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Abstract: Coronavirus disease 2019 (COVID-19) is primarily caused by various forms of severe
acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) variants. COVID-19 is characterized
by hyperinflammation, oxidative stress, multi-organ injury (MOI)-like acute lung injury (ALI) and
acute respiratory distress syndrome (ARDS). Different biomarkers are used in the assessment of
COVID-19 severity including D-dimer, ferritin, lactate dehydrogenase (LDH), and hypoxia-inducible
factor (HIF). Interestingly, growth differentiation factor 15 (GDF15) has recently become a potential
biomarker correlated with the COVID-19 severity. Thus, this critical review aimed to determine the
critical association between GDF15 and COVID-19. The perfect function of GDF15 remains not well-
recognized; nevertheless, it plays a vital role in controlling cell growth, apoptosis and inflammatory
activation. Furthermore, GDF15 may act as anti-inflammatory and pro-inflammatory signaling in
diverse cardiovascular complications. Furthermore, the release of GDF15 is activated by various
growth factors and cytokines including macrophage colony-stimulating factor (M-CSF), angiotensin
II (AngII) and p53. Therefore, higher expression of GDF15 in COVID-19 might a compensatory
mechanism to stabilize and counteract dysregulated inflammatory reactions. In conclusion, GDF15
is an anti-inflammatory cytokine that could be associated with the COVID-19 severity. Increased
GDF15 could be a compensatory mechanism against hyperinflammation and exaggerated immune
response in the COVID-19. Experimental, preclinical and large-scale clinical studies are warranted in
this regard.

Keywords: COVID-19; growth differentiation factor 15; hyperinflammation; exaggerated immune
response; acute lung injury

1. Introduction

Coronavirus disease 2019 (COVID-19) is primarily caused by various forms of severe
acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) variants [1,2]. The last
SARS-CoV-2 variant was Omicron, which was declared by the World Health Organization
(WHO) on 26 November 2021 and spread to more than 136 countries [3,4]. COVID-19
is characterized by hyperinflammation, oxidative stress, multi-organ injury (MOI)-like
acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) [5,6]. COVID-19
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patients are commonly asymptomatic in most cases, reaching up to 85%. However, 15%
of COVID-19 patients may present with a moderate to severe form due to progression of
SARS-CoV-2 infection with development of ALI. In addition, 5% of COVID-19 patients
may develop a critical form due to the development of ARDS that necessities ventilator
support and mechanical ventilation [1,7].

In this state, different biomarkers are used in the assessment of COVID-19 severity
including D-dimer, ferritin, lactate dehydrogenase and hypoxia-inducible factor (HIF) [8].
Of interest, growth differentiation factor 15 (GDF15) has been recently to be a potential
biomarker correlated with COVID-19 severity [9]. Thus, the objective of the present critical
review was to find the critical association between GDF15 and COVID-19 regarding the
disease severity and clinical outcomes.

2. Growth Differentiation Factor 15

Growth differentiation factor 15 (GDF15) was first recognized as a macrophage in-
hibitory cytokine-1 (MIC) in 1990. GDF15 is belonging to the transforming growth factor-
beta (TGF-β) superfamily and is regarded as a stress-response member of TGF-β [10].
GDF15 is encoded by human chromosome 19p13.11-13.2 which was cloned in 1997 through
macrophage activation [11]. GDF15 is typically found in a low concentration, with the
exception of the placenta which highly expresses the GDF15 during pregnancy. GDF15 is
increased during pregnancy and following organ injury chiefly lung and liver [10]. Under
physiological conditions, it is highly expressed by adipocytes, skeletal, smooth and cardiac
muscle cells as well as macrophages [10].

