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Abstract: The emergence and spread of β-lactams and colistin-resistant Escherichia coli in birds
deserve a special concern worldwide. This study aimed to investigate the presence of β-lactams and
colistin-resistant Escherichia coli strains isolated from the faeces of urban and rural pigeons in Batna,
Algeria, and to characterise their molecular traits of resistance. Between March and April 2019, a
total of 276 faecal droppings samples were collected in Batna, Algeria. Samples were subjected to
selective isolation of β-lactams and colistin-resistant Escherichia coli. The representative colonies were
then identified using Matrix-Assisted Laser Desorption-Ionization Time-of-Flight Mass Spectrometry.
Antimicrobial susceptibility testing was performed using the disc diffusion method. β-lactamases, as
well as mcr genes, were screened for by PCR and confirmed by sequencing. Genetic relatedness of the
mcr-positive E. coli strains was determined using multi-locus sequence typing analysis. Transferability
features of carbapenemase genes were assessed by conjugation experiments. Overall, thirty-five
E. coli isolates were obtained only from urban pigeon samples. All carbapenem-resistant isolates
harboured the blaOXA-48 gene as the only carbapenemase gene detected (n = 11), while blaESBL genes
were detected in eighteen isolates. Out of the thirty-five isolates, four E. coli isolates were positive for
the mcr-1 gene. The obtained mcr-1 positive E. coli isolates belonged to four STs, including ST1485,
ST224, ST46, and a new ST. This study is the first to report the isolation of E. coli strains carrying the
mcr-1 gene from pigeon faeces in Algeria and also the first to report the detection of blaOXA-48-positive
E. coli in pigeons. Close surveillance is, therefore, urgently needed to monitor the dissemination of
blaOXA-48 and mcr-1 producing E. coli strains in wildlife.

Keywords: ESBL; OXA-48; mcr-1; E. coli; Columba livia; Algeria

1. Introduction

Contaminated environments seem to be a leading factor in the dissemination of
antibiotic resistance, as bacteria from various origins are able to mix and exchange antibiotic-
resistance encoding genes [1,2]. Moreover, the role of the environment in promoting and
spreading antibiotic-resistant bacteria and genes is understudied [3]. Birds are considered
a good choice for monitoring urban ecosystems since they can be surveyed on a large
scale, and they are easy to see and attractive to the population as well the fact that their
occurrence and abundance are influenced by habitat characteristics. In addition, birds have
also been postulated as potential reservoirs and vehicles of antibiotic resistance genes [4,5].
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The Columba livia species of bird is common in cities in various countries and can
transmit more than 30 diseases to humans via the air or their excreta [5]. Favourable
environmental conditions, as well as the availability of food and the absence of predators,
are the major factors implicated in the high increase in their populations in both urban and
rural areas [6]. The presence of multi-drug resistant bacteria in pigeons is generally linked
to faecal contamination of both human and animal origin [7]. Carriage of such bacteria in
pigeon faeces has been reported in different countries, with much of the focus being on
Escherichia coli species [8–10].

Escherichia coli is a Gram-negative bacterium which holds a special place in the micro-
biological world because some of them can cause severe infections in animals and humans,
but they can also represent an important part of the autochthonous microbiota of many
hosts. Of main concern is the possible transmission of resistant E. coli between animals and
humans via various pathways, including direct contact, the food chain, or contact with
animal excretion [11]. In the literature, numerous genes have been detected in E. coli species
of human and animal origins that confer resistance to β-lactams (extended-spectrum β-
lactamases and carbapenemase) and to colistin antibiotics. The increase in carbapenem
and colistin-resistant bacteria is considered one of the most critical public health concerns
since carbapenems and colistin are often used as a last-line treatment for multi-drug resis-
tant Gram-negative bacterial infections [12,13]. The most emerged carbapenemase type
worldwide is OXA-48-like enzyme variants, which are becoming the main carbapenemase
type in Enterobacteriaceae worldwide, particularly in Mediterranean countries [14,15]. It
was initially identified in a K. pneumoniae strain from a 54-year-old man with skin burns
and a urinary tract infection from Istanbul, Turkey, in 2001 [16]. After the first identifica-
tion, an outbreak of OXA-48-producing K. pneumoniae strains was described in Istanbul,
Turkey, between May 2006 and January 2007, and since then, it has been rapidly diffused
worldwide in different niches [14,17]. On the other hand, more recently, Liu et al. described
the first plasmid-mediated colistin resistance mechanism, mcr-1, in human K. pneumoniae
and E. coli recovered from provinces in China between April 2011 and November 2014 [18].
Currently, the mcr-1 gene has been found in different genera of the Enterobacteriaceae such
as Klebsiella, Escherichia, and Enterobacter isolated from various sources, including animals
and water samples, indicating that colistin resistance determinants have also disseminated
into the environment notably both urban and rural areas [7,19]. To date, studies revealing
the emergence of carbapenem and colistin-resistant bacteria isolated from pigeons are
still limited.

