (Figure 1F). The 
same results were observed with mTEClo purified from MHCII-/- mice, also lacking CD4+ thymocytes, 
excluding any potential indirect effect of CIITA in the phenotype observed in ΔCD4 mice (Figure 1—
figure supplement 3A).

Remarkably, among the non-TRAs upregulated by CD4+ thymocytes in mTEClo, 37 corresponded to 
50 mTEC-specific transcription factors that are induced by the histone deacetylase 3 (HDAC3) (Gold-
farb et al., 2016; Figure 1G). Some of them, such as the interferon regulatory factor 4 (Irf4), Irf7, and 
the Ets transcription factor member, Spib, are known to regulate mTEC differentiation and function 
(Akiyama et al., 2014; Haljasorg et al., 2017; Otero et al., 2013). We also identified other transcrip-
tion factors such as Nfkb2, Trp53, and Relb implicated in mTEC differentiation (Riemann et al., 2017; 
Rodrigues et al., 2017; Zhang et al., 2006). Finally, we found that CD4+ thymocytes upregulate in 
mTEClo the expression of some cytokines and cell adhesion molecules such as integrins and cadherins 
(Figure 1H, Figure 1—figure supplement 3B). Given that mTEClo are heterogeneous (Irla, 2020; 
Kadouri et al., 2020), we then analyzed whether the cytokines and adhesion molecules, which are 
upregulated by CD4+ thymocytes, are specific to a particular subset of mTEClo. To this end, we rean-
alyzed single-cell RNA-seq data performed on total CD45-EpCAM+ TECs (Wells et al., 2020). Single 
cells were projected into a UMAP reduced-dimensional space and, using the 15 first principal compo-
nents, six clusters were obtained, as in Wells et al., 2020 (Figure 1—figure supplement 4A). Well-
established markers were used to distinguish the different TEC subsets such as Psmb11 and Prss16 
for cTECs, Ccl21a and Krt5 for CCL21+ mTECs (also called mTEC I), Stmn1, Ska1, Fezf2 and Aire for 
TAC-TECs, Aire and Fezf2 for Aire+ mTECs (also called mTEC II), Pigr and Cldn3 for post-Aire mTECs 
(also called mTEC III), and Avil and Pou2f3 for tuft-like mTECs (also called mTEC IV) (Figure 1—figure 
supplement 4B). In contrast to CCL21+ mTECs, some genes upregulated by CD4+ thymocytes were 
expressed by tuft-like mTECs (Figure 1I). Interestingly, many genes encoding for cytokines and cell 
adhesion molecules were associated with Aire+ mTECs and post-Aire cells with some of them already 
expressed in TAC-TECs, suggesting that CD4+ thymocytes may act upstream of Aire+ mTEChi. These 
results thus provide the first evidence that CD4+ thymocytes are able to induce in mTEClo essential 
transcriptional regulators for mTEC differentiation and function as well as TRAs, adhesion molecules, 
and cytokines.

CD4+ thymocytes regulate maturational programs in mTEClo through 
MHCII/TCR interactions
We next investigated by which mechanism CD4+ thymocytes regulate the transcriptional programs 
of mTEClo. Given that MHCII/TCR interactions with mTECs are critical for CD4+ T-cell selection (Klein 
et  al., 2019), we hypothesized that these interactions could play an important role in initiating 
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Figure 1. The transcriptional profile and IKKα and p38 MAPK signaling pathways are impaired in mTEClo of 
ΔCD4 mice. (A, B) Total IKKα, p38 MAPK, phospho-IKKα(Ser180)/IKKβ(Ser181), and p38 MAPK (Thr180/Tyr182) 
(A) and the ratio of phospho/total proteins (B) analyzed by flow cytometry in mTEClo from WT and ΔCD4 mice. 
Data are representative of two independent experiments (n = 3–4 mice per group and experiment). (C) Scatter 

Figure 1 continued on next page
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transcriptional programs that govern the functional and developmental properties of mTEClo. To this 
end, we used a unique transgenic mouse model in which MHCII expression is selectively abrogated 
in mTECs (mTECΔMHCII mice) (Irla et al., 2008). In contrast to their WT counterparts, we found that 
OVA323-339-loaded mTECs from mTECΔMHCII mice were ineffective at activating OTII-specific CD4+ T 
cells, demonstrating that the capacity of antigen presentation of mTECs to CD4+ T cells is impaired in 
these mice (Figure 2A).

The comparison of the gene expression profiles of mTEClo purified from WT and mTECΔMHCII mice 
(Figure  1—figure supplement 1B) revealed that MHCII/TCR interactions with CD4+ thymocytes 
resulted in the upregulation of 1300 genes (FC > 2), 449 of them reaching statistical significance (Cuff-
diff p<0.05). 846 genes were also downregulated (FC < 0.5) with 340 reaching significance (Cuffdiff 
p<0.05) (Figure 2B). Similarly to the comparison of WT versus ΔCD4 mice (Figure 1D), the genes 
significantly upregulated by MHCII/TCR interactions in mTEClo corresponded preferentially to TRAs 
(p=4.5 × 10–13) that are mainly Aire-dependent and Aire/Fezf2-independent (Figure 2C–E, Supple-
mentary file 2). In line with the recent discovery of Aire expression in mTECs expressing intermediate 
levels of CD80 identified in the proliferating and maturational stage mTEC single-cell clusters (Dhalla 
et al., 2020), we found a strong correlation (p=2 × 10–16) between gene upregulation induced by 
MHCII/TCR interactions and the responsiveness of genes to Aire’s action obtained from the compar-
ison between WT and Aire-/- mTEChi (Figure 2F). These data are in agreement with the identification 
of a list of activation factors including Aire among the non-TRA genes induced by MHCII/TCR interac-
tions with CD4+ thymocytes in mTEClo (Figure 2G). mTEClo from mTECΔMHCII mice expressed ~4.5-fold 
less Aire than WT mTEClo, with substantial levels of 15.8 and 73.7 fragments per kilobase of transcript 
per million mapped reads (FPKM), respectively. For comparison, Aire expression level in WT mTEChi 
was 448.9 FPKM. mTEClo from mTECΔMHCII mice also expressed ~1.5-fold less Fezf2 than WT mTEClo 
(90.2 versus 134.5 FPKM, respectively). This reduction in Aire and Fezf2 expression in mTECΔMHCII 
mice was also confirmed by qPCR (Figure  2H). These results highlight the importance of MHCII/
TCR interactions with CD4+ thymocytes in upregulating Aire and Fezf2 mRNAs and some of their 
associated TRAs in mTEClo. Interestingly, 17 HDAC3-regulated transcription factors as well as Nfkb2, 
Trp53, and Relb transcription factors were induced by MHCII/TCR interactions with CD4+ thymocytes 
(Figure 2I). Moreover, the expression of several cytokines, chemokines, and cell adhesion molecules 
was also upregulated (Figure 2J, Figure 2—figure supplement 1A). Using single-cell RNA-seq data 
(Figure 1—figure supplement 4), we found that these genes were poorly associated with CCL21+ 
and tuft-like mTEClo (Figure 2K). Consistently with the altered cellularity of Aire+ mTECs in mTECΔMHCII 

plot of gene expression levels (fragments per kilobase of transcript per million mapped reads [FPKM]) of mTEClo 
from WT versus ΔCD4 mice. Genes with fold difference ≥2 and p-adj<0.05 were considered as upregulated or 
downregulated genes (red and blue dots, respectively). RNA-seq was performed on two independent biological 
replicates with mTEClo derived from 3 to 5 mice. (D) Numbers of tissue-restricted self-antigens (TRAs) and non-
TRAs in genes up- and downregulated (left panel) and the proportion of upregulated TRAs compared to those 
in the all genome (right panel). ND, not determined. (E) Numbers of induced Aire-dependent, Fezf2-dependent, 
Aire/Fezf2-dependent, and Aire/Fezf2-independent TRAs. (F) The expression of Aire-dependent (Meig1, Nov), 
Fezf2-dependent (Fcer2a, Kcnj5), Aire/Fezf2-dependent (Krt1, Reig1), and Aire/Fezf2-independent (Crp, Rsph1) 
TRAs measured by qPCR in WT (n = 3–4) and ΔCD4 (n = 3–4) mTEClo. (G) Expression fold change in HDAC3-
induced transcriptional regulators and other transcription factors significantly upregulated in WT versus ΔCD4 
mTEClo. The color code represents gene expression level. (H) Heatmaps of genes encoding for cell adhesion 
molecules and cytokines that were significantly downregulated in mTEClo from ΔCD4 mice. (I) Hierarchical 
clustering and heatmap of mean expression of these cell adhesion molecules and cytokines in mTEC subsets 
identified by scRNA-seq. Error bars show mean ± SEM, *p<0.05, **p<0.01 using two-tailed Mann–Whitney test for 
(A), (B) and (F) and chi-squared test for (D).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Gating strategy used to purify mTEClo cells.

Figure supplement 2. Normal total and phosphorylated p65, RelB, and Erk1/2 proteins in mTEClo from ΔCD4 
mice.

Figure supplement 3. Impaired TRA expression in mTEClo from MHCII-/- mice.

Figure supplement 4. Identification of thymic epithelial cell (TEC) subsets by single-cell RNA-seq.

Figure 1 continued
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Figure 2. The transcriptional and functional properties of mTEClo are impaired in mTECΔMHCII mice. (A) Percentages of CD69+ OTII CD4+ T cells cultured 
or not with variable numbers of OVA323-339-loaded WT or mTECΔMHCII mTECs derived from two independent experiments (n = 2–3 mice per group and 
experiment). (B) Scatter plot of gene expression levels (fragments per kilobase of transcript per million mapped reads [FPKM]) of mTEClo from WT 
versus mTECΔMHCII mice. Genes with fold difference ≥2 and p-adj<0.05 were considered as upregulated or downregulated genes (red and blue dots, 

Figure 2 continued on next page
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mice (Irla et al., 2008), some of these genes were associated with post-Aire cells. Strikingly, many 
genes upregulated by CD4+ thymocytes in mTEClo were highly expressed by Aire+ mTECs. Interest-
ingly, several of these genes were already expressed by TAC-TECs, including Aire and Fezf2, strongly 
suggesting that an enhanced transcriptional activity promoted by MHCII/TCR interactions with CD4+ 
thymocytes accompanies the transition from TAC-TECs to Aire+ mTECs. Altogether, these data show 
that CD4+ thymocytes, through MHCII/TCR interactions, control the functional properties of mTEClo 
and activate key transcriptional programs governing their differentiation and function.

