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Abstract
We experimentally revisite the flow down an inclined plane of dense granular suspensions, with

particles of sizes in the micron range, for which thermal fluctuations cannot be ignored. Using

confocal microscopy on a miniaturized set-up, we observe that, in contrast with standard granular

rheology, the flow profiles strongly depend on the particles size. Also, suspensions composed of small

enough particles flow at infinitesimal inclinations. From the velocity measurements, an effective

rheology is extracted in terms of a friction coefficient as a fonction of the dimensionless shear rate

(the viscous number), and of the particle pressure normalized by the thermal pressure. Inspired

by a previous work [1], a phenomenological model based on the sum of a thermal contribution

describing the glass transition and an athermal contribution capturing the jamming transition is

developed, which reproduces well the experimental observations. The model predicts the existence

of a glassy friction angle lower than the granular athermal friction angle, a signature of the glass

transition in the framework of a pressure imposed rheology.
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Suspensions composed of large enough particles, so that thermal fluctuations can be

ignored, are called granular suspensions. When flowing at constant packing fraction φ, and

as long as inertia is neglected and the particles interact only via hydrodynamic forces and

simple Coulombian solids contacts, they obey a Newtonian rheology. The shear stress σ

and the normal granular stress Π are proportional to the shear rate γ̇ (the only timescale

in the problem), and the shear and normal viscosities ηs(φ) and ηn(φ) are function of the

volume fraction, which diverge at the jamming transition, when φ approaches the maximum

volume fraction φJ [2–5]. An alternative description consists in considering the rheology at

constant imposed granular pressure Π, φ being free to adjust [6, 7], a situation typically

encountered in avalanche flows under gravity. Within this framework, the constitutive laws

are given by the friction coefficient µ = σ/Π and the volume fraction φ as unique functions

of the so-called viscous number J = ηsγ̇/Π [8], where ηs is the viscosity of the suspending

fluid [4, 5]. The jamming transition occurs in the limit of vanishing J , where the packing

fraction reaches φJ and µ converges to a finite value µJ . The latter denotes the existence of

an angle of repose θJ = tan−1(µJ), below which the suspension does not flow under gravity.

For frictionless spherical particles, as those considered in this paper, the jamming packing

fraction is φJ ' 0.64 while the jamming friction coefficient is µJ ' 0.1, corresponding to a

pile angle θJ ' 5− 6◦ [9].

Suspensions composed of small particles, the dynamics of which is sensitive to thermal

fluctuations, are called Brownian suspensions. Thermal fluctuations introduce an additional

timescale, whose comparison with the shear rate defines the Péclet number and therefore

modifies the dimensional analysis underlying the above description [10, 11]. Dense Brownian

suspensions exhibit a glass transition at a packing fractions φ ∼ φG [12], which is marked

by a divergence, or if not, a very sharp increase of the structural relaxation time of the

suspension. This induces a divergence of the viscosity of the suspension and the emergence

of a thermal yield stress when φ is greater than φG [13, 14].

Despite the similarity of the flowing properties of granular and Brownian suspensions, it

has been shown that both the glass and jamming physics impact the flow curves over distinct

stress scales and time scales [1]. Eventually, a simple additive model, where the shear stress

is the sum of the glass and jamming contributions, was shown to capture both numerical

and experimental data of a variety of dense suspensions flowing at imposed volume fraction

in the thermal crossover [1, 15].
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However, we are still lacking a complete description of the flow of Brownian suspensions

when the granular pressure is imposed rather than the packing fraction, a situation of signifi-

cant interest for flow and transport of colloids or agitated particles under gravity [16–19]. The

presence of thermal agitation introduces an additional dimensionless number Π̃ = Πd3/kBT

comparing the confining pressure to a thermal pressure, with d the particle diameter, kB the

