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Abstract  

Purpose: AI brain tumour segmentation and brain extraction algorithms promise better 

diagnostic and follow-up of brain tumours in adults. The development of such tools for 

paediatric populations is restricted by limited training data but careful adaption of adult 

algorithms to paediatric population might be a solution. Here, we aim exploring the 

transferability of algorithms for brain (HD-BET) and tumour segmentation (HD-GLIOMA) in 

adults to paediatric imaging studies.  

Method: In a retrospective cohort, we compared automated segmentation with expert 

masks. We used the dice coefficient for evaluating the similarity and multivariate regressions 

for the influence of covariates. We explored the feasibility of automatic tumor classification 

based on diffusion data.  

Results: In 42 patients (mean age 7 years, 9 below 2 years, 26 males), segmentation was 

excellent for brain extraction (mean dice 0.99, range 0.85-1), moderate for segmentation of 

contrast-enhancing tumours (mean dice 0.67, range 0-1), and weak for non-enhancing T2-

signal abnormalities (mean dice 0.41). Precision was better for enhancing tumour parts 

(p<0.001) and for malignant histology (p=0.006 and p=0.012) but independent from 

myelinisation as indicated by the age (p=0.472). Automated tumour grading based on mean 

diffusivity (MD) values from automated masks was good (AUC=0.86) but tended to be less 

accurate than MD values from expert masks (AUC=1, p=0.208).  

Conclusion: HD-BET provides a reliable extraction of the paediatric brain. HD-GLIOMA 

works moderately for contrast-enhancing tumours parts. Without optimization, brain tumor AI 

algorithms trained on adults and used on paediatric patients may yield acceptable results 

depending on the clinical scenario. 
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Introduction 

Paediatric tumours of the central nervous system are the second leading cause of childhood 

cancer and the leading cause of death from solid tumours in those younger than 19 years[1]. 

The standard treatment strategy for paediatric tumours is often a mixed approach combining 

surgical resection possibly followed by radiotherapy and chemotherapy. Prognosis is 

associated with complete resection of the primary tumour[2]. Optimisation and 

standardisation of diagnosis, grading and follow-up are needed to improve and individualise 

treatments[3,4]. From a conceptual point of view, increasing the precision of imaging-based 

diagnosis and prognosis before biopsy or surgery would be very helpful in a complex and 

difficult care situation.  

Automatic tumour segmentation would democratise the use of volumetric measurement to 

standardise the assessment of therapeutic response[5], and have many other uses such as 

pre-interventional feature extraction, multidimensional analysis, and classification for many 

applications[6]. Thanks to the continuous increase in computing power, the last few years 

have seen the emergence of deep learning, which seems to be the best approach for 

automatic segmentation and classification[7]. However, there are many methodological 

issues in creating and evaluating these algorithms. Several limitations can be attributed to 

one essential problem: lack of available image data for training and testing of AI algorithms. 

Large data sets with high-quality images and annotations are essential for supervised 

training, validation, and testing of AI algorithms, especially with external data set[8]. This is 

problematic for rare diseases like paediatric tumours of the central nervous system which 

shows an important imaging pattern variability, making it even more difficult to create 

sufficient databases to develop an AI algorithm. In addition, motion artifacts are frequent 

in the pediatric population, resulting in a higher exclusion rate for poor image quality 



  

 

   

 

than in adults. Segmentation also presents a challenge in infants and newborns due to 

volume changes and myelination processes related to brain development[9]. 

Recently, easy to use automatic tumour segmentation and brain extraction algorithms, “HD-

GLIOMA”[10] and “HD-BET”[11] (github.com/neuroAI-HD) have been developed and 

validated. HD-GLIOMA allows a standardized follow-up of adult brain tumours and a better 

evaluation of the therapeutic response than the response assessment in neuro-oncology 

(RANO) criteria[12]. However, this algorithm was trained on an adult database and only on 

glial tumours. Given the problems for AI development in children, simply transferring an 

algorithm developed in adults seems conceptually challenging. However, given the lack of 

large data sets, even a use with some restrictions on performance could be an opportunity 

for rare diseases. 

Here, we aimed exploring the value of the two segmentation algorithms on a heterogeneous 

paediatric tumour population. We hypothesized that segmentation performance might be less 

precise but sufficient for proofing feasibility of this alternative approach.  