The perfect function of GDF15 remains not well-recognized; nevertheless, it plays a
vital role in controlling cell growth, apoptosis and inflammatory activation [12]. Conse-
quently, GDF15 is observed as a prognostic biomarker in cancer, inflammatory diseases, and
cardiovascular complications [10]. Indeed, GDF15 is overexpressed in various cancer cell
types including renal, prostatic, colorectal, urothelial and melanoma [13]. GDF15 persuades
weight loss via the suppression of appetite, thus neutralizing antibodies against the GDF15
may reduce cancer-mediated cachexia [14].

Furthermore, the GDF15 may act as anti-inflammatory and pro-inflammatory signaling
in diverse cardiovascular complications. It has been reported that the p53 protein promotes
the expression of GDF15 during inflammation and oxidative stress [15]. Furthermore, the
release of GDF15 is activated by various growth factors and cytokines including TGF-
β, tumor necrosis factor (TNF)-α, interleukin-1β (IL-1β), macrophage colony-stimulating
factor (M-CSF), angiotensin II (AngII) and p53 (Figure 1) [16]. Furthermore, the endoplasmic
reticulum stress was regarded as a key factor in the expression of macrophage GDF1
through the induction saturation of free fatty acids and unfolding of protein response [17].
These findings suggest that the expression of GDF1 is expressed by various cell types under
physiological and pathological conditions.

The GDF15 was concerned with the development of different cardiometabolic dis-
orders and cancer [18]. However, recent studies showed that the GDF15 is considered a
cytokine that has an anti-inflammatory effect and increases insulin sensitivity which may
decrease body weight and ameliorate the clinical outcomes in diabetic patients [18]. In
healthy subjects, the higher expression of GDF15 reduces appetite and inflammation with
the upgrading of insulin sensitivity. Nevertheless, in chronic metabolic and inflammatory
disorders, the over-expression of GDF15 may cause desensitization of central and periph-
eral receptors of the GDF15 with subsequent elevation of GDF15 serum levels [15,16,18].
Moreover, the GDF15 has been reported to increase in various cardiometabolic and inflam-
matory disorders including heart failure and rheumatoid arthritis [19,20]. A systematic
review study that included 21 clinical studies illustrated that GDF15 serum level was re-
garded as a novel biomarker of heart failure [19]. A prospective study involving 46 patients
with rheumatoid arthritis compared to 36 matched healthy controls revealed that serum
level of GDF15 was higher in rheumatoid arthritis patients as compared to the controls [20].
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Indeed, the GDF15 activates a specific receptor called glial-derived neurotrophic factor
(GDNF) family receptor α-like (GFRAL) which is highly expressed in the brain stem to
induce taste aversion (Figure 1) [21,22]. The GFRAL receptors mediate the metabolic action
of GDF15. Dysregulation in the expression and sensitivity of GFRAL receptors may be
implicated in the pathogenesis of diabetes mellitus and obesity [22].
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Figure 1. Activation of growth differentiation factor 15 (GDF15) and its action. GDF15 is activated
by TGF-β (transforming growth factor-β), TNF-α (tumor necrosis factor-α), IL (interleukin)-1β,
M-CSF (macrophage colony-stimulating factor), AngII (angiotensin II) and p53. GDF15 stimulates
immune cells and activates glial-derived neurotrophic factor family receptor α-like (GFRAL) in the
brain. In addition, GDF15 counteracts hepcidin which increased in various viral infections including
SARS-CoV-2 due to the elevation of IL-6.

3. Growth Differentiation Factor 15 and Viral Infections

The GDF15 regulates host immune defense against various viral infections. Over-
expression of the GDF15 in the human airway facilitates replication of rhinovirus and
inflammation through inhibition of interferon gamma (INF-γ) [23]. Remarkably, the GDF15
is regarded as an inducer of sepsis tolerance through the modulation of metabolic alter-
ations in severe septic infections [24].

