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A B S T R A C T

Cross-grating phase microscopy (CGM) is a quantitative phase microscopy technique based on the association of
a 2-dimensional diffraction grating (aka cross-grating) and a regular camera sensor, separated by a millimetric
distance. This simple association enables the high-resolution imaging of the complex electric field amplitude of
a light beam (intensity and phase) from a single image acquisition. While CGM has been used for metrology
applications in cell biology and nanophotonics this last decade, there has been few studies on its basics,
especially for the microscopy community. In this article, we provide a numerical algorithm that enables the
in silico (i.e. computer-simulated) data acquisition, to easily vary and observe the effects of all the CGM
experimental parameters using computer means. In the frame on this article, we illustrate the interest of this
numerical algorithm by using it to explain and quantify the effects of several important CGM parameters
(grating-camera distance, pixel size, light intensity, numerical apertures, etc.) on the noise, precision and
trueness of CGM measurements. This work is aimed to push the limits of CGM toward advanced applications
in biomicroscopy and nanophotonics.
. Introduction

Quantitative phase microscopy (QPM) refers to techniques capable
f mapping the phase of a light beam [1–3] using optical microscopy
eans. Many different QPM techniques implemented on optical mi-

roscopes have been developed and improved these last two decades,
.g., digital holographic microscopy (DHM) [4,5], spatial light inter-
erence microscopy (SLIM) [6,7], diffraction phase microscopy (DPM)
8,9], shack–Hartmann wavefront sensing [10–12] and quadriwave
ateral shearing interferometry (QLSI) [13,14]. QLSI is a QPM tech-
ique based on the association of a 2-dimensional diffraction grating
aka cross-grating) and a regular camera, separated by a millimetric
istance [13]. This type of cross-grating phase microscopy (CGM),
ntroduced and patented in 2000 by Primot et al. [15,16], has been
sed for the first time on a microscope in 2009, for bio-cell imaging and
haracterization [14,17], and more recently in nanophotonics for the
etermination of the optical properties of nanoparticles [18–20], 2D-
aterials [21] and metasurfaces [22], and as a temperature microscopy

echnique in nanoplasmonics [23–27]. Despite the gain in popularity
f CGM, its basics remain poorly investigated in the field of optical
icroscopy.

In this article, we introduce an image processing algorithm that en-
bles the simulation of experimental CGM images, taking into account
he camera shot noise and light beam propagation between the cross-
rating and the camera sensor. Numerical results are compared with
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E-mail address: guillaume.baffou@fresnel.fr (G. Baffou).

experimental measurements using a home-made, tunable CGM set up
to validate the algorithm. In a large part of the article, using this al-
gorithm, we discuss the influence of parameters such as light intensity,
grating-camera distance, relay lens magnification, numerical aperture
(NA) of the illumination, on the image noise level, measurement preci-
sion and trueness. The algorithm is provided in Supplementary Material
and accessible on a public repository [28].

2. Cross-grating phase microscopy (CGM)

2.1. Basic principle of CGM

Cross-grating phase microscopies (CGMs) use a 2D-dimensional
diffraction grating (i.e., cross grating [29]) positioned at a millimetric
distance from the sensor of a regular camera [13]. Common cameras do
not offer the possibility to place an object so close to their sensor, due to
the presence of a sealed chamber. While some built-in commercial CGM
systems exist, home-made systems rather involve a relay-lens system
that re-images the cross-grating at the desired distance from the camera
chip (Fig. 1a). The cross-grating creates a so-called interferogram image
that is processed in real time to retrieve both the intensity and the
phase of the incoming light beam. Unlike most QPMs, which directly
measure and map the phase of light 𝜙, CGM primarily measures the
wavefront profile 𝑊 of a light beam, or rather its gradients over the
ttps://doi.org/10.1016/j.optcom.2022.128577
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Fig. 1. Working principle of cross-grating microscopy. (a) Schematic of the experimental set up where the grating is considered to be imaged by the relay lens, at the vicinity
of the camera sensor (grating-image description). (b) Representation of the imaging part of the setup where the relay lens is considered as an imager of the camera sensor instead
of the grating (sensor-image description). (c) Optical wavefront distortion due to the presence of a transparent object, defining the optical path difference 𝛿𝓁. (d) Representation
of a QLSI cross-grating, characterized by a 0 − 𝜋 checkerboard pattern.
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two directions of the focal plane (that are subsequently integrated). The
interferogram consists of a dense array of bright spots, and the working
principle resembles that of a Shack–Hartmann sensor [10–12], although
with a much higher spatial resolution. Then, the wavefront profile 𝑊
can be converted into the phase profile, if need be, using the relation

𝜙(𝑥, 𝑦) = 2𝜋
𝜆0
𝑊 (𝑥, 𝑦) , (1)

here 𝜆0 is the illumination wavelength. Thus, CGM is primarily a
avefront sensing technique. Its consideration as a phase microscopy

echnique is rather a means to make it more popular in the field of
io-microscopy. Note that Eq. (1) assumes a monochromatic light, or
t least a wavelength range 𝜆0 ± 𝛥𝜆∕2 over which the imaged object is
ot too dispersive.

CGM was not originally developed to be plugged onto an optical
icroscope. The original purpose of CGM was rather to characterize

he quality of laser beams [30]. The idea to plug a CGM camera into a
icroscope to use it as a QPM for bioimaging was introduced by Bon

t al. in 2009 [14]. In this case, the wavefront profile results from a
istortion due to the presence of a refractive object (a bio-cell) at the
ample plane of the microscope, and is called the optical path difference
OPD) 𝛿𝓁 = 𝑊 (Fig. 1b) and reads

𝓁(𝑥, 𝑦) =
(

𝑛 − 𝑛0
)

ℎ (𝑥, 𝑦) (2)

here ℎ is the thickness profile of the object, 𝑛 the refractive index of
he object and 𝑛0 the refractive index of the environment.