 

Methods 

Participants 

We retrospectively screened our clinical database of paediatric brain tumours from May 2015 

to January 2020 that had a complete MRI pre-treatment examination with T1, T2, FLAIR and 

T1 post contrast (T1PC) sequences. The study was approved by the local review board 

(RGPD/AP-HM). The histological diagnosis was known for each case. Tumours were listed 

according to the 2016 World Health Organization (WHO) classification of central nervous 

system tumours[13]. 



  

 

   

 

Image acquisition 

MRI were performed on a 1.5T system (Aera, Siemens, Erlangen, Germany) using a 20-

channel head coil and on a 3T system (Skyra, Siemens, Erlangen, Germany) using a 32-

channel head coil. The MRI included standard sequences for brain tumours: 2D sagittalT1-

weighted, axial T2-weighted, 2D coronal or 3D Fluid-Attenuated Inversion Recovery (FLAIR), 

axial gradient echo T2, diffusion weighted imaging and Gadolinium- enhanced three-

dimensional MPRAGE (Magnetization Prepared - Rapid Gradient Echo) T1. 

Image processing 

Images were processed with the functional imaging software library (FSL, version 5.0, 

www.fmrib.ox.ac.uk). Images were reoriented to standard MNI space and T1, T2 and FLAIR 

images were registered to the T1PC image. First, we used HD-BET to perform brain 

extraction (BET) on all four sequences. In addition, we computed brain masks from FSL 

BET[14] (all sequences) and ROBEX [15] (only on T1) for comparison. In a second step, we 

performed tumour segmentation with HD-GLIOMA which is based on the four classic 

anatomical images T1, T2, FLAIR and T1PC. We compared the result of the automated 

segmentation with manual expert masks for the brain and correspondingly for contrast-

enhancing tumours (CE) and non-enhancing T2-signal abnormalities (NE) parts. All expert 

masks were generated on FSL by a radiology resident with 5 years of experience and 

checked by a neuroradiologist with 10 years of experience. Moreover, a post-AI quality check 

was performed to determine the efficiency of the HD-GLIOMA segmentation using a rating 

scale (good, moderate, poor, and completely wrong) and to check for lesions not seen by 

radiologists. In addition to the validation of the tumour masks and to explore the feasibility of 

this approach for automated feature extraction and classification, we extracted in a final step 

mean diffusivity (MD) values from the different expert and HD-GLIOMA segmentations. To 

follow this aim, we used non-linear registration between T1PC and the B0 image to transform 

all masks into the diffusion space. 



  

 

   

 

Statistics 

Besides descriptive statistics of the cohort, we computed dice coefficients between the 

different masks and the manual reference masks. The dice similarity coefficient is a standard 

measure to report the performance of a segmentation and measures the extent of spatial 

overlap between two binary segmentation masks[16]. The dice similarity coefficient is defined 

as twice the size of the intersection between the two masks normalised by the sum of their 

volumes. The dice coefficient can range between 0 (no overlap) and 1 (perfect agreement). 

We used multivariate linear models for comparison of dice coefficients and the role of 

covariates: age (0-2 vs >2 years as an indicator of MRI signal changes related to 

myelinisation), localisation (supra vs infratentorial), grading (high vs low) and field strength 

(1.5 vs 3T). The correlation between MD values was explored with Pearson’s correlation 

coefficient r. To explore the accuracy of extracted MD values for tumour classification (low- 

vs high-grade) we applied ROC analyses and computed AUC values. ROC curves for HD-

GLIOMA and expert masks were compared with bootstrapping. All analyses were performed 

with Statistics in R v4.0.3. P-values below 0.05 were considered as statistically significant. 

Results 

Patients 

We included 42 paediatric patients with a mean age of 6.8 years ±5 [standard deviation] 

(range 7 months to 17 years) and 26 males (60%). Demographic data is summarized in table 

1. Most tumours were high grade tumours (e.g., glioblastoma and medulloblastoma) and they 

were more often located infratentorially. We defined the following sub-groups based on 

histology and biological appearance: paediatric-type glial/glioneuronal tumours (n=12), 

embryonal tumours (n=13), ependymal tumours (n=5), diffuse astrocytic and oligodendroglial 

tumours (n=13). Imaging patterns were highly variable including completely enhanced or 

completely non-enhanced tumors and diffuse to well delineated boundaries. 