Thus, the overexpression of GDF15 in the airway of cigarette smoker subjects may
increase the risk of respiratory viral infections [23]. Moreover, the GDF15 serum level is
increased in different respiratory disorders including pulmonary hypertension [25] and
bronchopulmonary dysplasia [26]. Si et al. [27] illustrated that the GDF15 in hepatoma
cells increases the infectivity of hepatitis C virus (HCV). Herein, the elevation of the
GDF15 serum level may be a prognostic diagnostic biomarker for the severity of HCV
infection [27]. Likewise, the upregulation of GDF15 is correlated with severity and poor
clinical outcomes of hepatitis B virus (HBV) infection in patients with hepatocellular
carcinoma [28]. Notably, HBV and HCV promote the expression of GDF15 with subsequent
alteration of host immune response, growth, and signaling of host cells [28]. Interestingly,
the GDF15 is highly expressed in males as compared to females as it is inversely correlated
with testosterone level [29]. Recently, overexpression of anti-inflammatory GDF15 has been
found to reduce the infectivity and severity of H5N1 [30]. Despite the GDF15 role in both
viral and bacterial infections, it induces a protective effect by inducing metabolic tolerance
against infection-induced inflammation [31].

In brief, there is a conflicting controversy regarding the possible role of GDF15 in
various viral infections.
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4. Growth Differentiation Factor 15 and COVID-19

It has been shown that the GDF15 serum level is correlated with the COVID-19
severity [9]. A small size prospective study involved 58 survivor COVID-19 patients
compared to 8 non-survivor COVID-19 patients showed that a higher GDF15 serum level
was associated with higher mortality [9]. Ahmed et al. [32] confirmed that a higher GDF15
serum level was regarded as a prognostic biomarker and correlated with COVID-19 severity.
Teng et al. [33] observed that the dynamic changes in the GDF15 serum level are related
and correlated with the progression of SARS-CoV-2 infection, and could be an indicator of
the COVID-19 severity. Therefore, GDF15 serum level could be a possible diagnostic and
prognostic biomarker in severely affected COVID-19 patients.

Of interest, GDF15 could be a promoter of COVID-19 tolerance in the early phase of
SARS-CoV-2 infection to a detrimental factor in the propagation of the cytokine storm [32,34].
Thus, in virtue of the anti-inflammatory action of GDF15, recombinant GDF15 might be of
therapeutic value against the SARS-CoV-2 infection-induced hyperinflammation [32,35].
A retrospective study comprised 111 COVID-19 patients compared to 20 healthy controls
revealed that the GDF15 serum was correlated with critical patients, but decreased in
recovered COVID-19 patients at the time of discharge [33]. Pooled analysis demonstrated
that the GDF15 serum was significantly correlated with most of COVID-19 regardless of
its severity [36]. However, many studies implicated the role of GDF15 in the pathogenesis
and severity of COVID-19 [37,38]. A longitudinal study including patients with end-stage
kidney disease with/without COVID-19 revealed that GDF15 was regarded as a novel
biomarker linked with the COVID-19 severity [38].

Notably, GDF15 is induced by inflammation and oxidative stress to limit tissue injury
by its anti-inflammatory effect [39]. GDF15 acts on the immune cells to inhibit the release
of pro-inflammatory cytokines. Therefore, the GDF15 can attenuate abnormal immune
responses and prevent the associated inflammation [39]. GDF15 deficiency provokes
hepatic injury in mice through over-activation of neutrophils and T cell-induced hepatic
inflammation and fibrosis [16]. Therefore, the recombinant GDF15 could be a potential
therapeutic modality against alcohol-induced liver injury and fibrosis [40]. Furthermore,
the GDF15 prevents lipopolysaccharide-induced ALI in mice [41]. In a similar way, GDF15
serum level had been reported to be augmented in septic patients [41], which might be a
compensatory mechanism against immune dysregulation in sepsis.