Therefore, the aim of this study was to screen for the presence of ESBL, carbapenemase
and mcr-producing E. coli isolates in faecal droppings samples from urban and rural pigeons
in Batna, Algeria.

2. Materials and Methods
2.1. Sample Collection

Between March and April 2019, a total of 276 fresh faecal droppings samples from
pigeons of the Columba livia species were collected at different urban area (the city of
Batna) locations (n = 191), including a public park (n = 50), school (n = 50), university
(n = 15), mosque (n = 2), different household residences: 800 household residences (n = 6),
1020 household residences (n = 24), 126 household residences (n = 23), 74 household
residences (n = 1), nearest to a sewage treatment plant (n = 20), and as well as rural area
(from animal farms (n = 85) in EL Madher locality) in Batna, eastern Algeria. Fresh faecal
droppings samples were collected aseptically in sterile containers and were immediately
transferred at 4 ◦C to the laboratory for analysis. The samples were first pooled before the
isolation procedure, where each pooled sample contained two, three or five samples of the
same location.
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2.2. β-Lactams and Colistin-Resistant-E. coli Isolation and Bacterial Identification

The isolation of extended-spectrum-cephalosporins, carbapenems and colistin-resistant-
E. coli started with a selective enrichment step in brain-heart infusion (BHI) broth with
64 µg/mL vancomycin and supplemented with one of the four different selective antibiotics
as follows: (1): 2 µg/mL cefotaxime, (2): 2 µg/mL ertapenem, (3): 9 µg/mL imipenem or
(4): 3 µg/mL colistin, respectively. After overnight incubation at 37 ◦C, ten microliters were
taken from the enrichment tubes and were inoculated into selective MacConkey agar plates
with the same selective antibiotic combinations [20,21]. The bacterial identification of the
obtained isolates was performed by Matrix-Assisted Laser Desorption Ionization-Time of
Flight mass spectrometry (MALDI-TOF MS), as previously described [22].

2.3. Antimicrobial Susceptibility Testing

Antimicrobial drug susceptibility of the obtained isolates was determined on Mueller–
Hinton agar using the standard disc diffusion method, as recommended by the An-
tibiogram Committee of the French Society for Microbiology (CA-SFM, 2019) (https:
//www.sfm-microbiologie.org/wp-content/uploads/2019/02/CASFM2019_V1.0.pdf; ac-
cessed on 1 March 2019). The obtained isolates were tested for antibiotic resistance using a
panel of thirteen antibiotics, including amoxicillin (20 µg), cefoxitin (30 µg), ceftazidime
(30 µg), cefotaxime (30 µg), cefepime (30 µg), aztreonam (30 µg), amoxicillin-clavulanic
acid (20–10 µg), ertapenem (10 µg), imipenem (10 µg), tobramycin (10 µg), gentamicin
(10 µg), amikacin (30 µg), and ciprofloxacin (5 µg). The E. coli ATCC 25922 strain was used
for quality control assays. The results were interpreted according to the CA-SFM, 2019, as
well as the Clinical and Laboratory Standards Institute (CLSI, 2017) breakpoints.

The minimal inhibitory concentration (MIC) of colistin was performed by broth mi-
crodilution applying the criteria of the European Committee on Antimicrobial Susceptibility
Testing Guidelines, 2017 (https://www.eucast.org/; accessed on 15 May 2019).