  

 

   

 

Table 1: Patient Characteristics 

Total number of patients N = 42 
Age years mean (sd) 6.8 (4.9) 
Age groups n (%)  
 0 - 2 years 9 (21.4%) 
 >2 years 33 (78.6%) 
Sex n (%)  
 Female 17 (40.4%) 
 Male 25 (59.5%) 
Localization n (%)  
 Infratentorial  25 (59.5%) 
 Supratentorial 17 (40.4%) 
Histology  
Diffuse astrocytic and oligodendroglial tumours 12 (28.6%) 
                  Unclassable malignant glioma 2 
                  Glioblastoma 3 
                  Pleiomorphic xanthoastrocytoma  1 
                  Diffuse midline glioma 6 
Embryonal tumours 13 (31.0%) 
                 Pinealoblastoma 1 
                 Medulloblastoma 8 
                 Atypical teratoid rhabdoide tumor 2 
                 Germinoma 1 
                 Immature teratoma 1 
Ependymal tumours 5 (11.9%) 
                 Anaplastic ependymoma 5 
Paediatric-type glial / glioneuronal tumours 12 (28.6%) 

                 Pilocytic astrocytoma 8 

                 Glioneuronal Tumour 2 

                 DNET 1 

                 Pilomyxoïd astrocytoma  1 

WHO Grade n (%)  
 I 10 (23.8 %) 
 II 1 (2.4 %) 
 III 6 (14.3 %) 
 IV 21 (50.0%) 
 unclassified 4 (9.5%) 
Field strength MRI n (%)  
  1.5 Tesla 21 (50.0%) 
  3.0 Tesla 21 (50.0%) 
 

 



  

 

   

 

Brain extraction 

Table 2 and Figure 1 summarise the comparison of different BET algorithms with the expert 

masks. Over all sequences, HDBET performed best with a mean dice coefficient of 0.99 

(range 0.85 – 1), followed by ROBEX (only T1, mean 0.96; range 0.91 - 0.98) and FSLBET 

(mean 0.86; range 0.45 – 0.98). The multivariate model revealed that for all BET algorithms 

performance was better for FLAIR images (beta = 0.05, p < 0.001) if compared to the BET 

segmentations on T1PC. Performance was similar for T2 images (beta = 0.01, p = 0.623) 

and worse on the precontrast 2D T1 (beta = -0.04; p < 0.001). Tumour location (p = 0.385), 

WHO grading (p = 0.165), and MRI field strength (p = 0.793) were not associated with the 

dice coefficient. Moreover, brain segmentation quality was independent from the age of the 

patient (age 0-2 vs >2 years: beta = -0.02; p=0.153). 

 

Table 2: Comparison of brain extraction tools with expert masks 

Sequence Method Dice 

  mean sd median min max 

T1 FSLBET 0.78 0.13 0.75 0.54 0.96 

 HDBET 0.99 0.01 0.99 0.96 1 

 ROBEX 0.96 0.02 0.97 0.91 0.98 

T2 FSLBET 0.86 0.09 0.89 0.63 0.95 

 HDBET 0.98 0.03 0.99 0.85 1 

FLAIR FSLBET 0.94 0.05 0.95 0.77 0.98 

 HDBET 0.99 0.01 1 0.96 1 

T1PC FSLBET 0.85 0.14 0.90 0.44 0.98 

 HDBET 0.99 0.01 1 0.98 10 

 

 

Tumour segmentation 

Results for the tumour segmentation with HD-GLIOMA are summarised in Figure 2. We 

observed a moderate agreement between automated and expert masks, such as the mean 



  

 

   

 

dice coefficient was 0.67 (median 0.78, range 0 - 1) for enhancing tumour parts (Figure 2A). 

HD-GLIOMA segmentation of T2 signal abnormalities, i.e., non-enhancing tissular 

components was less accurate (Figure 2B) compared to the enhancing tumour parts (beta = 

-0.26; p < 0.001). HD-GLIOMA segmented the T2 abnormalities with a mean dice coefficient 

of 0.42 (median 0.45, range 0 - 1). Moreover, supratentorial localisation reduced the dice 

coefficient (beta = -0.29; p < 0.001). In line with better abilities to detect enhancing tumour 

parts, the algorithm tended to perform better in grade III and IV tumours than in low grade 

tumours (beta = 0.32; p = 0.081). Moreover, the algorithm performed worse for embryonal 

(beta = -0.29; p = 0.006) and ependymal tumours (beta = -0.33; p = 0.012) if compared to the 

other two histology groups. Magnetic field strength seems to have no major influence on the 

accuracy of the algorithm (p = 0.176). Importantly, we observed no difference between the 

two age groups (0-2 vs >2 years; p = 0.472). 