In practice, to compensate for any imperfection of the incoming
lanar wavefront, a reference interferogram is recorded first, without
he object of interest in the field of view, from which a reference OPD

s calculated and subtracted from all subsequent images of interest. s

2

Different types of cross-gratings have been used in CGM, with 3-
old or 4-fold symmetries [31], with different designs of the unit cell
32–35], or even with a thin (non-periodic) diffuser [36] or a binary
andom mask [37]. In the context of optical microscopy, the main in-
tance of CGM that has been used so far is quadriwave lateral shearing
nterferometry (QLSI) [13,14,31]. QLSI cross-gratings feature a 4-fold
ymmetry consisting of horizontal and vertical opaque lines defining
ransparent squares imprinting 0 and 𝜋 phase shifts on the incoming

light according to a checkerboard pattern (Fig. 1c).

2.2. CGM experimental set up

Although this article is mainly aiming at introducing a numerical
algorithm, simulations will be compared with experimental measure-
ments. To conduct these experiments, we used a home-made CGM set
up, composed of a QLSI cross-grating, with a period of 𝛤 = 39 μm and a
ona camera from Andor (2048 × 2048 dexels, dexel size 𝑝 = 6.5 μm).
he grating was re-imaged using a relay lens (VZM 300, zoom 0.75×
3×, Edmund optics, ref. ♯39-708) and the grating-camera distance 𝑑
as controlled using a stepper motor actuator (Thorlabs LNR25ZFS/M,
ST101) (Fig. 1a). The microscope was also home-made, composed of a
0× objective lens (Olympus, LUCPLFLN60X) and a 180-mm tube lens
Thorlabs, TTL200-A). The sample was illuminated using a mounted
ED at 625 ± 25 nm (Thorlabs, M625L3), associated with a Köhler
onfiguration.

.3. Experimental parameters in CGM

A CGM setup as depicted by Fig. 1a can be customized by varying

everal parameters, listed in Table 1, related to the features of the
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Table 1
Definitions of the physical parameters involved in CGM, along with their particular values used in all the figures of this article.

Param. Definition Unit Figs. 2 and 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7

𝜆0 Light wavelength nm 530 625 625 625 650
𝑒0 Etching depth of the cross-grating nm 530 625 625 625 650
𝑤 Maximum counts on the interferogram 45000 40150 40000 40000 200

(full well capacity of the camera)
𝑁im Number of averaged interferograms 5 30 25 25 1
𝑝 Pixel size of the camera (dexel size) μ m 6.5 6.5 6.5 6.5 6.5
 Grating unit cell (grexel) QLSI QLSI QLSI QLSI QLSI
𝛤 Grating period (grexel size) μ m 39 39 39, 52, 65 39,52 52
𝑍 Zoom of the relay lens 1 1 1 1 1
𝑑 Grating-camera distance mm 1 1.03 0.3 − 3 0.5 − 3 0.2 − 2.2
𝛽 Grating tilt angle deg 37◦ 37◦ 37◦ 37◦ 37◦

𝖭𝖠i Numerical aperture of the illumination 0 0 0 0 − 0.9 0
𝑁𝑥 , 𝑁𝑦 Size of the OPD image px 240 720 600 600 600
𝑀 Magnification of the microscope 100 40
microscope, the grating and the camera. While commercial CGM sys-
tems are usually fixed, home-made CGM systems offer the possibility to
vary and optimize the geometrical parameters  , 𝛤 , 𝑑, 𝛽, 𝑍 (defined
in Table 1 and later in the text), depending on the application and
the sample. Optimizing experimentally the 13 parameters listed in
Table 1 may be cumbersome, hence the interest of conducting in silico
experiments. Let us review and comment all the parameters of Table 1
one by one.

• 𝜆0. CGMs are achromatic. The knowledge of the illumination
wavelength 𝜆0 is not necessary to compute the wavefront profile
from the interferogram, and varying the wavelength is not sup-
posed to change the OPD profile retrieved from the interferogram.
However, the phase shifts (0 and 𝜋 in QLSI) are imprinted on
the grating by etching the substrate. Thus, the phase shifts are
supposed to depend on the wavelength. However, if 𝜆0 deviates
from the wavelength the grating has been made for, it is not
supposed to lead biased measurement, but only poorer signal to
noise ratio. Also, CGM does not require the use of coherent light
sources (laser), unlike other QPM techniques. On the contrary, it
is even recommended to use temporally incoherent, broad band,
light sources rather than a laser light to avoid the appearance of
fringes on the intensity and phase images. Numerically, however,
the use of a coherent light source description does not cause
problem.

• 𝑒0. The phase pattern of a cross-grating used in CGM is made by
local etching of the substrate. For a QLSI pattern, the 𝜋 phase shift
are obtained by etching the substrate over a distance 𝑒0 such that

𝜋 = 2𝜋
𝜆0

(𝑛0 − 1)𝑒0. (3)

In the article, we consider that the substrate refractive index is
1.5, so that 𝜆0 = 𝑒0 to obtain a 𝜋 phase shift.

• 𝑤 is the value of the brightest pixels of the interferogram (in
photo-electrons). This value has to be adjusted just below the full
well capacity of the camera chip to optimize the signal to noise
ratio. In this article, we consider 𝑤 to be the full well capacity.
Typical scientific cameras feature a full well capacity ranging
from 10000 to 50000, encoded in 16-bit.

• 𝑁im is the number of averaged interferograms, or equivalently of
OPD images (averaging one or the other has an equivalent effect
on the noise amplitude).

• 𝑝 is the lateral size of the camera dexel. A dexel means ’detector
element’ [38], just like a pixel means a ’picture element’. We opt
for this appellation instead of a camera ‘pixel’ to avoid confusion
with the pixel of an image.