2.4. Phenotypic Detection of Extended Spectrum β-Lactamase and Carbapenemase Production

The detection of ESBL was further performed phenotypically using the double-disk
diffusion method (DDST), while the phenotypic investigation of carbapenemase production
was performed using the modified carba NP (MCNP) test as previously described [23].

2.5. Molecular Detection of β-Lactamases and mcr Genes

The obtained strains were tested for the presence of extended-spectrum β-lactamases
(blaSHV, blaTEM, blaCTX-M) and for the most common carbapenemase genes (blaKPC, blaNDM,
blaVIM, and blaOXA-48-like) using real-time PCR (qPCR) with specific primers (Table 1). The
colistin resistance gene (mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, and mcr-8) was also searched
for by qPCR [24–26]. Standard PCR and sequencing of the positive real-time PCR strains
harbouring the carbapenemase or mcr genes were also performed.

2.6. Conjugation Experiment

The transferability of carbapenemase genes was determined through a conjugation
experiment (broth mating method) using an azide-resistant E. coli J53 recipient strain
and two donor strains. The transconjugants were selected on nutrient agar containing
ertapenem (2 µg/mL) and sodium azide (200 µg/mL) [20]. The obtained transconjugants
were verified by antimicrobial drug susceptibility testing and the modified carba NP test
and were confirmed to have the blaOXA−48 gene by PCR.

2.7. Multilocus Sequence Typing

To determine the epidemiological relationships, MLST analysis was carried out on
the mcr-1-positive E. coli isolates. Multilocus sequence typing (MLST) was performed
by targeting seven housekeeping genes (adk, fumC, gyrB, icd, mdh, purA, and recA) [31].
The obtained sequences were analysed through an E. coli MLST database website (http:
//mlst.warwick.ac.uk/mlst/dbs/Ecoli; accessed on 15 October 2020).

https://www.sfm-microbiologie.org/wp-content/uploads/2019/02/CASFM2019_V1.0.pdf
https://www.sfm-microbiologie.org/wp-content/uploads/2019/02/CASFM2019_V1.0.pdf
https://www.eucast.org/
http://mlst.warwick.ac.uk/mlst/dbs/Ecoli
http://mlst.warwick.ac.uk/mlst/dbs/Ecoli
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Table 1. Oligonucleotide primers and probes used for polymerase chain reaction.

Type of PCR Primers Primer Sequence (5′->3′) References

Real-time PCR
TEM-F. GCATCTTACGGATGGCATGA

[27]

TEM-R GTCCTCCGATCGTTGTCAGAA

TEM-probe 6-Fam CAGTG CTGCCATAACCA TGAGTGA-BHQ-1

Real-time PCR
SHV-F TCCCATGATGAGCACCTTTAAA

SHV-R TCCTGCTGGCGATAGTGGAT

SHV-probe Cy5-TGCCGGTGACGAACAGCTGGAG-BBQ-650

Real-time PCR
group A

CTX-A-F CGGGCRATGGCGCARAC

CTX-A-R TGCRCCGGTSGTATTGCC

CTX-A-probe Yakima Yellow-CCARCGGGCGCAGYTGGTGAC-BHQ1

Real-time PCR
group B

CTX-B-F ACCGAGCCSACGCTCAA

CTX-B-R CCGCTGCCGGTTTTATC

CTX-B-probe Yakima Yellow- CCCGCGYGATACCACCACGC-BHQ1

Real-time PCR
KPC-F GATACCACGTTCCGTCTGGA

[28]

KPC-R GGTCGTGTTTCCCTTTAGCC

KPC-Probe 6-FAM-CGCGCGCCGTGACGGA AAGC-TAMRA

Real-time PCR
VIM-F CACAGYGGCMCTTCTCGCGGAGA

VIM-R GCGTACGTYGCCACYCCAGCC

VIM-Probe 6-FAM-AGTCTCCACGCACTTTCATGA
CGACCGCGTCGGCG-TAMR

Real-time PCR
NDM-F GCGCAACACAGCCTGACTTT

[29]NDM-R CAGCCACCAAAAGCGATGTC

NDM-Probe 6-FAM-CAACCGCGCCCAACTTTGGC-TAMRA

Real-time PCR
OXA48-RT-F TCTTAAACGGGCGAACCAAG

[28]OXA48-RT-R GCGTCTGTCCATCCCACTTA

OXA48-RT-Probe 6-FAM-AGCTTGATCGCCCTCG ATTTGG-TAMRA

Standard
PCR

OXA-48-F TTGGTGGCATCGATTATCGG
[30]