TCR/MHCII interactions with CD4+ thymocytes regulate the 
development of Fezf2+ pre-Aire, post-Aire, and tuft-like mTEC subsets
Since key transcription factors implicated in mTEC differentiation were upregulated in mTEClo by 
MHCII/TCR-mediated interactions with CD4+ thymocytes (Figures 1G and 2I), we next analyzed the 
composition for the newly identified mTEC subsets in ΔCD4 and mTECΔMHCII mice. In agreement with 
our previous study (Irla et al., 2008), we first observed a substantial reduction in the frequencies and 
numbers of mTEChi in both mice (Figure 3A). Furthermore, numbers of mTEClo were also substan-
tially reduced. Consequently, ΔCD4 and mTECΔMHCII mice have a globally reduced cellularity in total 
mTECs. An Aire/Fezf2 co-staining both by histology and flow cytometry then revealed a substantial 
reduction in Aire-Fezf2+ and Aire+Fezf2+ cells (Figure 3B and C). We further analyzed by flow cytom-
etry Aire and Fezf2 expression specifically in mTEClo and mTEChi, according to the gating strategy 
shown in Figure 1—figure supplement 1A. In agreement with the detection of Aire in the prolifer-
ating and maturational single-cell clusters in mTEClo (Baran-Gale et al., 2020; Dhalla et al., 2020; 
Wells et al., 2020), we found that Aire protein was expressed in a small fraction of mTEClo compared 
to mTEChi in WT, ΔCD4, and mTECΔMHCII mice (Figure 3C). Aire-Fezf2+ and Aire+Fezf2+ mTECs were 
reduced in mTEClo of ΔCD4 and mTECΔMHCII mice with a more marked effect in mTEChi. This decrease 
was not due to impaired proliferation since normal frequencies of Ki-67+ proliferating cells were 
observed in ΔCD4 and mTECΔMHCII mice (Figure  3—figure supplement 1). Furthermore, numbers 
of involucrin+TPA+Aire- post-Aire cells were reduced in the medulla of ΔCD4 and mTECΔMHCII mice 
(Figure 3—figure supplement 2A), consistently with the decrease of Aire+ mTEChi (Figure 3B and 
C). In contrast, the frequencies of CCL21+ cells among mTEClo were not altered in ΔCD4 and mTECΔM-

HCII mice (Figure 3D). This is in line with the observation that few genes upregulated by TCR/MHCII 
interactions with CD4+ thymocytes were associated with CCL21+ mTECs (Figures 1I and 2K). We also 
analyzed tuft-like mTECs since the expression of the transcription factor Pou2f3, known to control the 
development of this cell type (Bornstein et al., 2018; Miller et al., 2018), was decreased in mTEClo 
of ΔCD4 and mTECΔMHCII mice (Figures 1G and 2I). We found that numbers of tuft-like mTECs iden-
tified by flow cytometry using the DCLK1 marker were reduced in both mice (Figure 3E, Figure 3—
figure supplement 2B), indicating that their development is promoted by MHCII/TCR interactions 
with CD4+ thymocytes. Importantly, Aire-Fezf2+ and Aire+Fezf2+ mTEClo and mTEChi as well as CCL21+ 
and DCLK1+ tuft-like mTEClo were similarly reduced in MHCII-/- mice, further confirming that CD4+ 
thymocytes control the cellularity of these novel mTEC subsets (Figure 3—figure supplement 3). 

respectively). RNA-seq was performed on two independent biological replicates with mTEClo derived from 3 to 5 mice. (C) Numbers of tissue-restricted 
self-antigens (TRAs) and non-TRAs in genes up- and downregulated in mTEClo from WT versus mTECΔMHCII mice. ND, not determined. (D) Numbers of 
induced TRAs regulated or not by Aire and/or Fezf2. (E) Aire-dependent (Crabp1), Fezf2-dependent (Coch, Sult1c2), Aire/Fezf2-dependent (Fabp9), 
and Aire/Fezf2-independent (Spon2, Upk3b) TRAs were measured by qPCR in mTEClo from WT (n = 4) and mTECΔMHCII (n = 4) mice. (F) Scatter plot of 
gene expression variation in mTEClo from WT versus mTECΔMHCII mice and in mTEChi from WT versus Aire-/- mice. The loess fitted curve is shown in blue 
and the induced Aire-dependent genes (fold change [FC] > 5) in red. (G) Heatmap of significantly downregulated activation factors in mTEClo from 
mTECΔMHCII mice. (H) Aire and Fezf2 mRNAs were measured by qPCR in mTEClo from WT (n = 3–4) and mTECΔMHCII (n = 4) mice. (I) FC in the expression 
of HDAC3-induced transcriptional regulators and other transcription factors significantly upregulated in WT versus mTECΔMHCII mice. The color code 
represents gene expression level. (J) Heatmap of significantly downregulated cytokines, chemokines, and cell adhesion molecules in mTEClo from 
mTECΔMHCII mice. (K) Hierarchical clustering and heatmap of mean expression of these activation factors, cell adhesion molecules, chemokines, and 
cytokines in mTEC subsets identified by scRNA-seq. Error bars show mean ± SEM, *p<0.05, **p<0.01, ***p<0.001 using two-tailed Mann–Whitney test 
for (A), (E) and (H) and chi-squared test for (C) and (F).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Altered expression of some cytokines, cell adhesion molecules, and chemokines in mTEClo from mTECΔMHCII mice.

Figure 2 continued
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Figure 3. The composition in medullary thymic epithelial cell (mTEC) subsets is altered in ΔCD4 and mTECΔMHCII mice. (A) Flow cytometry profiles, 
frequencies, and numbers of mTEClo and mTEChi in WT, ΔCD4, and mTECΔMHCII mice. Data are representative of 2–3 independent experiments (n 
= 2–5 mice per group and experiment). (B) Confocal images of thymic sections from WT, ΔCD4, and mTECΔMHCII mice stained for Aire (green) and 
Fezf2 (red). 12 and 20 sections derived from two WT, two ΔCD4, and two mTECΔMHCII mice were quantified. Scale bar, 50 μm. Unfilled, dashed and 

Figure 3 continued on next page
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Altogether, these data reveal that MHCII/TCR-mediated interactions with CD4+ thymocytes have a 
broad impact on mTEC composition by controlling the cellularity of not only Aire+Fezf2+ mTECs but 
also Fezf2+ pre-Aire+ mTECs, post-Aire, and tuft-like cells.

Highly self-reactive CD4+ thymocytes activate maturational programs 
in mTEClo

We next assessed the impact of highly self-reactive interactions with CD4+ thymocytes in mTEClo 
using OTII-Rag2-/- and RipmOVAxOTII-Rag2-/- transgenic mice. Both models possess CD4+ thymocytes 
expressing an MHCII-restricted TCR specific for the chicken ovalbumin (OVA). The Rip-mOVA line 
expresses a membrane-bound OVA form specifically in mTECs, and consequently high-affinity inter-
actions between OVA-expressing mTECs and OTII CD4+ thymocytes are only possible in RipmOVAx-
OTII-Rag2-/- mice (Kurts et al., 1996). In contrast to total Erk1/2 MAPK, p38 MAPK, IKKα, and p65, the 
nonclassical NF-kB subunit RelB was increased in mTEClo at mRNA and protein levels in RipmOVAx-
OTII-Rag2-/- compared to OTII-Rag2-/- mice (Figure 4A and B, Figure 4—figure supplement 1). By 
reanalyzing single-cell RNA-seq data on mTEClo subsets, we found that in contrast to CCL21+ and 
tuft-like mTECs Relb is highly expressed by TAC-TECs and post-Aire cells, arguing again in favor that 
self-reactive CD4+ thymocytes act from the TAC-TEC stage to induce their differentiation into Aire+ 
cells and then into post-Aire cells (Figure 4—figure supplement 2A). The level of RelB phosphory-
lation was also higher in RipmOVAxOTII-Rag2-/- than OTII-Rag2-/- mice (Figure 4B), suggesting that 
self-reactive CD4+ thymocytes may activate the nonclassical NF-κB pathway in mTEClo.

To define the genome-wide effects of highly self-reactive CD4+ thymocytes in mTEClo, we 
compared the gene expression profiles of mTEClo from RipmOVAxOTII-Rag2-/- versus OTII-Rag2-/- 
mice (Figure 1—figure supplement 1B) and found an upregulation of 1438 genes (FC > 2) reaching 
statistical significance for 522 of them (Cuffdiff p<0.05). 620 genes were also downregulated (FC < 
0.5) with 136 reaching significance (Cuffdiff p<0.05) (Figure 4C). The genes upregulated exhibited 
an approximately fourfold more of TRA over non-TRA genes (p=4.7 × 10–23), which corresponded 
mainly to Aire-dependent and Aire/Fezf2-independent TRAs (Figure  4D–F, Supplementary file 
3). Similarly to the WT versus mTECΔMHCII comparison, we found a strong correlation (p=6.2 × 10–7) 
between the genes upregulated by self-reactive CD4+ thymocytes and the responsiveness of genes 
to Aire’s action obtained from the comparison between WT and Aire-/- mTEChi (Figure 4G). These 
results support an impact of antigen-specific interactions in the expression of TRAs in mTEClo, notably 
on Aire-dependent TRAs. Importantly, these results are in agreement with the induction of a list of 
activation factors including Aire and Fezf2 among the non-TRA genes (Figure 4H). Similarly to the 
comparisons of the WT versus ΔCD4 or mTECΔMHCII mice, numerous HDAC3-induced regulators as 
well as Sirt1, Nfkb2, Relb, and Trp53 transcription factors were upregulated in mTEClo of RipmOVAx-
OTII-Rag2-/- mice compared to OTII-Rag2-/- mice (Figure 4I). Interestingly, 21 out of 30 top targets 
of the Foxn1 transcription factor, implicated in TEC differentiation and growth (Žuklys et al., 2016), 
as well as cytokines, chemokines, and cell adhesion molecules, were also upregulated (Figure 4J, K 
Figure 4—figure supplement 2B). We found that few of these genes were associated with CCL21+ 
and tuft-like mTECs (Figure 4L). In contrast, many genes encoding for activation factors, cytokines, 
chemokines, and cell adhesion molecules were associated with Aire+ and post-Aire mTECs, consis-
tently with the fact that antigen-specific interactions with CD4+ thymocytes control the cellularity of 
Aire+ mTECs. Moreover, most of these genes, including Aire and Fezf2, were already expressed by 

solid arrowheads indicate Aire+Fezf2-, Aire-Fezf2+, and Aire+Fezf2+ cells, respectively. The histogram shows the density of Aire+Fezf2-, Aire-Fezf2+, and 
Aire+Fezf2+ cells. (C–E) Flow cytometry profiles, frequencies, and numbers of Aire-Fezf2-, Aire-Fezf2+, and Aire+Fezf2+ cells in total mTECs, mTEClo, and 
mTEChi (C), of CCL21+ cells in mTEClo (D) and of DCKL1+ cells in Aire- mTEClo (E) from WT, ΔCD4, and mTECΔMHCII mice. II Abs: secondary antibodies. 
Data are representative of 2–3 independent experiments (n = 2–5 mice per group and experiment). Error bars show mean ± SEM, *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001 using unpaired Student’s t-test for (B) and two-tailed Mann–Whitney test for (A) and (C-E).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Normal proliferation of Aire-Fezf2+ and Aire +Fezf2+ medullary thymic epithelial cell (mTECs) in ΔCD4 and mTECΔMHCII mice.