Boltzmann constant and T the absolute temperature. The rheology is then expected to be

described by a friction coefficient µ = µ(J, Π̃) and a volume fraction φ = φ(J, Π̃) function of

both J and Π̃. Numerically, Trulsson et al [10] used discrete element simulations to study

the pressured imposed rheology of thermal suspensions and have shown that it is analogous

to soft athermal particles, in which a soft repulsive interaction mimic the random thermal

force, except at low Péclet number. Using Brownian particle simulation Wang and Brady

[11] have studied in details the pressure imposed rheology and measured the µ(J, Π̃) and

φ(J, Π̃) laws. They have shown that the critical friction coefficient in the quasi-static regime

is affected by the thermal agitation and drops to zero for strong agitation. Experimentally,

avalanche flows of micrometer sized particles in rotating drums have been studied [18], show-

ing that for small enough grains the avalanche does not stop at a finite repose angle, as it

does for granular suspensions, but slowly creeps until the pile free surface becomes horizon-

tal. This transition towards a vanishingly small pile angle remains largely unexplored and

the possible link between the observed creep and the glassy dynamics remains elusive.

In the present work we bring experimental and theoretical evidences for the transition

between thermal and athermal suspensions. To do so, we experimentally study the flow

of a layer of micrometer sized particles down an inclined plane, a classical configuration

investigated in the granular regime [3, 20, 21]. The main advantage of this configuration is

that steady uniform flows are easily achieved, where the friction coefficient and the granular

pressure distribution are known, enabling the extraction of the rheology. We use confocal

microscopy to access the velocity profiles in a steady flow regime. By changing the size of the

particles, we investigate the role of thermal agitation on the velocity profile and rheology,

showing that the friction coefficient vanishes for sufficiently small grains. To describe the

results, a generalized granular rheology in the presence of thermal fluctuations is derived in

terms of the two laws µ(J, Π̃) and φ(J, Π̃), by extending to the normal stress the additive

model proposed for the shear stress by Ikeda et al [15]. The prediction of the model is

compared to the experiments and previous numerical simulations [11].

3



g

X

Z

θ
µm

25 µm

X
Y Z

Z

(a)

g

H(t)Z

X

Y

θ X

Z

θ

0

10

20

30

0 4 8 x104

t(s)

t/tSt

0 1 2
0

10

20

30

H

d

H

d

(c)(b)

wg

Confocal microscope + rotating stage

Granular layer preparation

g

Flow triggering 

Meas. window 

Water+DMSO+fluorescein
+silica microparticles

d = 1.66 µm
d = 2.25 µm
d = 4.33 µm

FIG. 1. Experimental protocol. a) experimental setup: the bi-disperse suspension (see Table

I) is introduced in a cell, made of a PDMS sheet (grey) sealed between a glass slide and a cover

slip (blue). The cell is fixed to a translation stage and a rotation stage on an inclined confocal

microscope, taking images a distance w = 10d from the cover slip. (b) preparation: after mixing,

the particles sediment and form a uniform layer of height H(t); inset shows H/D as a function of

the time rescaled by the Stokes time (see text). (c) inclination: at t = 0 the cell is inclined at an

angle θ and velocity profile are obtained using PIV (picture obtained for d = 2.25 µm at θ = 15◦).

Materials and Methods – The experimental setup and protocol are sketched in figure

1. To study the role of thermal fluctuations, different silica beads (Microparticles GmbH,

density ρp = 1, 850 kg·m−3) are used with a mean diameter d varying between 0.91 and 4.3
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µm. To prevent crystallization, for each mean size d, we use a suspension made of an equal

mixture of two batches of particles with slightly different sizes as indicated in the table I. To

enable confocal imaging, the particles are immersed in an index-matched liquid composed of

water, dimethylsylfoxide and fluorescein (water mass content 14–40%wt depending on the

sample), giving a suspending fluid’s density ρs = 1, 100 kg·m−3, viscosity ηs = 3.1 − 3.7

mPa·s and refractive index n = 1.42 − 1.46. It is important to emphasize that the silica

beads in water behave like frictionless particles [18, 22] due to the presence of a short-range

repulsion force of electrostatic origin between the negatively charged surfaces of the particles,

which is large enough to sustain the typical weight of the layer of particles investigated in

this study.