OXA-48-R GAGCACTTCTTTTGTGATGGC

Real-time PCR

mcr-1–2-F CTGTGCCGTGTATGTTCAGC

[25]
mcr-1–2-R TTATCCATCACGCCTTTTGAG

Probe (mcr-1–2) FAM-TATGATGTCGATACCGCCAAATACC-TAMRA

Probe (mcr-2) VIC-TGACCGCTTGGGTGTGGGTA-TAMRA

Standard
PCR

mcr-1-F GCAGCATACTTCTGTGTGGTAC
[24]

mcr-1-R TATGCACGCGAAAGAAACTGGC

Real-time PCR
mcr-3-F TGAATCACTGGGAGCATTAGGGC

[25]

mcr-3-R TGCTGCAAACACGCCATATCAAC

mcr-3-probe FAM-TGCACCGGATGATCAGACCCGT-TAMRA

Real-time PCR
mcr-4-F GCCAACCAATGCTCATACCCAAAA

mcr-4-R CCGCCCCATTCGTGAAAACATAC

mcr-4-probe FAM-GCCACGGCGGTGTCTCTACCC-TAMRA

Real-time PCR
mcr-5-F TATCCCGCAAGCTACCGACGC

mcr-5-R ACGGGCAAGCACATGATCGGT

mcr-5-probe FAM-TGCGACACCACCGATCTGGCCA-TAMRA

Real-time PCR
mcr-8-F TCCGGGATGCGTGACGTTGC

[26]mcr-8-R TGCTGCGCGAATGAAGACGA

mcr-8-probe FAMTCATGGAGAATCGCTGGGGGAAAGC-TAMRA
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2.8. Statistical Analysis

The isolation rate of the targeted drug resistant-E. coli (ESBL, carbapenemase and
mcr-1-positive isolates) related to the sampling sites was analysed by performing the
Pearson chi-square test using SPSS (version 26.0; SPSS, Inc., Chicago, IL, USA). The level of
significance was set at a p-value < 0.05.

3. Results
3.1. Bacterial Identification and Antimicrobial Susceptibility Testing

Thirty-five E. coli isolates were identified from pigeon faeces recovered from the
different urban areas, including the university (5.71%), 1020 household residences (5.71%),
800 household residences (8.57%), a public park (17.15%), and thosenearest to a sewage
treatment plant (62.86%). However, no E. coli isolates were obtained from rural samples
as well as other urban areas (school, mosque, 126 household residences, 74 household
residences). In this context, thePearson chi-square test revealed no significant effect of the
sampling site on the rate of positive isolated strains (positivity) (χ2 = 30; p = 0.314).

All the obtained isolates were resistant to amoxicillin (n = 35), however overall, twenty-
four were resistant to amoxicillin-clavulanic acid (n = 24), followed by cefotaxime (n = 23),
ceftazidime (n = 18), cefepime (n = 15), ertapenem (n = 14), aztreonam (n = 10), and ce-
foxitin (n = 2). Resistance to ciprofloxacin, tobramycin, and gentamicin was observed in
twenty-two, ten, and seven isolates, respectively. Imipenem and amikacin showed excellent
antibacterial activity against the obtained isolates with a susceptibility of 100%. In addition,
four E. coli isolates were resistant to colistin with minimum inhibitory concentration mea-
sured at 4 µg/mL. The location of sampling points with the detection rate of AMR E. coli in
various categories of sites targeted in this study was generated using Google Maps with
open data (https://www.google.dz/maps; accessed on 15 December 2021) and presented
in Figure 1.
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3.2. Molecular Detection of ESBL, Carbapenemase and mcr Genes