Figure supplement 2. Reduced post-Aire medullary thymic epithelial cells (mTECs) in ΔCD4 and mTECΔMHCII mice.

Figure supplement 3. Analysis of medullary thymic epithelial cell (mTEC) subsets in MHCII-/- mice.

Figure 3 continued

https://doi.org/10.7554/eLife.69982
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Figure 4. Highly self-reactive CD4+ thymocytes control the transcriptional and functional properties of mTEClo. (A) Relb mRNA was measured by 
qPCR in mTEClo from RipmOVAxOTII-Rag2-/- (n = 4) and OTII-Rag2-/- (n = 5) mice. (B) Total and phospho-RelB (Ser552) were analyzed by flow cytometry 
in mTEClo from RipmOVAxOTII-Rag2-/- and OTII-Rag2-/- mice. Data are representative of two independent experiments (n = 3–4 mice per group 
and experiment). (C) Scatter plot of gene expression levels (fragments per kilobase of transcript per million mapped reads [FPKM]) in mTEClo from 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.69982


 Research article﻿﻿﻿﻿﻿﻿ Immunology and Inflammation

Lopes et al. eLife 2022;11:e69982. DOI: https://doi.org/10.7554/eLife.69982 � 11 of 31

TAC-TECs, further highlighting that CD4+ thymocytes act upstream of Aire+ mTEChi. Altogether, these 
data reveal that highly self-reactive CD4+ thymocytes control in mTEClo not only key transcription 
factors driven by their differentiation but also key molecules for T-cell development and selection such 
as TRAs, cytokines, chemokines, and adhesion molecules.

Highly self-reactive CD4+ thymocytes control mTEC subset composition 
from a progenitor stage
Given that highly self-reactive CD4+ thymocytes induce key transcription factors in mTEClo (Figure 4H 
and I), we examined their respective impact on mTEC subset development. Strikingly, numbers of 
total TECs and mTECs were higher in RipmOVAxOTII-Rag2-/- than in OTII-Rag2-/- mice (Figure 5A and 
B). We analyzed four TEC subsets based on MHCII and UEA-1 levels, as previously described (Lopes 
et al., 2017; Wong et al., 2014; Figure 5C). In contrast to cTEChi (MHCIIhiUEA-1lo), numbers of TEClo 
(MHCIIloUEA-1lo), mTEClo (MHCIIloUEA-1+), and mTEChi (MHCIIhiUEA-1+) were higher in RipmOVAx-
OTII-Rag2-/- than in OTII-Rag2-/- mice. Consistently, numbers of mTEClo and mTEChi identified based 
on the level of CD80 expression were also higher in RipmOVAxOTII-Rag2-/- mice (Figure 5—figure 
supplement 1). Interestingly, numbers of α6-integrinhiSca-1hi thymic epithelial progenitor (TEPC)-
enriched cells in the TEClo subset were also increased (Figure 5D), indicating that self-reactive CD4+ 
thymocytes control TEC development from a progenitor stage. Of note, this strategy of TEC identifi-
cation was not possible in ΔCD4 and mTECΔMHCII mice since MHCII expression is abrogated in TECs of 
these mice (Irla et al., 2008).

A higher density of Aire+Fezf2-, Aire-Fezf2+, and Aire+Fezf2+ cells was observed in medul-
lary regions of RipmOVAxOTII-Rag2-/- mice by immunohistochemistry (Figure 5E). Furthermore, 
numbers of Aire-Fezf2- mTEClo analyzed by flow cytometry were also higher in RipmOVAx-
OTII-Rag2-/- mice, confirming that self-reactive CD4+ thymocytes control mTEC differentiation from 
an early stage (Figure 5F). Numbers of Aire-Fezf2+ and Aire+Fezf2+ mTEClo and mTEChi were also 
markedly increased in these mice, although similar frequencies of proliferating Ki-67+ cells were 
observed (Figure 5—figure supplement 2). In agreement with increased Aire+ mTECs, involucrin+T-
PA+Aire- post-Aire cells were enhanced (Figure 5—figure supplement 3). Furthermore, numbers 
of CCL21+ and DCLK1+ tuft-like cells in mTEClo were also increased in RipmOVAxOTII-Rag2-/- mice 
compared to OTII-Rag2-/- mice (Figure  5G and H). These observations are consistent with our 
previous findings that antigen-specific interactions between mTECs and CD4+ thymocytes induce 
medulla development (Irla et al., 2012). Altogether, these results demonstrate that highly self-
reactive CD4+ thymocytes regulate mTECs from an early to a late developmental stage and thus 
mTEC composition.

RipmOVAxOTII-Rag2-/- versus OTII-Rag2-/- mice. Genes with fold difference ≥2 and p-adj<0.05 were considered as upregulated or downregulated genes 
(red and blue dots, respectively). RNA-seq was performed on two independent biological replicates with mTEClo derived from 5 to 8 mice. (D) Numbers 
of tissue-restricted self-antigens (TRAs) and non-TRAs in genes up- and downregulated in mTEClo from RipmOVAxOTII-Rag2-/- versus OTII-Rag2-/- mice. 
ND, not determined. (E) Numbers of induced Aire-dependent, Fezf2-dependent, Aire/Fezf2-dependent, and Aire/Fezf2-independent TRAs. (F) Aire-
dependent (Fam183b, Nts), Fezf2-dependent (Resp18, Grap), Aire/Fezf2-dependent (Fabp9), Aire/Fezf2-independent (Csn2, Crp) TRAs, Aire and Fezf2 
mRNAs were measured by qPCR in mTEClo from RipmOVAxOTII-Rag2-/- (n = 4) and OTII-Rag2-/- (n = 4) mice. (G) Scatter plot of gene expression variation 
in mTEClo from RipmOVAxOTII-Rag2-/- versus OTII-Rag2-/- mice and in mTEChi from WT versus Aire-/- mice. The loess fitted curve is shown in blue and 
induced Aire-dependent genes (fold change [FC] > 5) in red. (H) Heatmap of significantly upregulated activation factors in mTEClo from RipmOVAxOTII-
Rag2-/- compared to OTII-Rag2-/- mice. (I, J) Expression FC in HDAC3-induced transcriptional regulators and other transcription factors (I) and in Foxn1 
targets (J) in mTEClo from RipmOVAxOTII-Rag2-/- versus OTII-Rag2-/- mice. The color code represents gene expression level. (K) Heatmap of significantly 
upregulated cytokines, chemokines, and cell adhesion molecules in mTEClo from RipmOVAxOTII-Rag2-/- mice. (L) Hierarchical clustering and heatmap of 
mean expression of these activation factors, cell adhesion molecules, chemokines, and cytokines in mTEC subsets identified by scRNA-seq. Error bars 
show mean ± SEM, *p<0.05, **p<0.01, ***p<0.001 using two-tailed Mann–Whitney test for (A), (B) and (F) and chi-squared test for (D) and (G).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Similar levels of total and phosphorylated p65, Erk1/2, p38, and IKKα proteins in mTEClo from RipmOVAxOTII-Rag2-/- and OTII-
Rag2-/- mice.

Figure supplement 2. Expression of Relb, cytokines, chemokines, and cell adhesion molecules that was altered in mTEClo from RipmOVAxOTII-Rag2-/- 
and OTII-Rag2-/- mice.

Figure 4 continued
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Figure 5. Highly self-reactive CD4+ thymocytes control medullary thymic epithelial cell (mTEC) development from an early progenitor stage. (A–D) 
Flow cytometry profiles and numbers of total thymic epithelial cells (TECs) (EpCAM+) (A), cortical thymic epithelial cell (cTECs) (UEA-1-Ly51hi), mTECs 
(UEA-1+Ly51lo) (B), TEClo (MHCIIloUEA-1lo), cTEChi (MHCIIhiUEA-1lo), mTEClo (MHCIIloUEA-1hi), and mTEChi (MHCIIhiUEA-1hi) (C), α6-integrinhiSca-1hi TEPC-
enriched cells in TEClo (D) in CD45neg-enriched cells from RipmOVAxOTII-Rag2-/- and OTII-Rag2-/- mice. Data are representative of four experiments (n = 
3 mice per group and experiment). (E) Confocal images of thymic sections from RipmOVAxOTII-Rag2-/- and OTII-Rag2-/- mice stained for Aire (green) and 
Fezf2 (red). 11 and 22 sections derived from two RipmOVAxOTII-Rag2-/- and OTII-Rag2-/- mice were quantified, respectively. Scale bar, 50 μm. Unfilled, 
dashed and solid arrowheads indicate Aire+Fezf2lo, Aire-Fezf2+, and Aire+Fezf2+ cells, respectively. The histogram shows the density of Aire+Fezf2lo, Aire-

Fezf2+, and Aire+Fezf2+ cells. (F–H) Flow cytometry profiles, frequencies, and numbers of Aire-Fezf2-, Aire-Fezf2+, and Aire+Fezf2+ cells in total mTECs, 
mTEClo, and mTEChi (F), of CCL21+ cells in mTEClo (G) and of DCKL1+ cells in Aire- mTECs (H) from RipmOVAxOTII-Rag2-/- and OTII-Rag2-/- mice. II Abs: 
secondary antibodies. Data are representative of two independent experiments (n = 3–4 mice per group and experiment). Error bars show mean ± SEM, 
*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 using unpaired Student’s t-test for (A–E) and two-tailed Mann–Whitney test for (F–H).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure 5 continued on next page
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Self-reactive CD4+ thymocytes enhance the level of active H3K4me3 
mark in mTEClo

Since histone modifications constitute important regulatory mechanisms that control the open and 
closed states of mTEC chromatin (Ucar and Rattay, 2015), we investigated whether self-reactive 
CD4+ thymocytes induce histone modifications in mTECs. We first analyzed in WT mTEClo the repres-
sive H3K27me3 and the active H3K4me3 marks using chromatin immunoprecipitation (ChIP) followed 
by high-throughput sequencing (ChIP-seq). As expected, metagene analyses showed that Aire-
dependent TRAs had higher levels of H3K27me3 in their genes than in all genes of the genome, 
confirming that they are in a repressive state (Figure 6A). In contrast, Fezf2-dependent TRAs had a 
significant enrichment of H3K4me3 in their transcriptional start site (TSS) (Figure 6B). Similarly, Aire/
Fezf2-independent TRAs were associated with low levels of H3K27me3 in their genes and high levels 
of H3K4me3 in their TSS. Thus, in contrast to Aire-dependent TRAs that are associated with the 
repressive H3K27me3 histone mark, Fezf2-dependent and Aire/Fezf2-independent TRAs are asso-
ciated with the active H3K4me3 mark, indicating that these distinct TRAs are subjected to a specific 
epigenetic regulation.