•  is the grating unit cell. Following the same logic, we shall
call it a grexel (grating element). In this article, we focus on
the cross-grating used in QLSI, with a grexel characterized by a
checkerboard pattern of 0 and 𝜋 phase shifts. The grexel pattern
of QLSI remained mostly unchanged for 20 years, except in few
articles [32–35,37].
3

• 𝛤 is the grexel lateral size, i.e., the grating period. It is not a pa-
rameter that can be easily and continuously modified experimen-
tally, highlighting the interest of conducting in silico experiments,
prior to the design and fabrication of a CGM grating.

• 𝑑 is the distance between the grating and the image plane. 𝑑 is an
important parameter that affects both the precision and trueness
of the measurements, as explained hereinafter. It usually lies in
the millimetric range.

• 𝑍 is the magnification of the relay-lens. Its role can be understood
in two different ways, following the two descriptions of Figs. 1a
and 1b. First (Fig. 1a), the relay lens can be seen as a means to
image the cross-grating at a distance [18]

𝑑′ = 𝑍2𝑑 (4)

from the camera sensor and expand it by a factor of 𝑍, leading
to an effective grexel size of

𝛤 ′ = 𝑍𝛤 . (5)

This is the common vision.
Reciprocally, the relay-lens can be seen as a means to image the
camera at a distance 𝑑 from the actual cross-grating, and scale
it by a factor 1∕𝑍. This second vision, less intuitive, is actually
much simpler: there is only one distance to consider, 𝑑, the one
that is experimentally actuated (no need to worry about another
distance and about a factor of 𝑍2), and it simplifies the algorithm
as the role of the relay-lens only amounts to only scaling the dexel
size 𝑝 of the camera by a factor of 1∕𝑍:

𝑝′ = 𝑝∕𝑍. (6)

An important feature of a CGM system, as explained later on, is
the 𝜁 (zeta) factor, that is the ratio between the effective grexel
size 𝛤 ′ = 𝑍𝛤 and twice the camera dexel size 𝑝:

𝜁 = 𝑍𝛤
2𝑝

. (7)

Note that this ratio can also be seen as the actual grexel size 𝛤 di-
vided by twice the effective dexel size 𝑝∕𝑍, stressing the fact that
the grating-image and sensor-image descriptions are equivalent
(Figs. 1a and 1b). Common CGM cameras usually use 𝛤 ′ = 6𝑝
or 8𝑝, i.e., 𝜁 = 3 or 4. The 𝜁 -factor must remain greater than
2.73 (Nyquist criterion) to enable proper imaging of the grexels,
i.e., proper sampling of the fringes of the interferogram [14].

• 𝛽 is the rotation of the grating around the optical axis. In practice,
although CGM is supposed to normally work with 𝛽 = 0, the cross-
grating is usually tilted by an angle 𝛽 ≠ 0 around the optical
axis to avoid Moiré effects and OPD reconstruction issues. For this
reason, the algorithm we propose offers this option.

• 𝖭𝖠i is the NA of the illumination. It is an important parameter
that can affect the signal to noise ratio of the reconstructed OPD
image [14].
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Fig. 2. Schematic of the algorithm for in silico experiments (insilex algorithm). (a) Unit cell of the cross grating. Black lines are zero-transmission areas. (b) Tilt of the
nit-cell by 𝛽 = cos−1(3∕5) and enlargement by a factor of 5 to obtain a periodizable super unit-cell. (c) Pixelization of the super unit-cell according to the dexel size of the camera.
d) Tiling of the super unit-cell, up to the size of the camera chip. (e) Numerical propagation of the electric field from the grating to the camera chip. (f) Manually designed
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btain the in silico measured OPD (m), to be compared with (f).
F
a
r
o
F
t
a
o
g
c
w
u
F
d
F
i
F
a
d
d
a

• (𝑁𝑥, 𝑁𝑦) are the dimensions, in pixel, of the OPD image. These
dimensions are supposed to equal the ones of the interferogram,
except for some algorithms that reduce the size of the OPD image
to (𝑁𝑥∕𝜁,𝑁𝑦∕𝜁 ), for the good of the speed for live imaging, but
at the expense of the image quality. In this article, we always
process the OPD images so that they feature the same number
of pixels as the interferogram, according to the algorithm we
recently detailed in Ref. [13].

• 𝑀 is the magnification of the microscope. It only matters when
dealing with the illumination aperture or accuracy issues (see
Sections 5 and 4.3).

. Numerical procedure

Fig. 2 depicts the algorithm we developed and introduce in this
rticle to simulate experimental CGM images. We coin it the insilex (in
ilico experiment) algorithm. It is composed of two parts, the traditional
art (steps h to m) that processes the interferogram to retrieve the
PD [13], and a novel part (steps a to g, along with the noise addition
etween steps i and j) aimed to simulate experimental images. Here is
detailed description of this algorithm.
4

ig. 2a: First, the grexel pattern is designed. We focus in this article on
QLSI grexel, characterized by a 0−𝜋 checkerboard pattern. The aspect

atio of the dark lines width and the grexel size is 1/6, a value aimed at
ptimizing the emission of light on the first orders of diffraction [16].
ig. 2b: The grexel should be tiled to form the full grating. Prior to
iling, a tilt angle 𝛽 is applied to the grexel. A tilt by an arbitrary
ngle would produce discontinuities of the periodicity at the junction
f the grexel tiles, upon tiling. To avoid this issue, we chose to tilt the
rexel by a particular angle of 𝛽 = cos−1(3∕5). This angle value ensures
ontinuity if the unit-cell is made exactly 5 times bigger, leading to
hat we call the super unit-cell. This magic angle yielding continuity
pon tiling comes from the integer equality 32 + 42 = 52.
ig. 2c: The grating super unit-cell is then resampled so that the pixel
ensity matches the dexel density of the camera sensor.
ig. 2d: Super unit-cells are tiled to get the complex transmittance 𝑇g
mage of the full grating, of the size of the camera sensor.
ig. 2e: The transmittance image 𝑇g is multiplied by the electric field
mplitude of the uniform incoming light beam, possibly tilted by a
eviation angle 𝜓 from the optical axis, and then propagated over a
istance 𝑑 to get the reference 𝐸-field on the image plane. Considering
set of various illumination angles 𝜓 enables the modeling of 𝖭𝖠 ≠ 0.
i