Furthermore, the GDF15 was implicated in the pathogenesis of anemia by inhibiting
the expression of hepcidin. However, hypoxia and anemia activate the expression and
synthesis of GDF15 [42,43]. Lower hepcidin serum level is linked with COVID-19 severity
and mortality [44,45]. Indeed, hepcidin reduces iron absorption from the intestines, and
hepcidin expression is increased in various viral infections including SARS-CoV-2 due to
the elevation of IL-6 [46]. However, most studies revealed that hepcidin serum level was
reduced in severely affected COVID-19 patients due to the similarity between SARS-CoV-2
proteins and hepcidin [46,47]. For this reason, GDF15 could be increased to counteract
hepcidin molecular mimicry of SARS-CoV-2 proteins (Figure 1).

These observations and studies highlighted that GDF15 serum level was increased
in COVID-19 and correlated with its severity. Nonetheless, these studies did not find the
causal relationship between GDF15 and COVID-19, and how and why it increased.

5. Growth Differentiation Factor 15 and Inflammatory Pathways in COVID-19

Many inflammatory signaling pathways are concerned with the pathogenesis of
SARS-CoV-2 infection. The nod-like receptor pyrin 3 receptor (NLRP3) inflammasome is
implicated in the activation of natural killer cells and the nuclear factor kappa B (NF-κB)
signaling pathway with the release of INF-γ [48]. Suppression of NLRP3 inflammasome
may decrease exaggerated immune response-induced organ injury [48]. Over-activated
GDF15 in experimental diabetes inhibits the progression of inflammatory reaction through
inhibition of NLRP3 inflammasome (Figure 2) [49]. In addition, the GDF15 attenuates the
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progression of ALI by inhibiting sirtuin (SIRT) and NLRP3 inflammasome in the animal
model study [41].
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Figure 2. Growth differentiation factor 15 (GDF 15) and its pro-inflammatory and anti-inflammatory
signaling in COVID-19. mTOR (rapamycin) pathway, ACE2 (angiotensin-converting enzyme 2),
AngII (angiotensin II), p38 mitogen-activated protein kinase (p38MAPK), ALI (acute lung injury), NK
cells (natural killer cells), nuclear factor kappa B (NF-κB) and interferon-gamma (INF-γ).

Notably, the NF-κB signaling pathway is extremely activated in the SARS-CoV-2
infection by ORF7a SARS-CoV-2 viral protein with the succeeding expression of pro-
inflammatory cytokines [50]. Thus, NF-κB inhibitors have an immense role in the reduction
in SARS-CoV-2 infection by lessening the expression of inflammatory cytokines [50]. The
exaggerated immune response may increase the expression of GDF15 through NF-κB
signaling-dependent pathway [51].

Certainly, the p38 mitogen-activated protein kinase (p38MAPK) is a pro-inflammatory
pathway linked with the development of ALI and acute cardiac injury in COVID-19 [52].
Overactivation of the p38MAPK in COVID-19 could be due to the down-regulation of
angiotensin-converting enzyme 2 (ACE2) and an increase in AngII level (Figure 2). In
addition, the SARS-CoV-2 can directly activate the p38MAPK signaling pathway causing
endothelial dysfunction, vasoconstriction and thrombosis [52]. The GDF15 is activated by
p38MAPK in chondrogenesis [53].

Moreover, the mechanistic target of the rapamycin (mTOR) pathway is the inner-
most regulator of cell growth, proliferation, metabolism and survival [54]. This path-
way is a member of the protein kinases that senses both extracellular and intracellu-
lar regulatory signals to manage autophagy, the expression of inflammatory genes and
organelle biogenesis [54]. It has been shown that the mTOR pathway is activated dur-
ing the SARS-CoV-2 infection, and involved in the transcription and mRNA translation
of the SARS-CoV-2 particles [55]. Of interest, the mTOR pathway and associated pro-
inflammatory cytokines induce the expression of GDF15 to be increased in the different
inflammatory disorders (Figure 2) [56].