The cell is a long rectangular cavity moulded in PDMS, with a length 52 mm (X-

direction), a height 14 mm (Z-direction) and a thickness 1.5 mm (Y -direction), sealed

between a glass slide and a glass coverslip (Fig. 1a). The cell is fixed on a translation

stage and a rotation stage attached to an inclined confocal microscope, whose optical axis

is perpendicular to gravity. Once the cell is filled with the suspension, it is agitated to

sample d1(µm) d2(µm) d =
(
d4

1+d4
2

2

)1/4
(µm) Π̃0 symbol

1 0.83 0.98 0.91 1.26 #

2 1.53 1.76 1.66 13.9 3

3 2.12 2.36 2.25 47.7 �

4 3.97 4.62 4.33 649 O

TABLE I. Particle sizes, dimensionless weight Π̃0 = δρgd4/(kBT ), with δρ = ρp−ρs = 750 kg·m−3,

g = 9.81 m·s−2 the intensity of gravity, kBT = 4×10−21 J·K−1 and symbol for the four suspension

samples used. The mean diameter d for the bidisperse mixture is defined such that Π̃0(d) =
1
2(Π̃0(d1) + Π̃0(d2)) .

mix the suspension, before letting the particles sediment in a horizontal position (Fig. 1b).

The amount of particles in the cell is chosen such that the final thickness of the deposit is

approximately H ' 30d. The time evolution of the height of the deposit is recorded during

the sedimentation (Fig. 1b), showing that the sedimentation is finished after about twice

the Stokes’ time tSt = δρgHcelld
2/18ηs [23], where Hcell = 14 mm is the height of the cell.

Once the particles sedimented, we checked the horizontal homogeneity of the deposit along
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FIG. 2. Dynamics of the flow: (a) evolution of the layer thickness H(t), (b) the surface

velocity Us(t), and (c) the effective viscous number Jeff(t) for the suspension sample #4 at different

inclination angles θ as indicated in the legend. The yellow region corresponds to the time slot where

measurements are taken to infer the rheology.

the cell before each flow measurement (the local maximum slope of the sediment is less than

1o ). The cell is then inclined at an angle θ (Fig. 1c) and the flow of the suspension is

observed by confocal imaging at a distance w = 10d from the side wall of the cell. The flow

is recorded at regular intervals and the velocity profiles U(z, t) and the height of the deposit

H(t) are obtained from a standard PIV analysis.

Results – Once the flow starts, we monitor the height of the flowing layer, H(t), and the

surface velocity, Us(t), as a function of time (see Fig. 2a,b). Both the height of the flowing

layer and the surface velocity initially slightly increases, before continuously decreasing. We
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also compute in Fig.2c the dimensionless depth averaged shear rate characterized by the

effective viscous number Jeff(t) = 2ηsUs

HΠb
(defined as in [21]), where Πb =< φ > δρgH cos θ

is the pressure at the bottom of the layer estimated using < φ >= 0.6. We observed that

a plateau is reached after an accelerating phase, where Jeff is constant (t ∈ [103, 104]s),

ensuring quasi-steady flows. In the following all the measurements are taken and averaged

in this regime (yellow region).

In the inclined plane configuration, the ratio of the shear stress to the normal stress, i.e

the friction coefficient, is constant across the layer for steady uniform flows, being equal to

the tangent of the inclination µ = tan θ. We can then infer an effective rheology by plotting