B. Marthy and G. Baffou Optics Communications 521 (2022) 128577

F
c
i
b
b
𝐸
l
i
F
m
i
o
p
F
u
s
t
c
t
i
t
t
f
[

p
o
s
i
p
i
p
i
a
a
t
w

p
c
o
M
2

4

c
c

s

c
m

i
c

f
p
m
a
v
c

i
𝜎
a
l

4

m
e
𝜎
a
t
s

t
s
l
i
n
c
s
n
t
a
s
t
t

Fig. 3. Numerical simulation of the model OPD profile, and 17 experimental OPD
profiles produced in silico.

ig. 2f,g: Meanwhile, intensity 𝐼0 and phase 𝜙0 profiles are designed,
orresponding to a desired object to be imaged. We call them the model
ntensity and model phase images. Then, the scalar field

√

𝐼0 exp(𝑖𝜙0) is
ackward-propagated from the image plane to the grating, multiplied
y the grating transmittance 𝑇g, and forward-propagated to get the
-field at the image plane. Back and forth propagations are simu-

ated using a standard Fourier-transform algorithm (see Matlab code
mprop.m in Supplementary Material).
ig. 2h,i: The two interferograms are calculated from the two 𝐸-field
aps, with and without the imaged object. Shot noise is added to the

mage. The amplitude of the shot noise is directly related to the number
f counts on each dexel. In the insilex code, it is created using the
oissrnd function of Matlab.
ig. 2j,k: Then, the home-made standard algorithm that we normally
se to postprocess experimental interferograms is here applied to the
imulated interferograms to retrieve the intensity 𝐼 and phase 𝜙 images,
o be compared with the model 𝐼0 and phase 𝜙0 images. This algorithm
onsists in a demodulation of the image in the Fourier space to retrieve
wo wavefront gradients along orthogonal directions, which are then
ntegrated to retrieve the wavefront profile (see Ref [13] for details and
he CGMprocess.m. Matlab code in Supplementary Material). Note
hat the postprocessing algorithm can also retrieve the intensity map
rom the interferogram by cropping the central spot in the Fourier space
13] (not shown in Fig. 2 for the sake of simplicity).

A Matlab package reproducing this algorithm is provided as Sup-
lementary Material and on a public repository [28]. As an initial test
f the insilex algorithm, Fig. 3 plots the crosscut of the model OPD
hown in Fig. 2f (a simple Gaussian profile, 15 nm in amplitude),
n comparison with a series of in silico calculated OPDs, where a
roper agreement is observed. Experimentally, such a good agreement
s not always ensured. Further dispersion of the measurements (lack of
recision) and measurement bias (trueness issue) can be encountered
f the set of experimental parameters listed in Table 1 is not properly
djusted. These experimental limitations can be rendered by the insilex
lgorithm. Next sections discuss these limitations to illustrate the in-
erest of in silico experiments, and to eventually better define the best
orking area of CGMs, and QLSI in particular.

Using the Matlab algorithm, each image requires around 1 s to be
rocessed (1.25 s for a 600 × 600 px image) with a standard desktop
omputer. The computation time is proportional to the number of pixels
f the image (𝑡 ∼ 𝑁𝑥𝑁𝑦). The shot noise generation, via the use of the
atlab function poissrnd, is quite time-consuming, responsible for

/3 of the total computation time.

. Image noise and precision

Precision, trueness and accuracy are important to determine when
onducting experimental measurements, and quantitative phase mi-
roscopy is no exception [17].
Precision refers to the standard deviation of an ensemble mea-

urements performed in the same experimental conditions, for instance
5

oming from the noise on the image. Trueness is the deviation of the
easurements from the true value, also called a bias. Accuracy, some-

times mixed with the trueness, normally encompasses both precision
and trueness. This section focuses on the estimation of the precision,
while the next one focuses on the trueness.

4.1. White noise or Brown noise?

Fig. 4 displays experimental and numerical flat OPD images (no
object is imaged), as a means to highlight the image noise. Fig. 4a
shows an experimental OPD image (see Table 1 for details on the ex-
perimental conditions), along with its power spectral density (Fig. 4b).
The noise in CGM mainly comes from the shot noise on the camera
(aka photon noise). Although a shot noise is a white noise (no spectral
dependence on the spatial frequencies), OPD images in CGM do not
feature a white noise, but rather a noise characterized by a 1∕𝑓 2 power
spectral density (Fig. 4b) where 𝑓 represents the spatial frequencies of
the image. A 1∕𝑓 2 noise is usually called a Brown or Brownian noise.
This particular noise arises from the integration step (Fig. 2k,l,m),
not from the demodulation (Fig. 2j), as OPD gradients (Fig. 2k,l) still
feature a white noise. A Brown noise is indeed obtained by integrating
a white noise.

Note the cutoff frequency at 𝑓 = 𝑁∕6, where 𝑁
def
= 𝑁𝑥 = 𝑁𝑦,

n Fig. 4b. This cutoff comes from the demodulation step (Fig. 2j) that
onsists in cropping the Fourier space by a disc of diameter 𝑁∕𝜁 .

Fig. 4c displays an OPD image calculated using the insilex algorithm
or the exact same parameters as Fig. 4a. This image along with its
ower spectral density plot (Fig. 4d) properly reproduce the experi-
ental Brown nature of the noise (see Fig. 4a,b). As an illustration,
theoretically generated Brown noise is also shown in Fig. 4e, which

isually and spectrally renders the same characteristics, except that no
utoff frequency has been applied.