Advanced glycation endproducts (AGE) and receptors for AGE (RAGE) are implicated
in the pathogenies of SARS-CoV-2 infection; however, the soluble RAGE (sRAGE) has
a protective effect against the COVID-19 severity [57]. Indeed, overexpression of the
AGE/RAGE is associated with COVID-19 severity and mortality [57]. Different studies
confirmed that the overexpression of AGE/RAGE is correlated with the induction of the
release of GDF15 (Figure 2) [58,59].

Of interest, the forkhead box O (FoxO) is a transcription factor that plays an important
role in cell homeostasis through the regulation of apoptosis, oxidative stress and maturation
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of lymphocytes [60]. FoxO has anti-inflammatory effects, so its activators may reduce
COVID-19 severity [61]. FoxO anti-inflammatory effect may decrease disease severity
and aging through modulation of inflammatory milieu and cell homeostasis [62]. FoxO
modulates the expression of GDF15 in rats with ischemic/reperfusion injury [63].

Interestingly, the GDF15 is highly activated in diabetic patients due to metabolic de-
rangement and over-activated AngII [18]. Higher expression of the GDF15 in diabetes
mellitus plays a crucial role in the attenuation of inflammatory and metabolic compli-
cations [18]. Notably, AngII is highly activated due to the downregulation of ACE2 by
SARS-CoV-2 leading to induction of ALI/ARDS and thrombotic complications [64].

Furthermore, hypoxia-inducible factor 1 (HIF-1) is provoked in COVID-19 that may
have beneficial and detrimental effects [65]. Notably, HIF-1 induces the expression of
GDF15 in cancer metastasis [66]. Thus, higher serum levels of GDF15 in severely affected
COVID-19 patients mirror hypoxic state.

These observations suggest that triggered inflammatory signaling together with stim-
ulated AngII and HIF-1 which are involved in the pathogenesis of SARS-CoV-2 could be
the underlying causes of high GDF15 in the COVID-19. Therefore, the higher expression
of GDF15 in COVID-19 might a compensatory mechanism to stabilize and counteract
dysregulated inflammatory reactions through the inhibition of inflammatory signaling
pathways and augmentation of anti-inflammatory pathways.

6. GDF15 in Comparison with Other COVID-19 Biomarkers

In comparison with well-known biomarkers of COVID-19, the GDF15 is increased in
parallel with other inflammatory biomarkers in COVID-19 patients. An observational study
involving 66 hospitalized COVID-19 patients demonstrated that both GDF15 and calpro-
tectin serum levels were increased and correlated with disease severity and mortality [9].
GDF15 has a similar prognostic value to that of calprotectin in the prediction of COVID-19
complications and severity [9]. A retrospective study that included 440 COVID-19 patients
showed that the GDF15 serum level was increased and positively correlated with C reactive
protein (CRP), IL-6 and IL-8 in severely affected patients [33]. Gisby et al. [38] found that
the GDF15 serum level together with IL-8 was effective in monitoring COVID-19 in patients
with end-stage kidney disease. Furthermore, a case–control study comprising 80 patients
with moderate to severe COVID-19 showed that the GDF15 serum level was increased
together with increasing levels of galectin-9 and C3a in severely affected patients [67]. The
rising of GDF15, galectin-9 and C3a in COVID-19 patients reflect intestinal tight junction
dysfunction with translocation of intestinal microbes into the circulation with the develop-
ment of systemic inflammation [67]. Interestingly, Myhre and colleagues confirmed in a
prospective observational study that the GDF15 offers a prognostic biomarker superior to
other inflammatory biomarkers in unselected hospitalized COVID-19 patients [68]. GDF15
in severely affected COVID-19 patients is more specific than IL-6, CRP, ferritin and D-dimer
in detecting the early stage of COVID-19 severity and admission to the intensive care unit
(ICU) [68]. A prospective study involved 135 COVID-19 patients, 35 (28%) of them were
admitted to ICU and 97 (79%) had higher GDF15 baseline level. GDF15 serum level was
highly sensitive and specific, correlated with ICU admission of severely affected patients
(0.78, 95%CI = 0.07–0.86) [68].