µ as the function of the steady value of the effective viscous number Jeff = 〈Jeff(t)〉t∈[103,104]

for all experimental runs. In Fig. 3, we have systematically plotted µ(Jeff ) for different

particle sizes and inclination angles varying from 20◦ to 1.5◦, the color encoding for the

dimensionless bottom pressure Π̃b = Πbd
3/kBT . Large value of Π̃b (dark blue) corresponds

to the limit of athermal suspensions, whereas small values (red) corresponds to Brownian

suspensions. In the limit of athermal suspensions, we expect the data to collapse on a

single curve µ(Jeff ), as the viscous number is the only relevant parameter. This is the case

for the two suspensions made of the largest particles, which collapse well on the athermal

curve obtained for much larger particles (d = 25µm) by Perrin et al [21]. However, we

note that for very low values of Jeff , the friction coefficient measured with our particles is

systematically smaller than the athermal one µJ ≈ 0.09. This means that even with our

biggest particles d = 4.3µm, slow flows take place for angles below the athermal granular

angle of repose. The deviation becomes more severe when considering the two suspensions

composed of the smallest particles (green and yellow symbols). In that case, it is clear that

the rheology departs from the athermal one over the entire range of viscous number. The

friction coefficient seems to vanish when decreasing the viscous number, indicating that the

suspension flows even for infinitesimal angles, as reported for avalanches in microdrums [18].

A closer examination of the flow profiles obtained with θ respectively above and below

the granular athermal angle of repose θJ ' 5◦ confirms the above observations (Fig.4a and

b). In these figures, the dimensionless velocity profile 2ηsU(z)/HΠb is plotted as a function

of z/H, a normalisation that, for athermal systems, gives a velocity profile independent of

particle size. In contrats with this athermal prediction, we observe that for θ > θJ , the

rescale profiles depend on the particles size, with faster flow for smaller particles (Fig. 4a).
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FIG. 3. Effective rheology: The µ(Jeff) rheology curves with symbols as indicated in Table II

and color coding for Π̃b. The black dashed line indicates the rheology of an athermal suspension

obtained experimentally by Perrin et al [21]. The light colored disks are the prediction of the

additive model (see text for details); same color code as for the experimental data.

This influence of the size is even more dramatic below the angle of repose θ < θJ (Fig. 4b),

where large particles do not flow at all, whereas small particles clearly flows over the whole

thickness of the layer . For intermediate particles size, one observes a flow localized at the

top of the layer, where the pressure is weaker.

From the above experimental observation, we conclude that thermal effects promote

flows by substantially decreasing the friction coefficient compare to athermal suspensions.

For small enough particles, the critical friction coefficient in the quasi static regime van-

ishes, meaning that particles flows at any inclinations. For intermediate sizes, the friction

coefficient is below the athermal friction coefficient but remains finite for the lowest vis-

cous number reached in the experiments. In the following, we develop a theoretical model

to describe this phenomenology, based on an additivity model that takes into account the

crossover between the glass and jamming transition.
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FIG. 4. Velocity profiles: (a) experimental measurement for θ = 12◦ and (b) for θ = 3◦ for the

four suspensions; (c) and (d): corresponding predictions from the theoretical model. insets show

the corresponding volume fraction profiles. (on panel (b) and (d) the x-axis is split to zoom in the

low velocity range .

Model Rheology – Our starting point is the additive model introduced in [1] for the

shear stress, to which we add an additive model for the granular pressure in order to get

complete rheological description able to describe flow down inclined planes. The shear stress

and the granular pressure are written as follows:

σ̃(Pe, φ) =σ̃s(Pe, φ)+σ̃th(Pe, φ) + σ̃ath(Pe, φ), (1)

Π̃(Pe, φ) = Π̃th(Pe, φ) + Π̃ath(Pe, φ), (2)

where the tilda denotes stresses made dimensionless by the thermal pressure σT = kBT/d
3.
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The shear stress (eq.1) is composed of three terms [1]. The first term σ̃s(Pe, φ) = ηsγ̇/σT =

Pe/3π is the stress stemming from the background solvent, where the Péclet number is

defined as Pe = γ̇τT , with τT = 3πηsd3/kBT the thermal microscopic timescale obtained

from the Stokes’ law. The second term in eq. 1 is the thermal contribution of the particles

to the shear stress, which under the assumption of infinitely hard particles can be expressed

as the sum of a yield stress and a shear dependent stress:

σ̃th(Pe, φ)=σGY (φ)+ YG

(PeG(φ))−1+(1+pGPeαG)−1 (3)

Below the glass transition, for φ < φG, there is no yield stress and σGY (φ) = 0. The function

G(φ) = hG(φG − φ)−γG controls the rapid growth of the relaxation time on approaching

the glass transition. For small shear rate, i.e. Pe � G(φ)−1, the suspension is a simple

Newtonian fluid with σ̃th = YGG(φ)Pe. At larger Pe, σ̃th = YG (1+pGPeαG), with αG < 1,

describing the onset of the shear thinning plateau related to the slow glassy dynamics.