The noise standard deviation is slightly better (i.e. lower) in the
nsilex image, 𝜎0 = 67 pm, compared with the experimental image,
= 97 pm. In CGM, other sources of noise can be a setup misalignment,

berrations, sensor non-linearity, or a non-zero illumination NA (for the
atter, see Section 4.3).

.2. Noise estimation in CGM

The insilex algorithm enables the determination of the fundamental,
inimum noise standard deviation 𝜎0 that can be achieved in a CGM

xperiment as a function of all the experimental parameters. Measuring
> 𝜎0 means that the setup can be further optimized. We conducted
large amount of insilex calculations, varying all the parameters,

o understand all the dependencies of the parameters and derive a
emi-empirical expression for 𝜎0:

𝜎0 =
1

8
√

2

𝑝𝛤
𝑍𝑑

√

√

√

√

(

1
𝑁im

+ 1
𝑁0

im

)

log(𝑁𝑥𝑁𝑦)
𝑤

(8)

where 𝑁im is the number of averaged interferograms, and 𝑁0
im is

he number of averaged reference interferograms (equation coded in
igma0.m, in Supplementary Material). Eq. (8) considers a zero il-

umination NA (𝖭𝖠i = 0). A refined expression of 𝜎0 including 𝖭𝖠i
s given later (see Eq. (13)). Other types of camera noise, like read
oise or thermal noise, could also contribute. However, CGMs working
onditions normally involve the full well capacity of the sensor, and
hort exposure times, so these other types of noise are supposed to be
egligible. Regarding the camera parameters (𝑝, 𝑁𝑖, 𝑤), noise ampli-
ude varies as

√

log(𝑁𝑖). This dependency is expected when considering
Brown noise. It comes from the increase in noise amplitude at lower

patial frequencies, i.e., larger image sizes. However, it does not mean
hat cameras with few pixels must be preferred. First, this increase in
he noise level with 𝑁 is extremely slow and then, on the contrary,

the larger the field of view, the better. What matters is rather the
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Fig. 4. Characterization of the image noise. (a) Experimental uniform OPD. (b) Spatial frequency spectrum of image (a). (c,d) Same as (a,b) for an in silico uniform OPD image
in the same conditions. (e) Theoretical image featuring Brown noise. (f) Spatial frequency spectrum of the image (e).
Fig. 5. Effect of the grating-camera distance on the image noise. (a) Noise standard deviation as a function of the grating-camera distance 𝑑 for different values of the 𝜁
parameter. Dashed lines represent 𝜎 values calculated using Eq. (8). (b) Same as (a) in logarithmic scale. (c) Experimental measurements of 𝜎 compared with the minimum noise
standard deviation given by Eq. (8).
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size, in pixels, of the imaged object. This equation also assumes that
the full well capacity 𝑤 is used. When imaging dark objects (not fully
transparent), the intensity on the camera sensor can locally decrease,
artificially decreasing 𝑤 and locally decreasing the signal to noise ratio.

Fig. 5a,b plots insilex simulations of 𝜎 compared with 𝜎0 values
given by Eq. (8), for 𝜁 = 3, 4, 5. A very good agreement is observed,
supporting the validity of Eq. (8). Fig. 5c plots comparisons between
𝜎0 and experimental data, in the exact same conditions of parameters
listed in Table 1. Experimental values are very close, albeit slightly
higher than the fundamental limit 𝜎0. As mentioned above, a higher
noise level can have different origins. In our case, we suppose it can
come from optical aberrations.

One can also derive a simpler expression of 𝜎0, involving 𝜁 and also
onsidering the normal case where 𝑁im = 𝑁0

im:

0 =
𝑝2𝜁
4𝑍2𝑑

√

log(𝑁𝑥𝑁𝑦)
𝑁im𝑤

(9)

It is common to read estimations of noise and precision in the
iterature of QPM techniques as if they were universal. However, Eq. (9)
 o

6

hows that the noise amplitude in CGM is not universal, and depends on
xperimental conditions and setups. Nevertheless, let us try to answer
he question ‘‘What is the noise amplitude in CGM?’’ with a typical
alue rather than an equation involving many parameters. Noise can
e quantified in several manners. First, it can be calculated for a
articular image and quantified by its standard deviation, as what we
ave done above. However, one may want to assign a noise level not
o an image, but to a technique or a particular set up, as a means
o compare different techniques with each other for instance. For this
urpose, caution has to be used because noise levels obviously vary
or a given setup, from one set of experimental conditions to another:
n particular, noise standard deviation varies with light intensity 
nd exposure time as

√

𝑡. For this reason, as a means to get a more
niversal noise characterization taking into account the exposure time
dependence, noise amplitude is often given in nm/

√

Hz units (for a
signal in nm). However, this unit takes into account

√

𝑡 but not
√

.
he quantity  × 𝑡 is nothing more than the density of light energy
ollected by the camera. This quantity is proportional to the number
f photons collected per dexel. For this reason, as a more universal
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figure of merit, we propose here to define the noise of CGM as the
noise standard deviation of a full-frame image when the camera sensor
collects 40000 photons in the brightest pixels of the interferogram. This
value roughly corresponds to the full well capacity of common scientific
cameras. Thus, this definition gives an idea of the noise amplitude on
OPD images arising from a single interferogram acquisition. Eq. (9)
leads an estimation of this figure of merit, that is 𝜎0 = 0.4 nm/frame.

o compare with other values from the literature sometimes given in
m/

√

Hz, one can consider a frame rate of 25 Hz to derive a noise level
f 𝜎0 = 80 pm/

√

Hz, that is a fraction of the size of a hydrogen atom
120 pm).