We next assessed whether highly self-reactive CD4+ thymocytes control the H3K27me3 and 
H3K4me3 chromatin landscape in mTEClo. In contrast to H3K27me3, we found an increased global 
level of H3K4me3 in RipmOVAxOTII-Rag2-/- compared to OTII-Rag2-/- mice by flow cytometry 
(Figure 6C). We further analyzed by nano-ChIP-seq whether self-reactive CD4+ thymocytes regulate 
in mTEClo the level of these two histone marks in Aire-dependent, Fezf2-dependent, and Aire/Fezf2-
independent TRA genes. H3K27me3 levels in Aire-dependent TRA genes were comparable in mTEClo 
from RipmOVAxOTII-Rag2-/- and OTII-Rag2-/- mice (Figure 6D, left panel). Although lower, H3K27me3 
levels in Fezf2-dependent and Aire/Fezf2-independent TRAs as well as in all genes were similar in 
both mice, indicating that the interactions with self-reactive CD4+ thymocytes do not regulate this 
repressive mark in TRA genes (Figure 6D, left panel). In contrast, H3K4me3 global level was increased 
in the TSS of all TRAs in RipmOVAxOTII-Rag2-/- compared to OTII-Rag2-/- mice as well as in all genes 
(Figure 6D, right panel). For representation, whereas the Aire/Fezf2-independent TRA, E2F transcrip-
tion factor 2 (E2f2) induced by these interactions, was barely devoid of H3K27me3 in both mice, it was 
marked by H3K4me3 in its TSS specifically in RipmOVAxOTII-Rag2-/- mice (Figure 6E). These results 
thus show that self-reactive CD4+ thymocytes enhance the global level of the active H3K4me3 histone 
mark in mTEClo and in particular in the TSS of Fezf2-dependent and Aire/Fezf2-independent TRAs, 
indicative of an epigenetic regulation for their expression.

MHCII/TCR interactions between mTECs and CD4+ thymocytes prevent 
the development of autoimmunity
We next evaluated the impact of mTEC-CD4+ thymocyte interactions on the generation of self-
tolerant T cells by taking advantage that CD4+ and CD8+ T cells develop in mTECΔMHCII mice, in which 
MHCII/TCR interactions between mTECs and CD4+ thymocytes are abrogated. Interestingly, since 
TRAs induced by MHCII/TCR interactions showed a diverse peripheral tissue distribution in mTEClo 
(Figure 7A, Supplementary file 4), we analyzed the TCRVβ usage in mTECΔMHCII mice by flow cytom-
etry. TCRVβ usage was more altered in CD69- mature CD4+ thymocytes than in CD8+ thymocytes 
(Figure 7B). Some TCRVβ were also altered in splenic CD4+ and CD8+ T cells. To determine whether 
these T cells contained self-reactive specificities, we adoptively transferred splenocytes from mTECΔM-

HCII or WT mice into lymphopenic Rag2-/- recipients (Figure  7C). Mice that received splenocytes 
derived from mTECΔMHCII mice lost significantly more weight than mice transferred with WT spleno-
cytes (Figure 7D). They also exhibited splenomegaly with increased follicle areas and T-cell numbers 
showing a CD62LloCD44hi effector and CD62LhiCD44hi central memory phenotype (Figure  7E–G). 
Immune infiltrates in lungs and salivary glands were observed by histology and flow cytometry in 75 

Figure supplement 1. mTEClo and mTEChi cells are increased in RipmOVAxOTII-Rag2-/- compared to OTII-Rag2-/- mice.

Figure supplement 2. The proliferation of Aire-Fezf2+ and Aire+Fezf2+ medullary thymic epithelial cells (mTECs) is similar in RipmOVAxOTII-Rag2-/- and 
OTII-Rag2-/- mice.

Figure supplement 3. Post-Aire medullary thymic epithelial cells (mTECs) are increased in RipmOVAxOTII-Rag2-/- compared to OTII-Rag2-/- mice.

Figure 5 continued
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and 41% of mice, respectively (Figure 7H and I). These two tissues contained increased numbers of 
central memory as well as CD44+CD69+ and CD44+CD69- activated CD4+ and CD8+ T cells (Figure 7J). 
T-cell infiltrates were also observed in other tissues such as kidney, liver, and colon in agreement with 
the defective TRA expression associated with these tissues (Figure 7A and K). Altogether, these data 
show that in the absence of MHCII/TCR interactions between mTECs and CD4+ thymocytes, T cells 
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mice. (A, B) Metagene profiles of the average normalized enrichment of H3K27me3 (A) and H3K4me3 (B) against input for Aire-dependent, Fezf2-
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unpaired Student’s t-test for (C).
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contained self-reactive specificities and thus that these interactions are critical to the establishment 
of T-cell tolerance.

Discussion
Since mTECs play a crucial role in immunological tolerance by their exclusive expression of TRAs, it 
is essential to deepen our knowledge of the mechanisms that sustain their differentiation. Here using 
three distinct transgenic models, we found that self-reactive CD4+ thymocytes control the devel-
opmental transcriptional programs from the mTEClo stage, including TAC-TECs that precede Aire+ 
mTECs. CD4+ thymocytes increase in mTEClo the phosphorylation of p38 MAPK and IKKα, the latter 
implicated in mTEC development (Lomada et al., 2007; Shen et al., 2019). Moreover, self-reactive 
CD4+ thymocytes increase RelB phosphorylation level. Interestingly, this nonclassical NF-κB subunit 
is crucial for mTEC differentiation and Aire-dependent and -independent TRA expression (Riemann 
et  al., 2017). These data thus suggest that CD4+ thymocytes activate intracellular pathways from 
the mTEClo stage, although alterations in mTEClo subset composition could also contribute to the 
differences observed. Nevertheless, the substantial and homogeneous reduction in the levels of 
phospho-IKKα, -p38, and -RelB argues instead for impaired activation of IKKα, p38, and RelB signaling 
in the absence of self-reactive CD4+ thymocytes. Analysis of the mTEClo transcriptional landscape 
by high-throughput RNA-seq revealed that self-reactive CD4+ thymocytes upregulate Nfkb2 (p52), 
known to form an heterocomplex with RelB in the nucleus upon activation (Irla et al., 2010). p52 is 
important for mTEC development, Aire, and TRA expression (Zhang et al., 2006; Zhu et al., 2006). 
Consequently, ΔCD4, mTECΔMHCII, and OTII-Rag2-/- mice in which MHCII/TCR interactions between 
mTECs and CD4+ thymocytes are disrupted have altered Relb and Nfkb2 expression, and reduced 
Aire+ mTEC numbers and Aire-dependent TRA representation. Our results are in agreement with the 
fact that RANK-induced NF-κB signaling is activated by membrane-bound RANKL and not soluble 
RANKL and thereby in the context of physical interactions between mTECs and CD4+ thymocytes 
(Asano et al., 2019).

These interactions also upregulate Trp53 (p53) that controls the mTEC niche (Rodrigues et al., 
2017) and Irf4 and Irf7 transcription factors that regulate key chemokines implicated in thymocyte 
medullary localization and mTEC differentiation (Haljasorg et al., 2017; Otero et al., 2013). Further-
more, the deacetylase Sirtuin-1 (Sirt1), which regulates Aire activity (Chuprin et al., 2015), and Spib, 
which limits mTEC differentiation (Akiyama et al., 2014), were also upregulated. Self-reactive CD4+ 
thymocytes thus induce key transcription factors that both positively and negatively control mTEC 
differentiation. Remarkably, our three different transgenic models revealed that CD4+ thymocytes 
induce HDAC3-dependent mTEC-specific transcription factors (Goldfarb et al., 2016). Among them, 
Pou2f3 is involved in tuft-like mTEC development (Bornstein et al., 2018; Miller et al., 2018), which 
is consistent with our results showing that self-reactive CD4+ thymocytes control the cellularity of 
these cells. Our data thus identify that CD4+ thymocytes control the expression of master transcrip-
tional regulators of mTEC differentiation and function.

In line with these data, we found that self-reactive CD4+ thymocytes regulate TEC development 
from a progenitor stage since they increase numbers of TEPC-enriched cells that express non-
negligible MHCII levels. Interestingly, we provide the first evidence that self-reactive CD4+ thymocytes 

to the initial weight. (E, F) Representative spleen pictures and their weights (E) and hematoxylin/eosin counterstained splenic sections (F). Scale bar, 
1 mm. The histogram shows follicle areas. (G) Numbers of splenic CD3+, CD4+, and CD8+ T cells and of naive (CD44loCD62Lhi), effector memory (EM; 
CD44hiCD62Llo) and central memory (CM; CD44hiCD62Lhi) phenotype. (H) Lung and salivary gland (SG) immune infiltrates detected by hematoxylin/
eosin counterstaining. Scale bar, 1 mm. (I, J) Numbers of T cells (I) and of naive, effector and central memory phenotype as well as CD44+CD69+ and 
CD44+CD69- T cells (J) in lungs and SG. (K) Schematic of T-cell infiltrates in mice transferred with mTECΔMHCII T cells relative to those transferred with WT 
T cells. Each circle and black triangles represent an individual mouse and T-cell infiltration in a specific tissue, respectively. Data are representative of 
two independent experiments (n = 5–7 mice per group and experiment). Error bars show mean ± SEM, ****p<0.0001 using two-way ANOVA for (D) and 
unpaired Student’s t-test for (B) and (E-J). *p<0.05, **p<0.01, ***p<0.001.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. CD4+ thymocytes through MHCII/TCR-mediated interactions control transcriptional programs of mTEClo that drive their 
differentiation and function.