Above the glass transition, for φ > φG, the relaxation time, hence G(φ), is considered to be

infinite, and σ̃th = YG + σGY (φ) + YGpGPe
αG , revealing a yield stress σ̃Y = YG + σGY (φ),

with σGY (φ ≥ φG) = Y ′G(φ − φG)βG(see [1, 15] for a more detailed discussion). The last

term in eq. 1 corresponds to the athermal contribution describing the divergence when

approaching the jamming transition, and which is written in the original work of Ikeda et

al [1] as σ̃ath(Pe, φ) = YJK(φ)Pe with ad-hoc expression for K(φ). Here, we rather use the

known pressure-imposed rheology of athermal suspension [5] to relate K(φ) to the friction

coefficient µ = σ̃/Π̃ and the viscous number J = ηsγ̇/Π = Pe/3πΠ̃. We then obtain for the

athermal shear stress:

σ̃ath(Pe, φ) = µath(φ)
Jath(φ)

Pe

3π , (4)

with Jath(φ) =
(
φJ−φ
φ

)γJ and µath(φ) = µJ + bJath(φ)1/γJ from the previous work on granular

suspensions [21, 24].

To complete the rheological description, we must also propose an expression for the

granular pressure Π̃ (eq. 2). Phenomenological laws have been proposed in the literature

for studying particle migration of Brownian suspensions, where the granular pressure was

also written as a sum of a thermal and athermal contributions [25, 26]. Here, we use a

simplified expression for the thermal pressure component, which assumes a local thermal

equilibrium and neglects shear-rate dependence. The thermal pressure is then described by
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the Carnahan-Starling equation of state for hard spheres [27], modified to take into account

the divergence at the jamming transition φJ [28]:

Π̃th(Pe, φ) = 6
π

φJ
φJ − φ

1 + φ+ φ2 − 7.5φ3

(1− φ)2 . (5)

For the athermal contribution, we again rely on the known athermal rheology and derive

Π̃ath using the definition of J [4]:

Π̃ath(Pe, φ) = 1
Jath(φ)

Pe

3π . (6)

φG hG αG pG βG γG YG Y ′G φJ γJ µJ

0.575 0.03 0.3 7 0.6 2.2 0.38 0.17 0.64 2.85 0.0875

TABLE II. Parameters of the model.

Equations 1 and 2 with expressions (3-6) provide a phenomenological rheology of a sus-

pension in the thermal crossover, but are expressed considering the volume fraction φ and

Péclet number Pe as control parameters. In order to discuss the onset of thermal effects in

avalanche flows, it is useful to rewrite the rheology under pressure imposed condition, choos-

ing Π̃ and J as the control parameters. To do so, one first inverts Π̃(Pe, φ) into φ(Pe, Π̃)

and uses Pe = 3πJΠ̃ to obtain φ(J, Π̃). Then, using these last two expressions in σ̃(Pe, φ)

and Π̃(Pe, φ), one finds µ(J, Π̃).

The two constitutive laws µ(J, Π̃) and φ(J, Π̃) hence obtained are plotted as 3D surfaces

in Figs. 5a and 5b, using the model parameters given in table II. The value of φG, hG, αG,

pG, βG, γG related to the thermal stress are fixed according to Ikeda et al [1, 15]. The values

of φJ , γJ and µJ are chosen to match the pressure imposed rheology of athermal frictionless

particles [21, 24]. Parameters YG and Y ′G are less constrained in [1, 15] and will be fixed to

values giving the best fit with the numerical data from Wang and Brady [11], as discussed

later in the paper.