Visual inspection (Table 3) of the CE segmentation revealed a good quality in 30 patients 

(71.4%) while the algorithm completely failed in 4 patients (9.5 %). Results for non-

enhancing T2 abnormalities were clearly worse with only 11 (26.2%) good segmentations, 

and completely wrong masks in 15 patients (35.7%). Figure 3 shows some examples of 

segmentation errors. The algorithm revealed no tumor parts not detected by the radiologist. 

 

Table 3: Quality of HD-GLIOMA Segmentation 

 good moderate poor completely wrong 

CE 30 (66.7%) 6 (14.3%) 2 (4.8%) 4 (9.3%) 

T2 abnormalities 11 (26.2%) 8 (19.0%) 8 (19.0%) 15 (35.7%) 

 

Feasibility 

Finally, we were interested to proof the feasibility of our approach by applying the automated 

pipeline to classify tumour grading (low vs high) based on MD. We extracted MD values from 

expert and HD-GLIOMA segmentations. While the correlation of values was very good for 



  

 

   

 

CE segmentations (r = 0.79, p < 0.001, Figure 4A), we observed no correlation for non-

enhancing tumour parts (r = 0.07, p = 0.68, Figure 4B). However, the ability to classify low- 

and high-grade tumours based on MD values from automated CE masks was good (AUC = 

0.863) but seems to be less accurate than a classification based on expert masks (AUC = 1, 

p = 0.208) (Figure 4C). The best of cut-off value for grading was a MD value of 1.4 10-3 

mm2/s for both masks. For the classification of tumours based on non-enhancing tumour 

masks, extracted values from HD-GLIOMA segmentation (AUC = 0.773, cut-off = 1.2 10-3 

mm2/s) performed not significantly different than the expert masks (AUC = 0.644, cut-off = 

1.3 10-3 mm2/s, p = 0.47, Figure 4D). 

  



  

 

   

 

Discussion 

Borrowing strength from large datasets is an interesting but controversial approach to benefit 

from the advantages of AI for rare diseases in clinical practice. Here, we challenged an 

automatic MRI brain extraction algorithm (HD-BET) and an automated tumour segmentation 

(HD-GLIOMA) trained on an adult population in an heterogenous real-life cohort of paediatric 

brain tumours. While we observed an excellent performance for brain extraction, tumour 

segmentation showed less impressive results with lower performance mainly for non-

enhancing parts of the tumours. However, the feasibility of the segmentation and its putative 

clinical value could be illustrated by distinguishing between low- and high-grade tumours 

based on the diffusion sequence. This approach seems interesting to provide future support 

to radiologists in clinical practice but without optimization, algorithms trained for brain tumor 

detection on an adult population are not easily transferable to pediatric patients. 

Brain extraction with HD- BET was fast, reliable and robust for different weighted images in 

2D and 3D planes and in the presence of pathology and in line with previous studies[11,17]. 

Tumour segmentation with HD-GLIOMA showed lower performance in our paediatric cohort 

than in the original adult cohort [10] with consistent results, both on a visual rating scale and 

the dice coefficients. The results are not unexpected and conceptually bound to the 

challenging design of our study: For example, a hydrocephalus leading to periventricular 

hyperintensities on FLAIR and T2 weighted images mislead the algorithm for non-enhancing 

tumour parts. Hydrocephalus is more frequent in paediatric brain tumours than in adults[18] 

because of the preferential location of lesions in the posterior fossa. In addition, we observed 

a lack of distinction between peri-lesional oedema and the NE of the tumour in some cases. 

Glial peri-lesional oedema cannot be differentiated from tumour infiltration based on 

morphological imaging data alone[19] While this differentiation is less important in high grade 

glioma, it becomes more relevant in other histology[20] which were common in our cohort. In 

line with the original training set, we observed the best performance of the algorithm in the 



  

 

   

 

segmentation of high-grade tumours indicating probably an easy use of the algorithm for 

surveillance of high-grade tumours in children. We observed more limitations for NE 

segmentation, but results were still sufficiently precise to perform a tumour grading based on 

the diffusion data, which is a rather old but reliable technique that outstands other 

approaches like perfusion imaging in the grading of paediatric brain tumour[21]. Interestingly, 

we did not observe a relevant impact of age on segmentation results. On a conceptual level, 

one might consider that algorithms trained in adult populations perform worse in young 

children below the age of two as MRI signal is related to myelinisation and thus very different 

in comparison to adults. Here, nearly one out of four patients were in this age group, but 

performance of the algorithms was not worse. 