Figure 7 continued

https://doi.org/10.7554/eLife.69982


 Research article﻿﻿﻿﻿﻿﻿ Immunology and Inflammation

Lopes et al. eLife 2022;11:e69982. DOI: https://doi.org/10.7554/eLife.69982 � 17 of 31

control the cellularity of Fezf2+ mTECs. Accordingly, the expression of Fezf2 and its respective TRAs 
was enhanced by CD4+ thymocytes. Moreover, self-reactive CD4+ thymocytes regulate the cellularity 
of CCL21+, post-Aire, and tuft-like cells in mTEClo. These results are in full agreement with our previous 
findings that self-reactive thymocytes drive medulla expansion and increase the overall cellularity of 
the mTEC compartment (Irla et al., 2012). Because the heterogeneous composition in mTEClo could 
influence the expression of the upregulated genes by self-reactive CD4+ thymocytes, we reanalyzed 
single-cell RNA-seq data in order to define their respective expression pattern in mTEC subsets. In 
accordance with the moderately altered frequencies of CCL21+ cells among mTEClo observed by 
flow cytometry, few genes upregulated by self-reactive CD4+ thymocytes were associated with this 
mTEC subset. In contrast, we found that antigen-specific interactions with CD4+ thymocytes strongly 
upregulate genes associated with TAC-TECs, Aire+ mTECs, and post-Aire cells. These findings indicate 
that self-reactive CD4+ thymocytes act from the precursors of Aire+ mTEChi (i.e., in TAC-TECs) to the 
post-Aire stage. It is interesting to note that although strongly altered the development of mTEChi is 
not completely abrogated in the absence of CD4+ thymocytes or MHCII/TCR-mediated interactions 
with CD4+ thymocytes. This could be explained by the fact that invariant NKT have been proposed to 
participate in mTEC differentiation by expressing RANKL (White et al., 2014). Overall, our results thus 
reveal that antigen-specific interactions with CD4+ thymocytes have an unsuspected broad impact on 
mTEC composition by driving their development from an early progenitor to a late post-Aire stage.

Interestingly, high-throughput RNA-seq showed that MHCII/TCR interactions with CD4+ thymo-
cytes upregulate the expression of chemokines in mTEClo. Among them, CCL19 (CCR7 ligand) is 
implicated in the medullary localization of thymocytes and the emigration of newly generated T cells 
(Ueno et al., 2004); and CCL22 (CCR4 ligand) implicated in medullary entry and thymocyte/dendritic 
cell interactions (Hu et al., 2015). Self-reactive CD4+ thymocytes also enhance CCL2 (CCR2 ligand) 
and CCL20 (CCR6 ligand) that promote the entry of peripheral dendritic cells and Foxp3+ regulatory 
T cells into the thymus (Baba et al., 2009; Cédile et al., 2014; Cowan et al., 2018; Lopes et al., 
2018; Borelli and Irla, 2021). mTEC-CD4+ thymocyte interactions thus induce key chemokines that 
regulate the trafficking of thymocytes and dendritic cells that participate in tolerance induction. More-
over, cytokines such as Il15 and Fgf21 implicated in invariant NKT development and TEC protection 
against senescence, as well as adhesion molecules involved in mTEC-thymocyte interactions, were 
also induced (Pezzi et al., 2016; White et al., 2014; Youm et al., 2016). Altogether, our data show 
that self-reactive CD4+ thymocytes regulate functional properties of mTECs by inducing chemokines, 
cytokines, and adhesion molecules that are critical for T-cell development.

The expression of TRAs is regulated by Aire and to a lesser extent by Fezf2 (Anderson et al., 2002; 
Takaba et al., 2015). In agreement with other studies (Gray et al., 2007; Takaba et al., 2015), we 
found Fezf2 in both mTEClo and mTEChi, whereas Aire protein is mainly expressed in mTEChi. Neverthe-
less and in line with recent single-cell transcriptomic analyses (Baran-Gale et al., 2020; Dhalla et al., 
2020; Wells et al., 2020), we detected Aire by flow cytometry, qPCR, and RNA-seq in a small subset 
(~1.5%) of mTEClo. CD4+ thymocyte interactions upregulate Aire and Fezf2 and some of their respec-
tive TRAs in these cells. Interestingly, in contrast to Aire-dependent TRAs that are characterized by 
high levels of H3K27me3 (Handel et al., 2018; Sansom et al., 2014), we found that Fezf2-dependent 
TRAs show high levels of H3K4me3. This highlights that Aire and Fezf2 use distinct epigenetic modes 
in regulating TRA expression. Remarkably, these interactions also induce in mTEClo numerous Aire/
Fezf2-independent TRAs, whose regulation remains unknown. Similarly to Fezf2-dependent TRAs, 
they had high levels of H3K4me3 in their TSS, suggesting that Aire/Fezf2-independent TRAs are 
not subjected to the same regulatory transcriptional mechanisms than Aire-dependent TRAs. Our 
results are consistent with a previous study indicating that the Aire-independent TRA, Gad1, shows 
active epigenetic marks (Tykocinski et al., 2010). Remarkably, self-reactive CD4+ thymocytes increase 
H3K4me3 level in the TSS of all TRA categories, thus providing a novel epigenetic mechanistic insight 
into how they regulate the mTEC gene expression profile. In line with TRA regulation and the devel-
opment of distinct mTEC subsets, the repertoire of mature T cells contains autoreactive cells when 
MHCII/TCR interactions were abrogated between mTECs and CD4+ thymocytes. Accordingly, the 
adoptive transfer of splenocytes from mTECΔMHCII mice is capable of inducing signs of autoimmunity, 
illustrating the fact that mTEC-CD4+ thymocyte interactions are critical for the generation of a self-
tolerant T-cell repertoire. Future investigations based on TCR sequencing analysis are expected to 
define to which extent the TCR repertoire is altered in mTECΔMHCII mice.

https://doi.org/10.7554/eLife.69982
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In summary, our genome-wide scale study reveals that self-reactive CD4+ thymocytes activate tran-
scriptional programs from the TAC-TEC stage that sustains the differentiation into Aire+Fezf2+ and 
post-Aire mTECs (Figure 7—figure supplement 1). These interactions also upregulate the expression 
of TRAs, cytokines, chemokines, and adhesion molecules that are all implicated in mTEC function. 
Thus, CD4+ thymocytes control several unsuspected aspects of mTEClo required for the establishment 
of T-cell tolerance.

Materials and methods

 Continued on next page

Key resources table 

Reagent type 
(species) or 
resource Designation Source or reference Identifiers Additional information

Genetic reagent 
(Mus musculus) C57BL/6J background Charles River RRID:IMSR_JAX:000664

Genetic reagent (M. 
musculus) Ciitatm2Wrth/Ciitatm2Wrth

LeibundGut-
Landmann et al., 
2004 RRID:MGI:3052466 C57BL/6 background, ΔCD4 mice

Genetic reagent (M. 
musculus) H2dlAb1-Ea/H2dlAb1-Ea Madsen et al., 1999 RRID:MGI:4436873 C57BL/6 background, MHCII-/- mice

Genetic reagent (M. 
musculus) K14xCiitaIII+IV-/- Irla et al., 2008 C57BL/6 background, mTECΔMHCII mice

Genetic reagent (M. 
musculus) Tg(TcraTcrb)425Cbn Barnden et al., 1998 RRID:MGI:3762632 C57BL/6 background, OTII mice

Genetic reagent (M. 
musculus) Tg(Ins2-TFRC/OVA)296Wehi Kurts et al., 1996 RRID:MGI:3623748 C57BL/6 background, Rip-mOVA mice

Genetic reagent (M. 
musculus) Rag2tm1Fwa/Rag2tm1Fwa Shinkai et al., 1992 RRID:MGI:2174910 C57BL/6 background, Rag2-/- mice

Antibody Anti-IKKα (rabbit polyclonal)
Cell Signaling 
Technology Cat# 2682; RRID:AB_331626 FACS (1:500)

Antibody
Anti-phospho IKKα (Ser180)/
IKKβ(Ser181) (rabbit polyclonal)

Cell Signaling 
Technology Cat# 2681S; RRID:AB_331624 FACS (1:500)

Antibody Anti-p38 MAPK (rabbit polyclonal)
Cell Signaling 
Technology Cat# 9212; RRID:AB_330713 FACS (1:500)

Antibody
Anti-phospho p38 MAPK (Thr180/
Tyr182) (rabbit polyclonal)

Cell Signaling 
Technology Cat# 9211S; RRID:AB_331641 FACS (1:500)

Antibody
Anti-Erk1/2
(rabbit polyclonal)

Cell Signaling 
Technology Cat# 9102; RRID:AB_330744 FACS (1:500)

Antibody
Anti-phospho Erk1/2 (Thr202/Tyr204) 
(rabbit polyclonal)

Cell Signaling 
Technology

Cat# 9101S;
RRID:AB_331646 FACS (1:500)

Antibody
Anti-NF-κB p65 (clone D14E12, 
rabbit monoclonal)

Cell Signaling 
Technology Cat# 8242S; RRID:AB_10859369 FACS (1:500)

Antibody
Phospho-NF-κB p65 (Ser536) 
(clone 93H1, rabbit monoclonal)

Cell Signaling 
Technology Cat# 3033S; RRID:AB_331284 FACS (1:3000)

Antibody
Anti-RelB (clone C-19, rabbit 
polyclonal)

Santa Cruz 
Biotechnology Cat# sc-226; RRID:AB_632341 FACS (1:200)

Antibody
Anti-phospho RelB (ser552) (clone 
D41B9, rabbit monoclonal)

Cell Signaling 
Technology Cat# 5025S; RRID:AB_10622001 FACS (1:1000)

Antibody
Anti-DCLK1 (clone D2U3L, rabbit 
monoclonal)

Cell Signaling 
Technology Cat# 62257; RRID:AB_2799622 FACS (1:200)

Antibody Anti-H3K4me3 (rabbit polyclonal) Abcam Cat# ab8580; RRID:AB_306649

FACS
(1:1000)
ChIP-seq (2 µg:25 µg chromatin)

Antibody
Anti-H3K27me3 (clone C36B11, 
rabbit monoclonal)

Cell Signaling 
Technology Cat# 9733; RRID:AB_2616029

FACS
(1:1000)
ChIP-seq
(1:50)
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Reagent type 
(species) or 
resource Designation Source or reference Identifiers Additional information