These findings pointed out that GDF15 is regarded as a noteworthy diagnostic/prognostic
biomarker in detecting COVID-19 severity and complications.

7. Modulation Release of GDF15

Of interest, metformin stimulates the release of GDF15 [69] that have an imperative
effect in treating SARS-CoV-2 infection [70]. Metformin inhibits the interaction between
SARS-CoV-2 and ACE2 by inhibiting the release of pro-inflammatory cytokines [70]. Klein-
ert et al. [29] study illustrated that physical exercise stimulates and improves the release of
GDF15. In turn, regular physical exercise improves immune tolerance to COVID-19 [71].
Herein, metformin and physical exercise could prevent immune dysregulation and hyper-
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inflammation through the modulation expression of GDF15 patients. Similarly, colchicine
increases the expression and the release of hepatic GDF15 [32]. Different studies con-
firmed that colchicine decreased COVID-19 severity via the regulation of immune response
to SARS-CoV-2 infection [72–74]. The case series by Al-Kuraishy et al. [73] including
COVID-19 patients treated by sequential use of doxycycline in the first week and colchicine
in the second week led to significant improvement in clinical outcomes. Unfortunately, the
GDF15 serum levels were not measured in our previous study. A systematic review and
meta-analysis by Yasmin et al. [75] involved randomized clinical trials regarding the safety
and effectiveness of colchicine in COVID-19 patients demonstrating that colchicine was
effective and safe in the management of COVID-19. However, another systematic review
illustrated that colchicine was infective in reducing mortality of hospitalized COVID-19
patients [76].

8. Mitochondrial Dysfunction and GDF15 in COVID-19

Mitochondria are organelles that regulate different cellular processes. Mitochondrial
stress is generated due to defects in the transport of electron chains with impairment of
mitochondrial proteostasis [77]. Mitochondrial stress and dysfunction are developed in
response to abnormal immune responses and metabolic disturbances as in sepsis [77].
Under the effect of mitochondrial stress and dysfunction, various genes in cell survival
are transcriptionally activated [78]. Mitochondrial stress triggers the release of various
secretory proteins from cells such as the GDF15 and fibroblast growth factor 2, enabling
cells with mitochondrial dysfunction to communicate with distant and neighboring cells to
modulate the cell metabolism and energy [77]. Montero et al. [79] revealed that the GDF15
serum level was increased in children with inherited mitochondrial diseases.

Notably, severe SARS-CoV-2 infection is associated with the development of
mitochondrial stress and dysfunction due to the exaggerated immune response and
hyperinflammation [80,81]. It has been shown that the SARS-CoV-2 infection is linked
with noteworthy alteration of mitochondrial dynamics with subsequent development of
oxidative stress, the release of the pro-inflammatory cytokines and propagation of the
cytokine storm [80]. The regulation of mitochondrial membrane potential by fucoidan
may prevent the development of mitochondrial dysfunction in COVID-19 patients [81]. A
study conducted by De la Cruz-Enríquez et al. [82] showed that inflammation/oxidative
markers were correlated with mitochondrial dysfunction in the leukocytes of COVID-19
patients. In turn, mitochondrial dysfunction promotes the propagation of oxidative stress
and hyperinflammation with subsequent development of endothelial-alveolar injury [82].

Therefore, these verdicts suggest that the increasing levels of GDF15 might be due to the
development of mitochondrial stress and dysfunction in severely affected COVID-19 patients.