In 2013 [39], the group of Primot demonstrated that the noise
mplitude on the OPD image obtained in CGM could be estimated in a
ore fundamental way than using the image standard deviation. The
emonstration was conducted in the frame of OPD images obtained in
he X-ray spectral range, but it could be transposed in the visible range.
stimating the noise amplitude by calculating the standard deviation of
he image, like what we do in this article, is appropriate when dealing
ith flat OPD images. In practice, flat areas may not exist on the imaged

ample, and it would be meaningless to crop small areas of the field of
iew to calculate 𝜎0, because 𝜎0 depends on the image size 𝑁𝑥×𝑁𝑦 (see
q. (8)). Primot et al. have shown that the noise in the reconstructed
PD image can be directly estimated during the interferogram analysis

from Figs. 2k,l). One can define the phase derivatives closure map
PDCM) of a phase image as:

(𝑥, 𝑦) = 𝜕𝑥(𝜕𝑦𝛷) − 𝜕𝑦(𝜕𝑥𝛷) (10)

f 𝛷 has continuous second partial derivatives at the point (𝑥, 𝑦), then
(𝑥, 𝑦) = 0 (Schwartz’s theorem). In practice, this condition does
ot hold true due to image noise, and the noise level of the image
s contained in 𝐶. Interestingly, the phase gradients maps 𝜕𝑦𝛷 and
𝑥𝛷 are calculated during the processing of the interferogram (from
igs. 2k,l), as an intermediary step before getting the OPD map [13].
onsequently, 𝐶 and the noise level can be easily calculated in CGM,

or any experimental image. Details of the mathematical procedure are
iven in Ref. [39].

.3. Effect of the illumination NA

So far, we considered a zero-NA illumination (plane wave, 𝖭𝖠i= 0),
lso referred as a spatially coherent illumination. When the NA of the
llumination is increased, one usually states that spatial coherence of
he light is decreased. The illumination NA has a notable effect on the
PD image in CGM. First, it enables a kind of sectioning in 𝑧 by blurring

he out-of-plane parts of the imaged object [40]. Second, increasing
𝖠i, just like increasing 𝖭𝖠obj, leads to a better spatial resolution, a
roperty advantageously used in Ref. [41] .

However, increasing 𝖭𝖠i also tends to blur the interferogram, and
hus to increase the noise amplitude of the image. Such an effect was
nvestigated and explained by Bon et al. in Ref. [14] . More specifically,
hen a plane wave illuminates the sample with an incidence angle
, the plane wave transmitted through the optical microscope exhibits
n incidence angle 𝜓t at the image plane such that tan𝜓t = tan𝜓∕𝑀 ,
here 𝑀 is the magnification of the microscope. This tilt angle 𝜓 re-

ults in a translation of the interferogram in one direction by a distance
tan𝜓t = 𝑑 tan𝜓∕𝑀 (see the shadow picture in Ref. [13]). When a
on-zero illumination NA is used, several illumination angles 𝜓 enter
nto play and the final interferogram results from the incoherent sum
f all the interferograms associated with all the illumination angles.
ecause they are all slightly shifted compared with each other on the
amera plane, increasing the illumination NA results in a blurring of the
nterferogram, a lower contrast of the fringes and thus a higher noise
n the OPD image. At some point, when 𝖭𝖠i reaches a critical values,
he contrast is cancelled and the noise level diverges.[14]

The in silico algorithm also offers the possibility to vary the illumi-
ation angle and, consequently, the illumination NA. A tilt angle can be
 t

7

easily applied during all the propagation steps (see Fig. 2) in the Fourier
space. To model a given illumination NA, one just has to incoherently
average all the interferograms corresponding to various illumination
angles within the NA of the illumination, with a sufficient degree of
angular discretization.

Fig. 6 plots the noise standard deviation 𝜎 of insilex OPD images
s a function of the illumination NA 𝖭𝖠i, for various camera-grating
istances 𝑑. For small values, 𝖭𝖠i does not affect the image and Eq. (8)
iving the noise amplitude can be confidently used. However, for
arge NA, we observe the increase followed by a divergence of the
oise amplitude, corresponding to a cancellation of the interferogram
ontrast. This cancellation and associated divergence occur for a very
pecific value of 𝖭𝖠i= sin𝜓i,max, as explained in Ref. [14], such that

𝑅 = 1.22𝜋 (11)

here 𝐾 = 4𝜋∕𝛤 and 𝑅 = 𝑑 tan𝜓i,max. Results of Fig. 6 confirm exactly
his condition. We indeed observe divergences of 𝜎 for 𝖭𝖠i values
orresponding to Eq. (11) that we call the limiting NA 𝖭𝖠0. In all
he plots, the noise standard deviation 𝜎 could be nicely fitted with
function of the form 𝑓 (𝜁∕𝑑) = 𝑎f it (𝜁∕𝑑) + 𝑏f it (𝜁∕𝑑)∕(𝖭𝖠0(𝜁∕𝑑) − 𝖭𝖠i).
e found an expression of the limiting NA

𝖠0 = sin
[

tan−1
( 1.22𝑀𝛤

4𝑍𝑑

)]

(12)

hat exactly matches the condition (11) theoretically derived in Ref.
14] . Then, the values of 𝑎f it and 𝑏f it led us to the refined the expression
f 𝜎0 (refined Eq. (8)) involving the illumination NA:

𝜎0 =

(

𝑝𝛤

8
√

2𝑍𝑑
+

𝖭𝖠i
𝖭𝖠0 − 𝖭𝖠i

× 3.54 [nm]

)

×

√

√

√

√

(

1
𝑁im

+ 1
𝑁0

im

)

𝑙𝑜𝑔(𝑁𝑥𝑁𝑦)
𝑤

(13)

Fig. 6 plots fits of all the insilex data using Eq. (13), showing an
acceptable agreement.

5. Trueness
While the measurement precision is easy to determine experimen-

tally, the trueness cannot always be quantified. Estimating the trueness
of a measurement requires the use of a calibrating sample. Interestingly,
with the insilex algorithm, the trueness of CGM as a function of all the
experimental parameters can be easily estimated, because the true OPD
image is known (Fig. 2f).