Antibody
PE-Cy7 anti-CD326 (EpCAM) (clone 
G8.8, rat monoclonal) eBioscience

Cat# 25-5791-80; 
RRID:AB_1724047

FACS
(1:3000)

Antibody
Alexa Fluor 488 anti-Aire (clone 
5H12, rat monoclonal) eBioscience

Cat# 53-5934-82; 
RRID:AB_10854132

FACS, IF
(1:200)

Antibody
PE anti-Ly51 (clone BP-1, mouse 
monoclonal) BD Biosciences Cat# 553735; RRID:AB_395018

FACS
(1:3000)

Antibody

PerCP-Cy5.5 anti-CD80 (clone 
16-10A1, Armenian hamster 
monoclonal) BioLegend Cat# 104722; RRID:AB_2291392

FACS
(1:200)

Antibody
eFluor 450 anti-Ki-67 (clone SolA15, 
rat monoclonal) eBioscience

Cat# 48-5698-82; 
RRID:AB_11149124

FACS
(1:200)

Antibody
Anti-Fezf2 (clone F441, rabbit 
polyclonal) IBL Tecan

Cat# JP18997; 
RRID:AB_2341444

FACS, IF
(1:200)

Antibody
Anti-Involucrin (clone Poly19244, 
rabbit polyclonal) BioLegend Cat# 924401; RRID:AB_2565452

IF
(1:100)

Antibody
PE anti-Ly-6A/E (Sca-1) (clone D7, 
rat monoclonal) BD Biosciences Cat# 553108; RRID:AB_394629

FACS
(1:600)

Antibody
Biotin anti-CD49f (α6-integrin) 
(clone GoH3, rat monoclonal) BioLegend Cat# 313604; RRID:AB_345298

FACS
(1:200)

Antibody

Alexa Fluor 647 anti-I-Ab 
(MHCII) (clone AF6-120.1, mouse 
monoclonal) BioLegend Cat# 116412; RRID:AB_493141

FACS
(1:200)

Antibody
Brilliant Violet 421 anti-CD4 (clone 
RM4-5, rat monoclonal) BioLegend

Cat# 100544; 
RRID:AB_11219790

FACS
(1:200)

Antibody
PerCP-Cy5.5 anti-CD4 (clone RM4-5, 
rat monoclonal) BD Biosciences Cat# 550954; RRID:AB_393977

FACS
(1:200)

Antibody
Pacific Blue anti-CD8α (clone 53-6.7, 
rat monoclonal) BD Biosciences Cat# 558106; RRID:AB_397029

FACS
(1:200)

Antibody
PE/Cy7 anti-CD8α (clone 53-6.7, rat 
monoclonal) BioLegend Cat# 100722; RRID:AB_312761

FACS
(1:600)

Antibody
Alexa Fluor 488 anti-CD44 (clone 
IM7, rat monoclonal) BioLegend Cat# 103016; RRID:AB_493679

FACS
(1:200)

Antibody
PE anti-CD69 (clone H1.2F3, rat 
monoclonal) BioLegend Cat# 104508; RRID:AB_313111

FACS
(1:400)

Antibody
PE anti-CD62L (clone MEL-14, rat 
monoclonal) BD Biosciences Cat# 553151; RRID:AB_394666

FACS
(1:300)

Antibody
PerCP-Cy5.5 anti-CD3ε (clone 17A2, 
rat monoclonal) BD Biosciences

Cat# 560527;
RRID:AB_1727463

FACS
(1:200)

Antibody
Alexa Fluor 405 anti-CCL21 (clone 
59106, rat monoclonal) R&D Systems Cat# IC457V

FACS
(1:100)

Antibody
CD45 MicroBeads, mouse (clone 
30F11.1, rat monoclonal) Miltenyi

Cat# 130052301; 
RRID:AB_2877061

Antibody Cy5 anti-rabbit IgG (goat polyclonal) Invitrogen
Cat# A10523; 
RRID:AB_2534032

FACS
(1:500)

Antibody
Cyanine 3 anti-rabbit IgG (goat 
polyclonal) Invitrogen

Cat# A10520; 
RRID:AB_2534029

IF
(1:500)

Antibody
FITC anti-TCR Vβ2 (clone B20.6, rat 
monoclonal) BD Biosciences Cat# 557004; RRID:AB_647180

FACS
(20 µl per 106 cells)

Antibody
FITC anti-TCR Vβ3 (clone KJ25, 
Armenian hamster monoclonal) BD Biosciences Cat# 557004; RRID:AB_647180

FACS
(20 µl per 106 cells)
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Reagent type 
(species) or 
resource Designation Source or reference Identifiers Additional information

Antibody
FITC anti-TCR Vβ4 (clone KT4, rat 
monoclonal) BD Biosciences Cat# 557004; RRID:AB_647180

FACS
(20 µl per 106 cells)

Antibody
FITC anti-TCR Vβ5.1, 5.2 (clone 
MR9-4, mouse monoclonal) BD Biosciences Cat# 553189; RRID:AB_394697

FACS
(1:100)

Antibody
FITC anti-TCR Vβ6 (clone RR4-7, rat 
monoclonal) BD Biosciences Cat# 557004; RRID:AB_647180

FACS
(20 µl per 106 cells)

Antibody
PE anti-TCR Vβ8.1, 8.2 (clone MR5-2, 
mouse monoclonal) BioLegend

Cat# 140103; 
RRID:AB_10641144

FACS
(1:300)

Antibody
FITC anti-TCR Vβ9 (clone MR10-2, 
mouse monoclonal) BD Biosciences Cat# 557004; RRID:AB_647180

FACS
(20 µl per 106 cells)

Antibody
PE anti-TCR Vβ10b (clone B21.5, rat 
monoclonal) BD Biosciences Cat# 553285; RRID:AB_394757

FACS
(1:300)

Antibody
Biotin anti-TCR Vβ11 (clone RR3-15, 
rat monoclonal) BD Biosciences Cat# 553196; RRID:AB_394702

FACS
(1:300)

Antibody
FITC anti-TCR Vβ12 (clone MR11-1, 
mouse monoclonal) BD Biosciences Cat# 557004; RRID:AB_647180

FACS
(20 µl per 106 cells)

Antibody
FITC anti-TCR Vβ13 (clone MR12-3, 
mouse monoclonal) BD Biosciences Cat# 557004; RRID:AB_647180

FACS
(20 µl per 106 cells)

Antibody
FITC anti-TCR Vβ14 (clone 14-2, rat 
monoclonal) BD Biosciences Cat# 557004; RRID:AB_647180

FACS
(20 µl per 106 cells)

Antibody
FITC anti-TCR Vβ17a (clone KJ23, 
rat monoclonal) BD Biosciences Cat# 557004; RRID:AB_647180

FACS
(20 µl per 106 cells)

Antibody CD4+ T cell isolation kit, mouse Miltenyi Biotec Cat# 130-104-454

Peptide, 
recombinant protein PerCP-Cy5.5 Streptavidin BioLegend Cat# 405214; RRID:AB_2716577

FACS
(1:400)

Peptide, 
recombinant protein Alexa Fluor 488 Streptavidin Invitrogen Cat# S11223

IF
(1:1000)

Peptide, 
recombinant protein Ovalbumin (323–339) PolyPeptide Cat# SC1303 5 μM

Chemical 
compound, drug Liberase TM Roche Cat# 05401127001 50 μg/ml

Chemical 
compound, drug DNase I Roche Cat# 10104159001 100 μg/ml

Chemical 
compound, drug TRIzol

Thermo Fisher 
Scientific Cat# 15596018

Software, algorithm GraphPad Prism GraphPad Software RRID:SCR_002798

Software, algorithm FlowJo FlowJo
https://www.flowjo.com/
RRID:SCR_008520

Software, algorithm Fiji/ImageJ software Fiji-ImageJ
https://imagej.nih.gov/ij/
RRID:SCR_003070

Software, algorithm 7500 Real-Time PCR Software Thermo Fisher

https://www.thermofisher.​
com/us/en/home/technical-​
resources/software-downloads/​
applied-biosystems-7500-real-​
time-pcr-system.html
RRID:SCR_014596

Software, algorithm Pheatmap 0.2

https://github.com/​
raivokolde/pheatmap 
(Kolde, 2018) RRID:SCR_016418

Software, algorithm Seurat Hao et al., 2021 RRID:SCR_016341
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Reagent type 
(species) or 
resource Designation Source or reference Identifiers Additional information

Sequence-based 
reagent Actin-FW Sigma-Aldrich PCR primers ​CAGA​AGGA​GATT​ACTG​CTCTGGCT

Sequence-based 
reagent Actin-RV Sigma-Aldrich PCR primers GGAGCCACCGATCCACACA

Sequence-based 
reagent Aire-FW Sigma-Aldrich PCR primers ​GCAT​AGCA​TCCT​GGAC​GGCTTCC

Sequence-based 
reagent Aire-RV Sigma-Aldrich PCR primers ​CTGG​GCTG​GAGA​CGCT​CTTTGAG

Sequence-based 
reagent Ccl19-FW Sigma-Aldrich PCR primers ​GCTAATGATGCGGAAGACTG

Sequence-based 
reagent Ccl19-RV Sigma-Aldrich PCR primers ​ACTCACATCGACTCTCTAGG

Sequence-based 
reagent Ccl2-FW Sigma-Aldrich PCR primers TGGAGCATCCACGTGTTG

Sequence-based 
reagent Ccl2-RV Sigma-Aldrich PCR primers ​ACTC​ATTG​GGAT​CATC​TTGCT

Sequence-based 
reagent Ccl22-FW Sigma-Aldrich PCR primers ​CTGATGCAGGTCCCTATGGT

Sequence-based 
reagent Ccl22-RV Sigma-Aldrich PCR primers ​GGAGTAGCTTCTTCACCCAG

Sequence-based 
reagent Ccl25-FW Sigma-Aldrich PCR primers ​GCCTGGTTGCCTGTTTTGTT

Sequence-based 
reagent Ccl25-RV Sigma-Aldrich PCR primers ​ACCCAGGCAGCAGTCTTCAA

Sequence-based 
reagent Cdh2-FW Sigma-Aldrich PCR primers AGCGCAGTCTTACCGAAGG

Sequence-based 
reagent Cdh2-RV Sigma-Aldrich PCR primers ​TCGC​TGCT​TTCA​TACT​GAACTTT

Sequence-based 
reagent Coch-FW Sigma-Aldrich PCR primers ​GTGC​AGCA​AAAC​CTGC​TACAA