9. Thrombosis and GDF15 in COVID-19

Endothelial dysfunction, oxidative stress and inflammatory disorders in the SARS-
CoV-2 infection may lead to thrombotic events, the hallmark of COVID-19 [83]. The
underlying causes of thromboembolic disorders in COVID-19 are due to different mecha-
nisms including platelet activation, stimulation of clotting factors, inhibition of the endoge-
nous anticoagulant system and fibrinolytic pathways [84]. Thromboembolic disorders in
COVID-19 promote the propagation of pulmonary embolism, deep vein thrombosis and
disseminated intravascular coagulopathy (DIC) [85]. It has been illustrated that COVID-19
and anti-SARS-CoV-2 vaccines are linked with a high thrombotic milieu [83–85]. Mosleh
and colleagues [86] showed that endothelial dysfunction and endothelitis in COVID-19
patients increase the risk for the development of thrombosis. A systematic review revealed
that the SARS-CoV-2 infection increases the risk of stent thrombosis in COVID-19 patients
with acute coronary syndrome [83]. A meta-analysis and systematic review pointed out
that venous thromboembolism was higher in hospitalized COVID-19 patients despite
the use of thromboprophylaxis [87], suggesting a prominent heterogeneity of thrombosis
in COVID-19.
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On the other hand, the GDF15 is regarded as a prognostic biomarker of pulmonary
embolism in patients with cardiovascular diseases [88]. A prospective cohort study in-
volved 123 patients with acute pulmonary embolism revealed that the GDF15 serum
level was higher and correlated with 30-day mortality [88]. In addition, there is evidence
proposed that the GDF15 serum level appears to be linked with stroke in patients with
atrial fibrillation [89]. An observational study included 894 patients with atrial fibrilla-
tion with or without left atrial thrombus revealed that GDF15 serum level was higher in
patients with atrial thrombus compared to patients with atrial fibrillation without atrial
thrombus [89]. Inflammatory reactions induce thrombosis and release GDF15 from ac-
tivated macrophages [90]. However, the GDF15 knockout mice experience accelerated
thrombosis compared to wild-type mice [91]. Furthermore, in vitro study demonstrated
that GDF15 had the ability to inhibit platelet aggregation [91]. Thus, GDF15 might not be the
putative cause of thrombosis but as a compensatory mechanism against the development
of thromboembolic disorders in various cardiovascular complications [90].

In severely affected COVID-19 patients with ARDS at ICU, the anti-inflammatory IL-10
and GDF15 were increased, positively and negatively correlated with pro-inflammatory
IL-6 and lymphopenia, respectively [37]. Therefore, the elevation of GDF15 in critical
COVID-19 patients mirrors immunothrombotic events.

Taken together, in virtue of its anti-inflammatory effects, GDF15 may inhibit the
propagation of cytokine storm in COVID-19 patients through modulation of the immune-
inflammatory response and attenuation of the exaggerated immune response [32,92]. Fur-
thermore, the activation of inflammatory signaling pathways such as NLRP3 inflammasome
and NF-κB are associated with the development of cytokine storm [93]. Therefore, increas-
ing GDF15 levels in severely affected patients could be countercurrent mechanisms to
damping hyperinflammation in the cytokine storm.

The present perspective had several limitations including scarcity of clinical studies
and serial measurement of the GDF15 in the initial and late phases of COVID-19 patients
were not reported. However, this review—unlike other studies which implicate GDF15
in the pathogenesis and severity of COVID-19,—confirmed that the increase in GDF15 in
COVID-19 could be a compensatory mechanism against hyperinflammation and exagger-
ated immune response.

10. Gastrointestinal Injury and GDF15 in COVID-19

GDF15 in disease state is highly expressed in different parts of the gastrointestinal
tract (GIT) including stomach, colon, bile duct and liver. Expression of GDF15 in the liver
rapidly occurs following acute liver injury independent of p53 and TNF-α pathways [94].
Furthermore, GDF15 expression is also induced following common bile injury. It has been
reported that Northern blot analysis of hepatic mRNA from patients with cirrhosis and
sclerosing cholangitis demonstrated a significant expression of GDF15 [95]. Lee et al. [96]
illustrated that GDF15 predicts the severity of chronic liver diseases. A case–control
study included 145 patients with chronic liver diseases compared to 101 matched healthy
control subjects and showed that GDF15 serum level was higher in severely affected
disease patients [96]. These findings suggest that GDF15 might be a possible biomarker of
GIT injury.