Fig. 5c, (resp. Fig. 5d), shows how the friction coefficient µ varies as a function of J

for different Π̃, (resp. µ as a function of Π̃ for different J). In the limit of large Π̃, i.e

large confining pressure or low temperature, one recovers the athermal behavior and when

J → 0, φ converges to φJ = 0.64 and µ to µJ = 0.0875 (see table II). When introducing

thermal effects by decreasing Π̃, the volume fraction φ simply decreases and for small values

11



FIG. 5. Pressure imposed rheology from the theoretical model: (a) φ(J, Π̃) and (b) µ(J, Π̃)

color coded by Π̃. (c) µ as a function of J for different values of Π̃; (d) µ as a function of Π̃ for

different J . The red curve is µJ=0(Π̃) (see text).

of Π̃ reaches the limiting value provided by the equilibrium equation of state in absence

of flow given by the relation Π̃th(φ) (eq. 5). The role of thermal effects on the friction

coefficient µ is more complex. In Fig. 5c, we observe that decreasing Π̃ decreases the

friction coefficient, but that the behavior of µ when J goes to zero is non trivial, with the

emergence of an intermediate plateau below the athermal value µJ , and a sudden jump to

zero when increasing thermal effects.

To better understand this transition, we focus on the behavior of the quasi-static friction

coefficient µJ=0(Π̃) plotted as red curve in Fig. 5d. This friction coefficient reduces to the

ratio of the thermal stresses only, σ̃th/Π̃th, because in the limit J = 0, the Péclet number

is null (since Pe = 3πJΠ̃) and athermal stresses vanishes (see eq. 4-6). Below the glass

transition corresponding to a critical pressure Π̃G = Π̃th(φG) = 28.72, the thermal shear

12



stress for J = 0 is zero (no yield stress) while the pressure remains finite. Therefore,

the quasi-static friction coefficient is null, µJ=0(Π̃) = 0, and the suspension flows under

infinitesimal shear stress. Above Π̃G, an analytical expression can be derived for µJ=0(Π̃).

Approximating the thermal pressure above the glass transition by Π̃th ' 2.6/(φJ − φ) (i.e.

taking φ ' 0.6 for the non-diverging term in the Carnahan-Starling expression) and using

σ̃th(Pe = 0, φ) = YG + Y ′G(φ− φG)βG (eq. 3), one obtains:

µJ=0(Π̃) = YG

Π̃
+ Y ′G

2.6(1−βG)

(
1

Π̃G

− 1
Π̃

)
. (7)

This expression shows that for Π̃ = Π̃G, the friction coefficient jumps to a finite value

given by µG = µJ=0(Π̃G) = YG/Π̃G = 0.013, corresponding to a pile angle of 0.74. The jump

is simply related to the appearance of a finite yield-stress above the glass transition while the

pressure remains continuous. Interestingly, the equilibrium pressure at the glass transition

sets the characteristic of the transition (Π̃G, µG) between suspensions with and without

a finite critical friction coefficient. When further increasing Π̃, the quasi-static friction

coefficient increases and tends to a constant µ̂J = µJ=0(Π̃ → ∞) = Y ′G/(2.6(1−βG)Π̃G).

Using the parameters of table II one get µ̂J = 0.064, corresponding to an angle θ̂J =

tan−1(µ̂J) = 3.7◦, lower than the athermal value θJ = tan−1(µJ) = 5◦. In other words, our

model predicts that µJ = lim
J→0

µ(J, Π̃→∞) and µ̂J = lim
Π̃→∞

µ(J → 0, Π̃) differ: the athermal

limit is singular, which reflects the existence of both a glass and a jamming transition. At

any given pressure above Π̃G, the rheology predicts that a slow flow activated by the thermal

fluctuations takes place for µ̂J < µ < µJ but not for µ < µ̂J . The consequence of this non

trivial prediction for avalanche flows is that a slow creep is expected to occur below the

athermal friction angle θJ = tan−1(µJ), but that it will stop at a lower finite angle θ̂J .