Sequence-based 
reagent Coch -RV Sigma-Aldrich PCR primers ​AGCT​AGGA​CGTT​CTCT​TTGGT

Sequence-based 
reagent Crabp1-FW Sigma-Aldrich PCR primers ​CAGC​AGCG​AGAA​TTTC​GACGA

Sequence-based 
reagent Crabp1-RV Sigma-Aldrich PCR primers ​CGCA​CAGT​AGTG​GATG​TCTTGA

Sequence-based 
reagent Crp-FW Sigma-Aldrich PCR primers ​CATAGCCATGGAGAAGCTAC

Sequence-based 
reagent Crp-RV Sigma-Aldrich PCR primers ​CAGTGGCTTCTTTGACTCTG

Sequence-based 
reagent Csn2-FW Sigma-Aldrich PCR primers ​CTCC​ACTA​AAGG​ACTT​GACAG

Sequence-based 
reagent Csn2-RV Sigma-Aldrich PCR primers ​ACCTTCTGAAGTTTCTGCTC

Sequence-based 
reagent Fabp9-FW Sigma-Aldrich PCR primers ​CACTGCAGACAACCGAAAAG

Sequence-based 
reagent Fabp9-RV Sigma-Aldrich PCR primers ​TCTGTTTGCCAAGCCATTTT

Sequence-based 
reagent Fam183b-FW Sigma-Aldrich PCR primers ​CGTG​TGGG​GCAG​ATGA​AGAAT
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Reagent type 
(species) or 
resource Designation Source or reference Identifiers Additional information

Sequence-based 
reagent Fam183b-RV Sigma-Aldrich PCR primers ​GGTG​AATG​AGGT​TCAG​GAACTTG

Sequence-based 
reagent Fcer2a-FW Sigma-Aldrich PCR primers ​CCAG​GAGG​ATCT​AAGG​AACGC

Sequence-based 
reagent Fcer2a-RV Sigma-Aldrich PCR primers ​TCGT​CTTG​GAGT​CTGT​TCAGG

Sequence-based 
reagent Fezf2-FW Sigma-Aldrich PCR primers ​CAGC​ACTC​TCTG​CAGA​CACAA

Sequence-based 
reagent Fezf2-RV Sigma-Aldrich PCR primers ​TGCCGCACTGGTTACACTTA

Sequence-based 
reagent Grap-FW Sigma-Aldrich PCR primers ​GATC​AGGG​AGAG​TGAG​AGTTCC

Sequence-based 
reagent Grap-RV Sigma-Aldrich PCR primers ​CAGCTCGTTGAGGGAGTTGA

Sequence-based 
reagent Icam2-FW Sigma-Aldrich PCR primers ​ATCAACTGCAGCACCAACTG

Sequence-based 
reagent Icam2-RV Sigma-Aldrich PCR primers ​ACTTGAGCTGGAGGCTGGTA

Sequence-based 
reagent Il15-FW Sigma-Aldrich PCR primers ​AGCA​GATA​ACCA​GCCT​ACAGGA

Sequence-based 
reagent Il15-RV Sigma-Aldrich PCR primers ​TGTT​GAAG​ATGA​GCTG​GCTATGG

Sequence-based 
reagent Il21-FW Sigma-Aldrich PCR primers ​CGCCTCCTGATTAGACTTCG

Sequence-based 
reagent Il21-RV Sigma-Aldrich PCR primers ​TGGA​GCTG​ATAG​AAGT​TCAGGA

Sequence-based 
reagent Il5-FW Sigma-Aldrich PCR primers ​CCGC​CAAA​AAGA​GAAG​TGTGGCGA

Sequence-based 
reagent Il5-RV Sigma-Aldrich PCR primers ​GCCT​CAGC​CTTC​CATT​GCCCA

Sequence-based 
reagent Il7-FW Sigma-Aldrich PCR primers ​GGGT​CCTG​GGAG​TGAT​TATGG

Sequence-based 
reagent Il7-RV Sigma-Aldrich PCR primers ​CGGGAGGTGGGTGTAGTCAT

Sequence-based 
reagent Itgad-FW Sigma-Aldrich PCR primers ​CGAAAGGGTTCAGACTTTGC

Sequence-based 
reagent Itgad-RV Sigma-Aldrich PCR primers ​ACAC​CTCC​ACGG​ATAG​AAGTC

Sequence-based 
reagent Itgb6-FW Sigma-Aldrich PCR primers ​GCTGGTCTGCCTGTTTCTGC

Sequence-based 
reagent Itgb6-RV Sigma-Aldrich PCR primers ​TGAGCAGCTTTCTGCACCAC

Sequence-based 
reagent Kcnj5-FW Sigma-Aldrich PCR primers ​AAAA​CCTT​AGCG​GCTT​TGTATCT

Sequence-based 
reagent Kcnj5-RV Sigma-Aldrich PCR primers ​AAGG​CATT​AACA​ATCG​AGCCC

Sequence-based 
reagent Krt1-FW Sigma-Aldrich PCR primers ​TGGG​AGAT​TTTC​AGGA​GGAGG

Sequence-based 
reagent Krt1-RV Sigma-Aldrich PCR primers ​GCCA​CACT​CTTG​GAGA​TGCTC
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Reagent type 
(species) or 
resource Designation Source or reference Identifiers Additional information

Sequence-based 
reagent Meig1-FW Sigma-Aldrich PCR primers ​CTTCAGCGGAGGGACAATAC

Sequence-based 
reagent Meig1-RV Sigma-Aldrich PCR primers ​CAAGGTTTCAAGGTGGGTGT

Sequence-based 
reagent Nov-FW Sigma-Aldrich PCR primers ​AGACCCCAACAACCAGACTG

Sequence-based 
reagent Nov-RV Sigma-Aldrich PCR primers ​CGGT​AAAT​GACC​CCAT​CGAAC

Sequence-based 
reagent Nts-FW Sigma-Aldrich PCR primers ​GCAA​GTCC​TCCG​TCTT​GGAAA

Sequence-based 
reagent Nts-RV Sigma-Aldrich PCR primers ​TGCC​AACA​AGGT​CGTC​ATCAT

Sequence-based 
reagent Reig1-FW Sigma-Aldrich PCR primers ​ATGG​CTAG​GAAC​GCCT​ACTTC

Sequence-based 
reagent Reig1-RV Sigma-Aldrich PCR primers ​CCCA​AGTT​AAAC​GGTC​TTCAGT

Sequence-based 
reagent Resp18-FW Sigma-Aldrich PCR primers ​CCAG​CCAA​GATG​CAGA​GTTC​GTTAAAG

Sequence-based 
reagent Resp18-RV Sigma-Aldrich PCR primers ​TCAG​TCAG​CAAC​AAGG​TTGA​GGCCCAC

Sequence-based 
reagent Rsph1-FW Sigma-Aldrich PCR primers ​ACGGGGACACATATGAAGGA

Sequence-based 
reagent Rsph1-RV Sigma-Aldrich PCR primers ​GGCCGTGCTTTTTATTTTTG

Sequence-based 
reagent Spon2-FW Sigma-Aldrich PCR primers ​ATGG​AAAA​CGTG​AGTC​TTGCC

Sequence-based 
reagent Spon2-RV Sigma-Aldrich PCR primers ​TGAT​GCTG​TATC​TAGC​CAGAGG

Sequence-based 
reagent Sult1c2-FW Sigma-Aldrich PCR primers ATGGCCTTGACCCCAGAAC

Sequence-based 
reagent Sult1c2-RV Sigma-Aldrich PCR primers ​TCGA​AGGT​CTGA​ATCT​GCCTC

Sequence-based 
reagent Upk3b-FW Sigma-Aldrich PCR primers ​CATC​TGGC​TAGT​GGTG​GCTTT

Sequence-based 
reagent Upk3b-RV Sigma-Aldrich PCR primers ​GGTA​ATGT​CATA​TAGT​GGCCGTC

Other
Biotinylated Lotus Tetragonolobus 
Lectin (LTL) Vector Laboratories Cat# B-1325; RRID:AB_2336558

IF
(1:500)

Other
FITC Ulex Europaeus Agglutinin I 
(UEA I) Vector Laboratories

Cat# FL-1061; 
RRID:AB_2336767

FACS
(1:600)

Other SuperScript II Reverse Transcriptase Thermo Fisher Cat# 18064022

Other SYBR Premix Ex Taq master mix Takara Cat# RR390A

Other miRNeasy Micro Kit QIAGEN Cat# 217084

Other TruSeq ChIP Library Preparation Kit Illumina Cat# IP-202-2012

 Continued

Mice
C57BL/6  WT mice were purchased from Charles River. CiitaIII+IV-/- (ΔCD4) (LeibundGut-Landmann 
et  al., 2004), MHCII-/- (Madsen et  al., 1999), K14xCiitaIII -/- (mTECΔMHCII) (Irla et  al., 2008), OTII 
(Barnden et al., 1998), RipmOVAxOTII (Kurts et al., 1996), and Rag2-/- (Shinkai et al., 1992) mice 
were on C57BL/6J background. OTII and RipmOVAxOTII were backcrossed on Rag2-/- background. All 
mice were maintained under specific pathogen-free conditions at an ambient temperature of 22°C at 
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the animal facilities of the CIML (Marseille, France). Standard food and water were given ad libitum. 
Males and females were used at the age of 5–6 weeks. All experiments were done in accordance with 
national and European laws for laboratory animal welfare (EEC Council Directive 2010/63/UE), and 
were approved by the Marseille Ethical Committee for Animal Experimentation (Comité National de 
Réflexion Ethique sur l’Expérimentation Animale no. 14).

mTEC purification
mTECs were isolated by enzymatic digestion with 50 μg/ml of Liberase TM (Roche) and 100 μg/ml of 
DNase I (Roche) in HBSS medium, as previously described (Lopes et al., 2017). CD45+ hematopoi-
etic cells were depleted using anti-CD45 magnetic beads by autoMACS with the depleteS program 
(Miltenyi Biotec). Total mTECs (EpCAM+UEA-1+Ly51lo), mTEClo (EpCAM+UEA-1+Ly51loCD80lo/int), and 
mTEChi (EpCAM+UEA-1+Ly51loCD80hi) were sorted with a FACSAriaIII cell sorter (BD). The purity of 
sorted mTEClo was >98%. Flow cytometry gating strategies are shown in Figure 1—figure supple-
ment 1.

mTEC antigen presentation assays
Variable numbers of mTECs from WT and mTECΔMHCII mice loaded or not with OVA323-339 (5 µM, Poly-
Peptide group) were co-cultured with 105 OTII CD4+ T cells (purified with a CD4+ T cell isolation 
kit, Miltenyi Biotec) in RPMI medium (Thermo Fisher) supplemented with 10% FCS (Sigma-Aldrich), 
L-glutamine (2 mM, Thermo Fisher), sodium pyruvate (1 mM, Thermo Fisher), 2-mercaptoethanol (2 × 
10−5 M, Thermo Fisher), penicillin (100 IU/ml, Thermo Fisher), and streptomycin (100 μg/ml, Thermo 
Fisher). The activation of OTII CD4+ T cells was assessed 18 hr later by flow cytometry based on the 
upregulation of the CD69 marker.