The genotyping results of ESBL, carbapenemase and mcr genes among the obtained
isolates are shown in Table 2. Of the 35 isolates, eighteen were ESBL producers, seven
were carbapenemase producers, and four isolates were positive for carbapenemase and
other β-lactamase types. Among the eighteen ESBL producing isolates, ten were found to
be positive for the combination blaCTX-M−A and blaTEM gene, while eight of the obtained
isolates were positive for the blaCTX-M−A gene. The eleven carbapenemase-producing iso-
lates were blaOXA-48 positive. Among the blaOXA-48 positive E. coli, two isolates harboured
the blaOXA-48, blaCTX-M−A, and blaTEM genes, one isolate of each was positive for the com-
bination blaOXA-48 and blaTEM or blaOXA-48, blaCTX-M−A genes, respectively. The remaining
seven isolates harboured only the blaOXA-48 gene. Out of 35 isolates, four E. coli isolates
were positive for the mcr-1 gene.

Table 2. Antibiotic susceptibility testing, resistance genes, and sequence types of the E. coli isolates
obtained in this study.

Strains Medium Site
Antibiotic Resistance Genes Phenotypic Detection

of β-Lactamases
Antibiotic

Resistance Genes ST

FOX CTX CAZ FEP ATM AMC ETP IMP TOB GN AK CIP DDST MCNP Test

P1 CTX PP S R R R R S S S S S S R P N blaCTX-M-A, blaTEM ND
P2 ETP PP I S S S S R R I S S S R N P blaOXA-48 ND
P3 ETP PP S S S S S R R I S S S R N P blaOXA-48 ND
P4 ETP PP I S S S S R R I S S S R N P blaOXA-48 ND
P5 CTX PP S R R R R R R S S S S S P N blaCTX-M-A, blaTEM ND
P6 CTX PP S R S I I R S S R R S R P N blaCTX-M-A ND
P7 CTX 800D S R S R R S S S S S S R P N blaCTX-M-A ND
P8 CTX 800D S R R R R R S S R S S R P N blaCTX-M-A, blaTEM ND
P9 CTX 800D S R R R R S S S S S S R P N blaCTX-M-A ND

P10 CTX UNIV R R R S I R R S I R S S P P blaOXA-48,
blaCTX-M-A, blaTEM

ND
P11 CTX UNIV S R R R R S S S S S S S P N blaCTX-M-A, blaTEM ND
P12 IMP 1020D S R R R R S S S S S S S P N blaCTX-M-A, blaTEM ND
P13 IMP 1020D S R S R S S S I S S S R P N blaCTX-M-A ND
P14 CTX NSTP S R R R R R S S R S S R P N blaCTX-M-A, blaTEM ND
P15 CTX NSTP S R R R R S S S I S S S P N blaCTX-M-A, blaTEM ND
P16 ETP NSTP S S I S S R R I S S S S N P blaOXA-48 ND
P17 ETP NSTP S R R S S R R I S S S S N P blaOXA-48 ND
P18 ETP NSTP S R R S S R R I R R S S N P blaOXA-48 ND
P19 ETP NSTP S S S S S R R S R R S I N P N ND
P20 CTX NSTP S R S S S R S S R S S S P N blaCTX-M-A ND
P21 ETP NSTP S R R S I R R I R R S S P P blaOXA-48,

blaCTX-M-A, blaTEM
ND

P22 CTX NSTP R R R S S R S S S S S S P N blaCTX-M-A, blaTEM ND
P23 CTX NSTP S R I I R R S S R S S R P N blaCTX-M-A ND
P24 CTX NSTP S R R R I R S S S S S R P N blaCTX-M-A, blaTEM ND
P25 ETP NSTP S I R I S R R I I R S R N P blaOXA-48, blaTEM ND
P26 ETP NSTP S S S S S R R I S S S R N P N ND
P27 CTX NSTP S R R R S R S S R S S R P N blaCTX-M-A ND
P28 CTX NSTP S R R R I S S S S S S R P N blaCTX-M-A ND
P29 CTX NSTP S R I R S R S S S S S S P N blaCTX-M-A, blaTEM ND
P30 CTX NSTP S R R R I R R S S S S R P P blaOXA-48,

blaCTX-M-A
ND

P31 ETP NSTP S I I S S R R I S S S R N P blaOXA-48 ND
P32 COL NSTP S S S S S S S S S S S R N N mcr-1 1485
P33 COL NSTP S S S S S R S S R R S R N N mcr-1 224
P34 COL NSTP S S S S S R S S S S S R N N mcr-1 46
P35 COL NSTP S S S S S S S S S S S R N N mcr-1 New