We conclude this discussion of the model by discussing the role of the glass yield stress

parameters YG and Y ′G. Whereas YG controls the value of the friction coefficient at the glass

transition µG, Y ′G controls µ̂J . Depending on the choice of these parameters, situations where

µ̂J or µG is greater than µJ can a priori occur. However, this situation gives rise to non

monotonic variation of the friction law, with the appearance of thermally driven hysteresis,

not observed in simulations [11] or in rotating drum experiments [18]. This shows that

the choice of the yield stress parameters considerably modify the shape of the friction law

µ(J, Π̃), while they do not qualitatively affect the shape of σ(Pe, φ) curves [15]. The pressure

imposed configuration thus provides an interesting approach to access these key parameters
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in (a) and (b), the color codes for Πa3/kBT = Π̃/8, where a = d/2 is the particle radius.

of the glass transition.

Comparison with numerical simulations and experiments – We now validate the

model against numerical and experimental data. First, we compare in Fig. 6 our data

with the discrete element Brownian simulations done by Wang and Brady (figure 2 in [11]).

Fig. 6a and 6c (resp. Fig. 6b and d), shows µ(J) (resp. µ(φ)) for different Π̃ obtained in

simulation and predicted by our model. For the set of parameters of table II, the agreement

is excellent.

We next used the phenomenological additive rheology to compute the steady uniform

flow down an inclined plane and compare with our experiments. To do so, we integrate the

momentum balance equations ∂σ̃/∂z̃ + Π̃0φ sin θ = 0 and ∂Π̃/∂z̃ + Π̃0φ cos θ = 0, where

z̃ = z/d and Π̃0 = δρgd4/kBT , using the constitutive law eqs. (1,2). This requires a non
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straightforward inversion of the constitutive law, which is detailed in the Supplementary

Material. The predicted velocity profiles using this procedure are plotted in Fig. 4c and

4d. Qualitatively, the predicted behavior is similar to the one observed experimentally.

However, whereas the case below the athermal repose angle θ = 3◦ < θJ (Fig. 4b and 4d) is

quantitatively captured by the model, for θ = 12◦ > θJ (Fig. 4b and d) a factor two exists

between the predicted velocity and the measured one. This discrepancy may come from side

wall effects or non local effect present in the experiments and not taken into account in the

model. The model also gives access to the packing fraction profile (inset of Fig. 4b and 4d),

showing that thermal effects induce significant density gradient close to the interface, an

effect similar to the Perrin equilibrium density distribution [29]. Similar qualitative trends

are observed in the experiments but we have not been able to perform quantitative volume

fraction measurements, due to light inhomogeneity. From the computed velocity profiles,

we can compute the effective viscous number Jeff as in the experiments, and compared

the predicted (light color disks) and experimental (plain color symbols) effective rheology

µ(Jeff , Π̃b) (Fig. 3). The agreement is remarkably good considering the assumptions made

in the additive model.

Conclusion – In this paper, we have revisited the classical configuration of granular

flows on an inclined plane for microscopic particles, in a regime where thermal effects start

to play a role. Using a confocal inclined microscope combined with miniaturized set-up, we

were able to experimentally extract an effective pressure imposed rheology from the velocity

profile measurements. By varying the particles size, we were able experimentally to control

the dimensionless parameter that controls thermal agitation in this configuration, i.e. the

ratio of the particle pressure due to gravity to the thermal pressure: Π̃ = Πd3/kBT . At high

agitation (low Π̃), we found that the material flows for infinitely small slopes, meaning that

the macroscopic friction coefficient vanishes, whereas at small agitation (high Π̃), we recover

the athermal behavior with a finite repose angle given by the friction coefficient at the

jamming transition µJ ' 0.1 for athermal frictionless spheres. Inspired by Ikeda et al [1], we

developed a phenomenological model based on the sum of a thermal contribution describing

the glass transition and an athermal contribution capturing the jamming transition, which