Flow cytometry
TECs, thymocytes, and splenic T cells were analyzed by flow cytometry (FACSCanto II, BD) with stan-
dard procedures. Cells were incubated for 15 min at 4°C with Fc-block (anti-CD16/CD32, 2.4G2, BD 
Biosciences) before staining. Antibodies are listed in the Key resources table. For intracellular staining 
with anti-Foxp3, anti-Ki-67, anti-p38 MAPK, anti-phospho p38 MAPK (Thr180/Tyr182), anti-IKKα, 
anti-phospho IKKα(Ser180)/IKKβ(Ser181), anti-Erk1/2 MAPK, anti-phospho Erk1/2 MAPK (Thr202/
Tyr204), anti-p65, anti-phospho p65(ser536), anti-RelB, anti-phospho RelB(ser552), and anti-DCLK1 
antibodies, cells were fixed, permeabilized, and stained with the Foxp3 staining kit according to the 
manufacturer’s instructions (eBioscience). Intracellular staining with anti-Aire, anti-Fezf2, anti-CCL21, 
anti-H3K4me3, and anti-H3K27me3 antibodies was performed with Fixation/Permeabilization Solu-
tion Kit (BD). Secondary antibodies (II Abs) were used to set positive staining gates. Flow cytometry 
analysis was performed with a FACSCanto II (BD), and data were analyzed using FlowJo software (BD).

Quantitative RT-PCR
Total RNA was prepared with TRIzol (Invitrogen). cDNAs was synthesized with oligo(dT) using Super-
script II reverse transcriptase (Invitrogen). qPCR was performed with the ABI 7500 fast real-time PCR 
system (Applied Biosystems) and SYBR Premix Ex Taq master mix (Takara). Primers are listed in the 
Key resources table.

In vivo transfer of splenocytes into Rag2-/- recipients
3.106 splenocytes purified from the spleen of WT and mTECΔMHCII mice of 8 weeks of age were intra-
venously injected into Rag2-/- female recipients. CD3+, CD4+, and CD8+ T-cell infiltrates were analyzed 
6 weeks after transfer by histology and flow cytometry in different peripheral tissues.

Histology
Tissues were fixed in 10% buffered formalin (Sigma) and embedded in paraffin blocks. 4-μm-thick 
sections were stained with hematoxylin-eosin (Thermo Fisher) and analyzed by light microscopy 
(Nikon Statif eclipse Ci-L). For immunofluorescence experiments, frozen thymic sections were stained 
as previously described (Sergé et al., 2015) with Alexa Fluor 488 or Alexa Fluor 647-conjugated anti-
Aire (5H12; eBioscience), biotinylated anti-TPA (LTL; Vector Laboratories), rabbit anti-Fezf2 (F441; IBL 
Tecan), and rabbit anti-involucrin (BioLegend) antibodies. Rabbit anti-Fezf2 and rabbit anti-involucrin 
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were revealed with Cy3-conjugated anti-rabbit IgG (Invitrogen), and biotinylated anti-TPA was 
revealed with Alexa Fluor 488-conjugated streptavidin (Invitrogen). Sections were mounted with 
Mowiol (Calbiochem). Immunofluorescence confocal microscopy was performed with a LSM780 Leica 
SP5X confocal microscope. Images were analyzed with ImageJ software.

RNA-seq experiments
Total RNA purified from mTEClo (Figure  1—figure supplement 1) was extracted with miRNeasy 
Micro Kit (QIAGEN), and RNA quality was assessed on an Agilent 2100 BioAnalyzer (Agilent Technol-
ogies). RNA Integrity Number values over 8 were obtained. RNA-seq libraries were generated using 
the SMART-Seq-v4-Ultra Low Input RNA Kit (Clontech) combined to the Nextera library preparation 
kit (Illumina) following the manufacturer’s instructions. Libraries were sequenced with the Illumina 
NextSeq 500 machine to generate datasets of single-end 75 bp reads. Two independent biological 
replicates were used per each condition. RNA-seq data have been deposited with Gene Expression 
Omnibus (GEO) under the accession number GSE144650.

RNA-seq analysis
The sequencing reads were mapped to the Mus musculus (mm10) reference genome using the 
TopHat 2 (version 2.0.12) aligner (Kim et al., 2013). The reads mapping to the annotated genes 
(igenome UCSC mm10 GTF: https://support.illumina.com/sequencing/sequencing_software/​
igenome.html) were counted, normalized, and compared using Cuffdiff2 (version 2.2.1; Trapnell 
et  al., 2013) between two conditions. Cuffdiff2 generated expression levels as FPKM, FCs, and 
p-values to assess the statistical significance of the FPKM difference of each gene between the tested 
two conditions. Genes showing a significant variation in gene expression between WT and ΔCD4, or 
WT and mTECΔMHCII, or RIPmOVAxOTII-Rag2-/- and OTII-Rag2-/- mice (p-value≤0.05, FC difference ≥ 
2 or ≤ 0.5) were considered as up- or downregulated. The TRA and non-TRA gene assignments were 
obtained from Sansom et al., 2014. In this report, the identification of the specificity of expression 
for each gene in the genome was carried out by analyzing the microarray expression profiles of a 
large number of different mouse tissues. Aire-dependent, Fezf2-dependent, Aire/Fezf2-dependent, 
and Aire/Fezf2-independent TRAs were identified using Aire-/- mTEChi RNA-seq datasets and Fezf2-/- 
total mTEC microarray datasets, obtained from the NCBI GEO database (GSE87133 and GSE69105, 
respectively).

Correlation between the variation of gene expression in mTEClo from WT versus mTECΔMHCII or 
RIPmOVAxOTII-Rag2-/- versus OTII-Rag2-/- mice, and of the same genes in mTEChi from WT versus 
Aire-/- mice was performed doing a locally regression (loess) with the R software (http://www.r-​
project.org/). Differential gene expression in WT versus Aire-/- mTEChi was obtained by processing 
using TopHat2 and Cuffdiff2, the sequencing reads corresponding to WT (Chuprin et al., 2015) 
and Aire-/- (Danan-Gotthold et al., 2016) mTEChi RNA-seq datasets, which were obtained from the 
NCBI GEO database (GSE68190 and GSE87133, respectively). HDAC3-dependent mTEC-specific 
transcription factors regulated by mTEC-thymocyte crosstalk were identified by comparing the top 
50 transcriptional regulators that are induced by HDAC3 (Goldfarb et al., 2016) with genes upreg-
ulated in the different mouse models. TRAs differentially expressed between mTEClo from WT and 
mTECΔMHCII mice were classified according to their tissue distribution using the mouse ENCODE 
transcriptome database (Yue, 2014). Only tissues that showed the highest expression were taken 
into account.

Single-cell RNA-seq analysis
Single-cell RNA-seq count matrix from Wells et al., 2020 (accession number GSE137699) was reana-
lyzed with the Seurat package (Hao et al., 2021). QC analysis was performed by filtering out cells with 
a number of feature counts under 200 or over 4000, and a proportion of mitochondrial counts over 
4%. Sample integration was performed as described in the Seurat vignette. After PCA for dimension 
reduction, 15 first dimensions were conserved. Cells were clustered and visualized with UMAP. Cluster 
annotation was performed by identifying sets of specific markers to each cluster using a differential 
expression test (FindMarkers function, test = ‘roc’). Heatmaps were generated using the pheatmap 
R package.

https://doi.org/10.7554/eLife.69982
https://support.illumina.com/sequencing/sequencing_software/igenome.html
https://support.illumina.com/sequencing/sequencing_software/igenome.html
http://www.r-project.org/
http://www.r-project.org/
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Nano-ChIP-seq experiments
Nano-ChIP-seq was performed as previously described (Adli and Bernstein, 2011) on 5.104 purified 
mTEClo (Figure 1—figure supplement 1). ChIP-seq libraries were prepared with TruSeq ChIP Sample 
Preparation Kit (Illumina), and 2 × 75 bp paired-end reads were sequenced on an Illumina HiSeq. 
ChIP-seq data have been deposited with GEO under the accession number GSE144680.

ChIP-seq analysis
Reads were aligned on the mouse genome (mm10) using Bowtie 2 and default parameters (Lang-
mead and Salzberg, 2012). Properly paired alignments were selected using Samtools view with the 
0x2flag (-f option). Nonuniquely mapped reads-pairs were filtered out by removing reads with the 
‘XS’ tag set by Bowtie 2. Normalized bedgraphs for ChIP and input samples were generated using 
MACS2 (Zhang et al., 2008) with the callpeak command in BAMPE mode with the --SPMR option. For 
the diffused H3K27me3 histone mark, the -broad option was used. ChIP enrichment was calculated 
parsing the ChIP and input normalized bedgraphs with MACS2 and the bdgcmp command (-m FE 
option). The obtained bedgraphs were converted to wig using the ​bedGraphToWig.​pl script with the 
--step 10 parameter. MACS2-generated peak calling files were converted to BED files using the cut -f 
1-6 command. The obtained Wig and BED files were parsed by CEAS (Shin et al., 2009) to generate 
metagene profile plots corresponding to the average enrichment of H3K4me3 in 3 kb TSS windows 
or H3K27me3 at gene loci. H3K4me3 and H3K27me3 CEAS-dumped files were parsed to compute 
ratios of ChIP/input in 1 kb TSS windows and gene loci, respectively. Statistical significance between 
ChIP enrichment data was tested using the nonparametric Mann–Whitney test. Data were visualized 
using the Integrative Genomics Viewer (IGV) (Robinson et al., 2011).

Statistics
Data are presented as means ± standard error of mean (SEM). Statistical analysis was performed 
with GraphPad Prism 7.03 software by using ANOVA, chi-square, unpaired Student’s t-test, or Mann–
Whitney test. ****p<0.0001, ***p<0.001, **p<0.01, *p<0.05. Normal distribution of the data was 
assessed using d’Agostino–Pearson omnibus normality test.
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