ST

PP: public park, univ: university, 800D: 800 household residence, 1020: 1020 household residence, NDTP: nearest to
sewage treatment plant, AX: amoxicillin, FOX: cefoxitin, CTX: cefotaxime, CAZ: ceftazidime, FEP: cefepime, ATM:
aztreonam, AMC: amoxicillin/clavulanate, ETP: ertapenem, IMP: imipenem, TOB: tobramycin, CN: gentamicin,
CIP: ciprofloxacin, COL: colistin, R: resistant, I: intermediate, S; sensible, ST: sequence type, N: negative, P:
positive, DDST: double-disk diffusion method, MCNP test: modified carba NP test.

3.3. Conjugation Experiment

Our study showed that the two tested E. coli isolates that carried the blaOXA-48 gene
were successfully transferred to E. coli J53. The antimicrobial susceptibility of the ob-
tained transconjugants (TCP21 and TCP30) showed that they were resistant to amoxicillin-
clavulanic acid and ertapenem and were positive for the MCNP test. PCR results confirmed
the presence of the blaOXA-48 gene in the two obtained transconjugants.

3.4. Multilocus Sequence Typing

MLST results showed that the four mcr-1 positive-E. coli isolates belonged to four
different sequence types, including ST1485, ST224, ST46, and new ST.
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4. Discussion

Around the world, there are significant numbers of pigeons living in close contact
with humans and other animals in rural and urban areas [32]. Various studies on the
contamination levels of pigeon faeces in public areas revealed that pigeon faeces represent
a source of various zoonotic agents for humans and animals and have been identified as a
potential source and vector that can spread antibiotic-resistant bacteria and genes [33–37].
In this regard, the emergence of extended-spectrum cephalosporins, carbapenem, and
colistin resistance in pigeon faeces is a serious challenge worldwide, in both urban and
rural areas. In our study, we report the detection of blaESBL, blaOXA-48, and mcr-1 genes from
urban pigeon faeces in Algeria. These results can be explained by different contributing
factors, including diverse feeding habits of urban pigeons such as sewage treatment plants
and municipal solid waste dumping grounds [38]. These feeding habits of urban pigeons
could lead to them being contaminated with medically important bacteria or residual
antimicrobials and chemicals since they may rely on waste or nearby refuse containers as
food sources [5,39]. In addition, various authors have suggested that pigeons can interact
with other birds, which would facilitate the acquisition and dissemination of this resistance
to other species [5].