Eq. (8) suggests that the image noise can be infinitely dampened
upon infinitely increasing the grating-camera separation 𝑑. As expected,
this law holds true up to a certain limit. The limit is the accuracy. If
the grating is put far away from the sensor, then the noise is reduced
but the range of wavefront gradients that can be quantitatively imaged
is also reduced. If the wavefront gradient is too steep, the integration
algorithm yields incorrect reconstruction. As a consequence, although
the noise can be infinitely reduced, one cannot infinitely increase the
signal to noise ratio in CGM in a safe manner just by playing with the
grating-camera distance.

To quantify this limitation, we ran insilex experiments on a model
Gaussian OPD profile of amplitude 𝐴 for a large range of 𝑑 and
𝛤 values. For each set of 𝑑 and 𝛤 parameters, a loop in 𝐴 values
(Fig. 2f) was run until a discrepancy of 5% was observed between the
actual 𝐴 value and the one of the reconstructed OPD image (Fig. 2m).
This procedure enabled the phenomenological determination of the
(𝑑, 𝛤 ) association of values that yield discrepancy. This set of values
corresponds to a limiting wavefront gradient on the camera that reads:

|∇c𝑊 |max = 𝜓c
max =

𝛤
4𝑍𝑑

= 𝛤 ′

4𝑑′
(14)

c means the gradient at the image plane. Note that the gradient of
he wavefront ∇ 𝑊 (𝑥, 𝑦) is nothing but the local angle of incidence of
c
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Fig. 6. Effect of the illumination numerical aperture on the image noise. Standard deviation of the noise as a function of the numerical aperture for grating-camera distances
a) 𝑑 = 0.5 mm, (b) 𝑑 = 1.0 mm, (c) 𝑑 = 1.5 mm, (d) 𝑑 = 3.0 mm. Each dot represents one in silico measurement. Colored areas span from the minimum to the minimum values.

Dashes lines represent 𝜎0 values calculated using Eq. (13). In (b,c,d), 𝖭𝖠0 values (Eq. (12)) are indicated by vertical dashed lines.
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the wavefront on the image plane at (𝑥, 𝑦). Thus, Eq. (14) gives the
expression of the maximum angle of incidence 𝜓c

max a wavefront can
have on the camera to be properly characterized, which we call the
incidence angle threshold (IAT). This limiting angle corresponds to a
shift of a spot by half a spot size in the interferogram (the spot size
being 𝛤 ′∕2), i.e. the situation where a bright spot of the interferogram
impinges on a neighboring spot location. Chanteloup et al. discussed
this limitation in Ref. [42]. They, however, gave an expression of the
limiting angle that differs by a factor of 4 from our result.

In practice, one rather deals with the wavefront profile at the sample
plane, not at the image plane. At the sample plane, the OPD amplitude
remains unchanged, however, the wavefront is laterally shrinked and
its gradient is thus magnified, by a factor of 𝑀 , the magnification of the
microscope. This condition yields the incidence angle threshold (IAT)
at the sample plane:

|∇𝛿𝓁|max = 𝜓 s
max = tan−1𝑀𝛤

4𝑍𝑑
(15)

To better observe the nature of the problem that arises when the
imit is reached, we conducted simulations at a specific 𝛤 value, and
ary the distance 𝑑. Results are presented in Fig. 7. The model object
as a Gaussian OPD distribution (Fig. 7a), impinging on the camera,
= 3 μm in amplitude and 0.65 mm in full-width half-maximum (at the

amera plane, so that the IAT is given by Eq. (14)). The OPD distribu-
ion is passed through the insilex algorithm to compute experimental
mages for different grating positions 𝑑 = 0.2, 1.4, 2.0, 2.2 mm. The
aximum counts on the camera has been set to a low value of 𝑤 = 200

o highlight the effect of 𝑑 on the noise. For 𝑑 = 0.2 mm, a perfect
greement is found between model and insilex calculations, but a high
oise level is also observed (Figs. 7d,e,f). In agreement with Eq. (8),
his noise is reduced upon increasing 𝑑 (Figs. 7g-o). However, at 𝑑 =
.0 mm, a small discrepancy is observed in the insilex Gaussian profile
Fig. 7k), an inaccuracy that becomes blatant at 𝑑 = 2.2 mm (Fig. 7n).
his last example corresponds to the case where the wavefront profile

ocally exceeds the IAT at some places in the image. Figs. 7l,o plot the
ncidence angle (i.e., the derivative of the OPD at the image plane)
or the two problematic cases and we can see that the problem arises
hen the wavefront derivative reaches the IAT (dashed, red lines).
hen such an issue occurs experimentally, it usually leads to 4-fold

ymmetry artifacts (Fig. 7m), aligned with the grating tilt angle 𝜃. Such
n issue typically arises upon imaging objects with sharp boundaries,

r with nanoparticles. The effect is even stronger when the surrounding

8

edium has a low refractive index (typically nano- or micro-beads in
ir). We personally encountered this issue when imaging micro-bubbles
n liquids, and, under some conditions, 1-μm dielectric beads in air
nd gold nanostructures. To lift this problem, according to Eq. (15),
ither the grating has to be put closer to the camera, or the microscope
agnification 𝑀 has to be increased to expand the wavefront on the

amera and diminish its gradient 𝜓c. Also, the numerical aperture in
etection, 𝖭𝖠obj, can be reduced to smooth the image and soften the
radients.

The quality of the OPD image reconstruction in CGM was also
tudied recently by Stolidi et al. in the X-ray spectral range [43]. The
uthors introduced a so-called confidence map, stemming from the
DCM 𝐶 defined by Eq. (10), which can tell which parts of the recon-
tructed OPD image suffer from artifacts coming from undersampling,
ike in Fig. 7m. This approach amounts to highlighting OPD derivatives
hat are close to the IAT we define in this article.