provides the pressure imposed constitutive law for thermally agitated granular media µ(J, Π̃)

and φ(J, Π̃). The model reproduces well the experimental observations. A major prediction

of the model is that the quasi-static friction coefficient when decreasing the thermal activity
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(increasing Π̃) suddenly jumps from zero to a finite value when crossing the glass transition,

and tends to a value below the athermal angle of friction. Therefore, the signature of the

glass transition in the framework of a pressure imposed rheology is the appearance of a

glassy friction angle whose value is distinct from the jamming friction angle. Characterizing

experimentally this hypothetical glassy friction angle is a challenge. A possibility would be

to study the relaxation of weakly Brownian heaps over very long periods of time and check

whether the pile eventually stops at a finite angle below the athermal angle. Beyond the

question of the threshold, our model provides the rheology of Brownian granular media in

the full range of viscous number and can thus be used to predict flow in other configurations

such as avalanches in rotating drums or flow in silos.

[1] A. Ikeda, L. Berthier, and P. Sollich, “Unified study of glass and jamming rheology in soft

particle systems,” Phys. Rev. Lett. 109, 018301 (2012).

[2] M. M. Denn and J. F. Morris, “Rheology of non-brownian suspensions,” Annu. Rev. Chem.

Biomol. Eng. 5, 203–228 (2014).

[3] C. Bonnoit, T. Darnige, E. Clement, and A. Lindner, “Inclined plane rheometry of a dense

granular suspension,” J. Rheol. 54, 65–79 (2010).

[4] F. Boyer, E. Guazzelli, and O. Pouliquen, “Unifying Suspension and Granular Rheology,”

Phys. Rev. Lett. 107, 188301 (2011).

[5] E. Guazzelli and O. Pouliquen, “Rheology of dense granular suspensions,” J. Fluid Mech. 852

(2018).

[6] P. Jop, Y. Forterre, and O. Pouliquen, “A constitutive law for dense granular flows,” Nature

441, 727–730 (2006).

[7] Y. Forterre and O. Pouliquen, “Flows of dense granular media,” Annu. Rev. Fluid Mech. 40,

1–24 (2008).

[8] C. Cassar, M. Nicolas, and O. Pouliquen, “Submarine granular flows down inclined planes,”

Phys. fluids 17, 103301 (2005).

[9] P.E. Peyneau and J.N. Roux, “Frictionless bead packs have macroscopic friction, but no

dilatancy,” Phys. Rev. E 78, 011307 (2008).

[10] M. Trulsson, M. Bouzid, J. Kurchan, E. Clément, P. Claudin, and B. Andreotti, “Athermal

16



analogue of sheared dense brownian suspensions,” Europhys. Lett. 111, 18001 (2015).

[11] M. Wang and J. F. Brady, “Constant stress and pressure rheology of colloidal suspensions,”

Phys. Rev. Lett. 115, 158301 (2015).

[12] P. N. Pusey and W. van Megen, “Phase behaviour of concentrated suspensions of nearly hard

colloidal spheres,” Nature 320, 340–342 (1986).

[13] Z. Cheng, J. Zhu, P. M. Chaikin, S. Phan, and W. B. Russel, “Nature of the divergence in

low shear viscosity of colloidal hard-sphere dispersions,” Phys. Rev. E 65, 041405 (2002).

[14] M. Siebenbürger, M. Fuchs, H. Winter, and M. Ballauff, “Viscoelasticity and shear flow of

concentrated, noncrystallizing colloidal suspensions: Comparison with mode-coupling theory,”

J. Rheology 53, 707–726 (2009).

[15] A. Ikeda, L. Berthier, and P. Sollich, “Disentangling glass and jamming physics in the rheology

of soft materials,” Soft Matter 9, 7669–7683 (2013).

[16] A. Peshkov, P. Claudin, and B. Clément, E.and Andreotti, “Active dry granular flows: Rhe-

ology and rigidity transitions,” Europhys. Lett. 116, 14001 (2016).
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