The carriage of ESBL producers in pigeons in our study was comparable to previous
studies around the world, which have reported the detection of E. coli isolates harbouring
blaCTX-M genes from pigeons, including Bangladesh, France, Germany, Nicaragua, China,
and Brazil [9,10,34,35,40,41]. In this study, we also detected the blaOXA-48 gene in E. coli
isolates from different urban places around the city, including a sewage treatment plant,
a university, and a public park. To the best of our knowledge, the two last urban areas
are among the most dynamic areas in the city. The public park is the most urbanised,
popular, and economically active region in the city of Batna, and it is located in an area
marked by urban sprawl and overcrowding. Columba livia might favour the inter-genus or
inter-species horizontal propagation of antibiotic-resistance genes because their faeces can
harbour different resistant bacteria representative of the various environments that the birds
recently visited [39]. Domestic pigeons do not travel long distances (maximum 5.29 km),
and they have to meet their needs with what they find within the signalled distance. In this
study, the sampled areas were located in environments with a high human population, close
to hospitals and wastewater, known reservoirs of antibiotic-resistance genes, where the
birds can access water and food that is contaminated with pharmaceutical products such as
antibiotics. In this context and in the same city where our study was conducted, the first
detection of the pblaOXA-48 gene was described in 2014 at Batna university hospital, then
from migratory birds, community-acquired infection, currency, and more recently from
hospital wastewater [20,21,42–44], suggesting that the detected genes in pigeon are related
to their feeding mode in different locations including hospitals and wastewater or by contact
with other birds such as migratory birds. From pigeons, only two studies have reported the
detection of carbapenemase-producing Gram-negative bacteria worldwide. The first such
study was conducted on pigeon faeces collected in Algeria and France, where the authors
identified the presence of carbapenemases-encoding genes in 16 out of the 73 studied
samples (13 were positive for blaOXA-58, 12 blaOXA-51-like, and eight carried the blaOXA-23
genes) [33]. The second report detected blaMUS-2, a novel variant of the chromosome-
encoded blaMUS-1 associated with carbapenem resistance in Myroides odoratimimus isolates
in Lebanon [45]. Importantly, in this study, we report the first detection of the mcr-1 gene in
pigeons in Algeria, where colistin is considered a drug of last resort for human medicine
for the treatment of infections caused by Gram-negative bacteria. However, there have only
been a few reports of the mcr gene in pigeons. In agreement with our findings, a study in
Qatar reported that only one E. coli isolate from pigeon faecal samples harboured the mcr-1
gene [8]. mcr-1 and mcr-3 genes have also been detected in China, with a prevalence of 13.1%
and 5.1%, respectively [46]. Another study conducted in China signalled the detection of
mcr-4 and mcr-5 genes with a prevalence of 17.2% and 3%, respectively [47]. In our study,
the detection of the mcr-1 gene has been reported only in E. coli isolates obtained from faecal
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droppings samples collected near sewage treatment plants. This result can be explained by
the feeding habits of urban pigeons, where a recent study has reported the detection of the
mcr-1 gene with the same STs from the sewage treatment plants where our analysed pigeons
fed (unpublished data), indicating that the surrounding environment could be the origin
of the detected resistance genes. To the best of our knowledge, wastewater from different
hospitals could be discharged into the sewage treatment plants inviting the possibility that
the reported genes could be related to the hospital settings. No mcr-1 genes were found in
the sampled rural area (animal farms), which may be explained by the limited or prudent
use of antibiotics, particularly colistin.

The MLST results showed that the four mcr-1 positive E. coli isolates belonged to
four different sequence types, including ST1485, ST224, ST46, and a new ST. In fact, these
STs appear to be well adapted to animals living in rural and urban areas and have been
reported worldwide, mostly in association with plasmid-mediated blaCTX-M-type genes or,
similar to our study, with the mcr-1 gene. The ST224 has already been reported in isolates
with the blaCTX-M gene from cats in France and Brazil [48,49], from food-producing animals
(buffalo calves) in Brazil [50], and from a deer in Spain [51]. In addition, the ST224 has been
reported in strains with colistin resistance from chicken meat in Algeria [52]. ST1485 E.
coli isolate has already been isolated from rural dogs in Spain [53] and from birds in Chile
(Andean condors) [54]. Similarly, ST46 has been previously reported in an E. coli strain
with the mcr-1 gene from chicken faeces and in pets in China [55,56] and with CTX-M type
ESBL from pig samples from Nigeria [57]. This suggests that pigeons could facilitate the
crossover of antimicrobial resistance with other animals in the local region and contribute
to the further spread of these resistance genes.

5. Conclusions

To conclude, we report here for the first time the presence of the mcr-1 gene in pigeon
droppings in Algeria and also report the first detection of OXA-48-producing E. coli in
pigeon droppings. This study clearly illustrates that pigeons, which live in close proximity
to humans, could play a role as potential reservoirs of multi-drug-resistant bacteria, includ-
ing carbapenemase and mcr producers in urban areas. Hence, risk management measures
should be undertaken to limit the emergence and spreading of AMR in Algeria.

In light of these data, future studies should be conducted to identify multi-drug-
resistant bacteria transmission pathways in order to understand the potential role of such
birds in the spread of carbapenemase and mcr-1 genes.
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