Our study has several limitations, notably the small sample size which contrasts the high 

heterogeneity of the cohort. However, the sample size was large enough for indicating 

feasibility of the transfer concept. Moreover, the sample size allowed excluding large effects 

of conceptually import covariates including age related myelinisation and field strength. 

Moreover, the data set included only baseline MRI where a better and more precise tumour 

diagnosis might improve the counselling of patients and relatives. However, at diagnosis 

tumour histology will always be the most important information for treatment decisions and 

prognosis. Thus, even an optimized and high performing AI supported MRI diagnosis has 

probably minor impact. The importance of MRI is much higher in the post-surgical follow-up, 

where early detection of tumour recurrence and exclusion of pseudo-progression or radio-

necrosis could be improved by specialized algorithms. Based, on our results we believe that 

evaluating longitudinal data as a next step seems reasonable. Lastly, in the absence of a 

universally accepted standard, we have used DICE coefficient to evaluate the algorithms but 

other parameters may also be relevant[22]. 

Two approaches are available to improve the precision of algorithms like HD-GLIOMA for 

clinical use. A natural way to benefit from the existing algorithm would be a re-training of the 



  

 

   

 

data including adult and paediatric cases, which might increase precision without affecting 

the network architecture[23].  

In contrast, developing new algorithms in sufficiently large paediatric cohorts might be an 

opportunity but remains challenging with low prevalence rates. Very recently, Pen and al [24] 

proposed a convolutional neural network trained segmentation of brain tumours in a 

paediatric population to calculate tumour volumes with promising results (CE : dice 0.72 ; 

NE: dice : 0.72). However, their training population was more restrictive, consisting of 

posterior fossa tumours as medulloblastomas and high-grade gliomas, unlike our cohort, 

which is more representative of daily practice. Thus, even if the algorithm was trained in a 

more specific populations, expected limitations in clinical practice might be very similar if 

compared to our approach. In addition, optimized tumour segmentations are probably only 

an intermediate step. The goal of automated tumour surveillance and grading will be the 

integration with clinical decisions based on the evidence that such automated pipelines 

improve surveillance and, to that end, relevant outcomes such as disability or survival. Here, 

an extension towards automated radiomic feature extraction is an interesting opportunity[25]. 

Overall, our study design made use of a heterogenous but representative cohort of paediatric 

central nervous system tumours[1]. Our approach seems to be a cost-effective method to 

easily explore the feasibility of existing algorithms which requires fewer resources than 

developing new algorithms. 

In conclusion, brain extraction with HD-BET looks promising to paediatric populations (even 

in infants) while tumour segmentation with HD-GLIOMA needs further developed to increase 

precision. Our results indicate that, even without fine-tuning or out-of-distribution detection, 

the use of AI algorithms on rare diseases, e.g., trained on adults and used on pediatric 

patients, may yield acceptable results depending on the clinical scenario.  
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FIGURE LEGENDS 

Figure 1: Histograms and boxplots of Dice coefficients of the three BET algorithms 

compared to an expert reference mask showing an excellent performance of HDBET. 

ROBEX was only applied on T1 images. 

Figure 2: Histograms and boxplots of Dice coefficients for the two segmentations from 

HDGLIOMA compared to expert reference masks show moderate performance for CE (A) 

and poor performance for T2-abnormities (B). CE = contrast-enhancing tumour part 

Figure 3: Examples of tumour segmentation with HDGLIOMA. (A) Segmentation of good 

quality of posterior fossa tumour (glioblastoma) displayed on 3D T1 post contrast (T1PC); (B) 

Segmentation error with misclassification of transependymal resorption besides peritumoral 

oedema (medulloblastoma) illustrated on coronal FLAIR sequence; (C) False segmentation 

of peri-lesional oedema (atypical teratoid/rhabdoid tumour) displayed on T1PC; (D) 

Segmentation error due to dental metal artifact (glioblastoma) displayed on T1PC. Red = 

Contrast enhancing; Blue= non-enhancing signal abnormalities on T2 

Figure 4: Dot plots (A and B) with linear regression estimate illustrate the correlation 

between mean diffusivity values extracted from expert segmentations and HDGLIOMA 

masks, showing a very good correlation CE and no correlation with T2-abnormalities. 

Boxplots (C and D) compare mean diffusivity values extracted from the HDGLIOMA 

segmentations in low- and high-grade tumours showing a good ability for automated CE 

mask to classify low- and high-grade. CE = contrast-enhancing tumour part 
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