. CGM parameters optimization

The important question we shall now address in this section is how
o set all the parameters of a home-made CGM system to achieve the
ost accurate measurements. To answer this question, both Eqs. (9)

nd (15) must be considered.
First, Eq. (9) involves three sets of parameters, those related to the

ross-grating (𝜁 , 𝑑), the one related to the relay lens (𝑍), and those
elated to the camera (𝑝, 𝑁𝑖, 𝑤). Hence, this equation is important as
t represents a guide to select or design the optimal camera, relay-lens
nd cross-grating to achieve the lowest noise amplitude.

Regarding the cross-grating, 𝜁 has to be as small as possible. The
mallest possible value begin 2.73, to satisfy Nyquist criterion, as
xplained above. In practice, it ranges from 3 to 4. Regarding the
rating-camera distance 𝑑, the further the better but there exists a
radeoff as explained in Section 5. The distance must remain below a
iven value that depends on the imaged object to avoid inaccuracies.
f we consider that the distance is optimized to reach the IAT: 𝑑 =
𝛤∕4𝑍 tan𝜓 s

max, then Eq. (9) reads

0 =
𝑝 tan𝜓 s

max
2𝑀

√

log(𝑁𝑥𝑁𝑦)
𝑁im𝑤

(16)

With this new expression of 𝜎0, the grating and relay-lens parame-
ters fully disappear, and we are left only with the two important camera
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Fig. 7. Characterization of the accuracy. (a) Model Gaussian OPD distribution at the camera plane (3.9 × 3.9 mm2 area), along with a 3D rendering of the image. (b) OPD
cross-cut at the center of image (a). (c) Derivative of (b). (d,e,f) Same as (a,b,c) for an in silico experiment with a grating-camera distance of 𝑑 = 0.2 mm. (g,h,i) Same as previously
for a grating-camera distance of 𝑑 = 1.4 mm. (j,k,l) Same as previously for a grating-camera distance of 𝑑 = 2.0 mm. (m,n,o) Same as previously for a grating-camera distance of
𝑑 = 2.2 mm. The dotted lines in (e,h,k,n) recall the model cross cut (b). The dotted lines in (f,i,l,o) recall the model derivative cross cut (c). The red dash lines in (i,l,o) indicate
the incidence angle threshold (IAT) 𝜓c
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arameters: the pixel size 𝑝 and the full well capacity 𝑤. More precisely,
he only physical quantity that matters, according to Eq. (16), is the
atio 𝑝∕

√

𝑤 that should be as small as possible. In other words, the
atio

= 𝑤
𝑝2

(17)

ust be chosen as large as possible. Interestingly, this ratio 𝜌 is the
aximum areal charge density that the camera sensor can hold. Nat-
rally, this number is quite constant from one camera to another,
ecause the quantity of photoelectron 𝑤 a camera dexel can contain is
oughly proportional to its area 𝑝2. This value lies in the range of 300
o 1200 e−∕ μm2 for common scientific cameras. As a consequence, the
hoice of the camera is not of primary importance to achieve precise
easurements. Any low cost camera should already yield acceptable
easurements in CGM, provided the highest dynamic range of the

amera is selected (12-bit, 16-bit, . . . ) to actually benefit from the full
ell capacity.

A camera feature that is indirectly involved in Eqs. (8), (9) and (16)
s the frame rate 𝑓 . Indeed, large frame rates enable the acquisition of
ore images per unit of time, i.e., higher values of 𝑁im. High-speed

amera may be a means to achieve better signal to noise ratio, keeping
n mind that higher frame rate comes along with shorter exposure time
nd the use of brighter light sources to keep on benefiting from the full
ell capacity of the camera sensor. Using high illumination intensity
ay be detrimental when studying living cells.

Finally, Eqs. (15) and (16) highlights the importance of the objec-
ive magnification. Using high magnification objectives enables one to
osition the grating further from the camera, and to reduce the noise
mplitude. This is why it appears in the denominator of Eq. (16).

. Summary and perspective

In this article, we provide a numerical procedure to simulate ex-
erimental measurements in cross-grating phase microscopy (CGM).
ith such in silico experiments, it becomes possible to vary all the
9

arameters involved in CGM experiments, including those that can
ardly be varied in practice (or even cannot, with built-in systems),
uch as the camera-grating distance, grating pattern, camera pixel
ize, grating period, zoom of the relay lens, grating angle, etc. Im-
ortantly, the algorithm takes into account the noise formation of the
econstructed OPD images, the main concern to conduct challenging
GM experiments, at the limit of the state of the art, for instance for
pplication in nanophotonics, or in microbiology where the objects
f interest can be very thin, small and below the diffraction limit.
he algorithm can help saving a considerable amount time and data
torage space, by varying many parameters within numerical loops,
nstead of running actual experiments for months, in order to guide
he adjustment of a CGM setup and the effective realization of actual
xperiments.

To illustrate the interest of the algorithm, we applied it to deepen
he understanding of noise formation in CGM, and its implication in
erms of precision and trueness. In particular, we derived fundamen-
al expressions of the noise standard deviation and of the wavefront
radient limit, as a function of all the CGM parameters. However, the
ossibilities of this algorithm go much beyond. For instance, few inves-
igations have been made in the improvement of the grating pattern,
hich has remained identical for 20 years (QLSI grating), especially
ecause it would imply the expensive fabrication of a large amount of
ross-gratings, and the associated masks for photolithography. We fo-
used here on this popular QLSI pattern, but with the insilex algorithm,

one just has to modify a matrix to investigate and quantify the interest
of any new grating pattern. Also, because actual noise is reproduced,
the algorithm could be a priori used to easily build an arbitrarily large
library of images as the ground truth to train segmentation or denoising
deep-learning algorithms.
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