On the other hand, COVID-19 is commonly associated with GIT injury and acute
hepatic damage due to the higher expression of ACE2 [97]. Indeed, ischemic-reperfusion
injury, cytokine storm, oxidative stress and drug-induced injury could be the potential
mechanisms for development of GIT injury in COVID-19 [97]. GDF15 serum level is
increased in COVID-19 patients with extra-pulmonary manifestations including GIT injury
and acute hepatic damage [9]. A retrospective study comprising 2623 confirmed COVID-
19 patients with acute hepatic injury revealed that low albumin serum level and high
GDF15 serum level are correlated with COVID-19 severity and death [98]. As mentioned
above, GDF15 serum level increased in parallel with calprotectin a biomarker of GIT injury
in critically affected COVID-19 patients [9]. The underlying mechanism for increasing
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GDF15 serum level in COVID-19 patients with GIT injury and/or acute hepatic damage is
due to hyperinflammation, oxidative stress and exaggeration of inflammatory signaling
pathways [48,51,53].

These verdicts proposed that GDF15 could be a diagnostic and prognostic biomarker
of GIT injury in COVID-19.

The potential role of GDF15 in COVID-19 is summarized in Table 1.

Table 1. The potential role of GDF15 in COVID-19.

Ref. Study Type Findings

de Guadiana et al. [9] Prospective study Higher GDF15 serum level was associated with higher mortality

Ahmed et al. [32] Review study Higher GDF15 serum level was regarded as a prognostic biomarker
and correlated with COVID-19 severity.

Teng et al. [33] Retrospective study Higher GDF15 serum is an indicator of the COVID-19 severity.

Lippi and Henry [36] Pooled analysis study The GDF15 serum was significantly correlated with most of
COVID-19 regardless of its severity.

Notz et al. [37] Observational pilot study The GDF15 is implicated in the pathogenesis and severity
of COVID-19.

Gisby et al. [38] Longitudinal proteomic study The GDF15 serum level is correlated with COVID-19 severity

Rochette et al. [39] Review study The GDF15 can attenuate abnormal immune responses and prevent
the associated inflammation in COVID-19.

Giron et al. [67] A case–control study The GDF15 serum level was increased together with increasing levels
of galectin-9 and C3a in severely affected COVID-19 patients.

Myhre et al. [68] A prospective observational study
The GDF15 offers a prognostic biomarker superior to other

inflammatory biomarkers in unselected hospitalized
COVID-19 patients.

Notz et al. [37] Observational pilot study

In severely affected COVID-19 patients with ARDS at ICU, the
anti-inflammatory IL-10 and GDF15 were increased, positively and

negatively correlated with pro-inflammatory IL-6 and
lymphopenia, respectively.

Huang et al. [98] A retrospective study The High GDF15 serum level is correlated with COVID-19-induced
acute hepatic injury

11. Conclusions

COVID-19 is characterized by hyperinflammation, oxidative stress, MOI-like ALI and
ARDS. COVID-19 is associated with hyperinflammation and exaggerated immune response
due to the activation of the inflammatory signaling pathway. GDF15 is an anti-inflammatory
cytokine and increased GDF15 could be a compensatory mechanism against hyperinflam-
mation and exaggerated immune response in COVID-19 so that it acts as a pathogenic
marker. Of interest, GDF15 serum level may reflect the underlying hyperinflammation and
associated tissue injury including pulmonary and extra-pulmonary complications. Further-
more, GDF15 serum level may predict COVID-19 severity and mortality. Therefore, GDF15
is regarded as a diagnostic and prognostic biomarker in COVID-19 patients. Experimental,
preclinical and large-scale clinical studies are warranted in this regard to verify the precise
role of GDF15 in COVID-19 regarding immunothrombosis.s
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