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Abstract

The Business-to-Business Meeting Scheduling problem consists of scheduling a set of
meetings between given pairs of participants to an event, while taking into account partic-
ipants’ availability and accommodation capacity. A crucial aspect of this problem is that
breaks in participants’ schedules should be avoided as much as possible. It constitutes a
challenging combinatorial problem that needs to be solved for many real world brokerage
events.

In this paper we present a comparative study of Constraint Programming (CP), Mixed-
Integer Programming (MIP) and Maximum Satisfiability (MaxSAT) approaches to this
problem. The CP approach relies on using global constraints and has been implemented
in MiniZinc to be able to compare CP, Lazy Clause Generation and MIP as solving tech-
nologies in this setting. We also present a pure MIP encoding. Finally, an alternative
viewpoint is considered under MaxSAT, showing best performance when considering some
implied constraints. Experiments conducted on real world instances, as well as on crafted
ones, show that the MaxSAT approach is the one with the best performance for this prob-
lem, exhibiting better solving times, sometimes even orders of magnitude smaller than CP
and MIP.

1. Introduction

Business-to-business (B2B) events involve holding meetings between attendees with common
interests or needs. These events typically occur in forums, conferences, and gatherings as
an opportunity for the attendees to find investors, sell or buy products, share ideas and
projects, etc. Obtaining a feasible schedule for the desired meetings according to time
availability of participants and accommodation capacity is a hard combinatorial problem.
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It is frequent that the participants of such events answer some questions about their
interests and expertise, in the event registration phase. This information is made public to
the participants, who may ask for pairwise meetings with other participants, with a certain
priority. They also indicate their time availability for the meetings (notice that, in addition
to the meetings, there are usually other activities running in parallel that participants
may need to attend and therefore they should reserve some time slots). Moreover, the
participants may ask for meetings in particular session, e.g. morning or afternoon sessions.
Then, according to this information (participants’ availability and priorities for the desired
meetings) a matchmaker proposes a set of matches (meetings) to be scheduled. Scheduling
these meetings is a tough task since the timetable must satisfy several hard constraints,
like avoiding meeting collisions, as well as some soft constraints, like avoiding unnecessary
breaks between meetings of the same participant. Experience shows that breaks may lead
some participants to leave the event, dismissing later scheduled meetings. Therefore, it is
desirable to avoid unnecessary breaks in the particular schedules of each participant. At
the same time, it is desirable to be fair by avoiding big differences in the number of breaks
of participants.

Several works have dealt with this problem. Gebser, Glase, Sabuncu, and Schaub (2013)
describe an answer set programming system, being used by the company piranha womex AG
for computing matchmaking schedules in several fairs. This system has some limitations.
For instance, it does not consider forbidden time slots but unpreferred ones, and it allows
meeting collisions under the assumption that the companies can send multiple participants.
Model-and-solve approaches on a more complete formulation have been developed in recent
works. Several CP, MIP and SAT based encodings have been studied by Bofill, Espasa,
Garcia, Palah́ı, Suy, and Villaret (2014), by Pesant, Rix, and Rousseau (2015) and by
Bofill, Garcia, Suy, and Villaret (2015).

In this work we revisit, extend and improve the state-of-the-art approaches for the
Business-to-Business Meeting Scheduling problem introduced by Pesant et al. (2015) and
by Bofill et al. (2015), and compare their performance on real world instances, as well as
on crafted instances. In particular:

• We consider some extensions of the problem: including time restrictions for meetings,
meeting precedences, and prefixed meetings. Using these extensions, we contribute
180 new crafted instances.1

• We re-implement the Constraint Programming model by Pesant et al. (2015) using
MiniZinc (Nethercote, Stuckey, Becket, Brand, Duck, & Tack, 2007), allowing us to
compare the performance of different solving technologies using the same model.

• We provide an alternative way of identifying the breaks in participants’ schedules.

• We provide further details of the MaxSAT encoding by Bofill et al. (2015).

• We improve the MaxSAT and MIP models by taking advantage of implied constraints
occurring in the problem.

1. The instances are available at http://imae.udg.edu/recerca/lai.
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• We adapt the Constraint Programming, MaxSAT and MIP models to deal with the
extensions of the problem.

The rest of the paper is structured as follows. In Section 2 we define the problem at
hand. In Sections 3, 4 and 5 we present the different models considered, namely Constraint
Programming, MaxSAT and MIP models respectively. In Section 6 we provide a comparison
of the presented models. Section 7 is devoted to experimental evaluation. A summary and
conclusions are given in Section 8. Finally, we provide a detailed MiniZinc model in an
appendix section.

2. The Business-to-Business Meeting Scheduling Problem

In this section we define the problem at hand, as well as some extensions of it.

Definition 2.1. Let P be a set of participants to an event, T a set of available time slots
and L a set of available locations for holding meetings. Let M be a set of unordered pairs
of participants in P , representing the meetings to be scheduled.

A schedule S is a total mapping from M to T × L. Given a meeting m, by time(S,m)
and loc(S,m) we refer to the time slot and the location assigned to m, respectively, according
to S. In other words, given a meeting m with S(m) = (t, l) we have time(S,m) = t and
loc(S,m) = l.

We define a feasible business-to-business (B2B) meeting schedule S as a total mapping
from M to T × L such that the following constraints are satisfied:

• Each participant has at most one meeting scheduled in each time slot.

time(S,m1) = time(S,m2) =⇒ m1 ∩m2 = ∅ m1,m2 ∈M : m1 6= m2 (1)

• At most one meeting is scheduled in a given time slot and location.

time(S,m1) = time(S,m2) =⇒ loc(S,m1) 6= loc(S,m2)

m1,m2 ∈M : m1 6= m2 (2)

The B2B meeting scheduling problem (B2BSP) is the problem of finding a feasible B2B
meeting schedule.

The B2BSP is NP-complete. It is clearly in NP, and its NP-hardness can be proved by
reduction from the edge coloring problem (deciding if, given a graph G, all its edges can
be colored so that no two incident edges have the same color, using k colors or the fewest
number of colors, which amounts to the maximal degree of the graph).

Theorem 2.1. The B2BSP is NP-hard.

Proof. (sketch). The edge coloring problem can be reduced to the B2BSP as follows. Each
vertex of the graph represents a participant to the B2B event, while each edge corresponds
to a meeting between the two participants at the vertices. We take k as the number of time
slots. We can take as many locations as needed.
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Alternatively, NP-hardness of the B2BSP can be shown by a reduction from the re-
stricted timetable problem described by Even, Itai, and Shamir (1975).

Typically, we are interested in schedules which minimize the number of breaks. By a
break we refer to a group of idle time slots between a meeting of a participant and her
next meeting. Before formally defining this optimization version of the B2BSP, we need to
introduce some auxiliary definitions. Without loss of generality we assume that time slots
are consecutively numbered, starting at one.

Definition 2.2. Given a B2B meeting schedule S for a set of meetings M , and a participant
p ∈ P , we define LS(p) as the list of meetings in M involving p, ordered by its scheduled
time according to S:

LS(p) = [m1, . . . ,mk] such that

∀i ∈ 1..k : p ∈ mi

∀m ∈M : p ∈ m⇒ ∃!i ∈ 1..k : mi = m

∀i ∈ 1..k−1 : time(S,mi) < time(S,mi+1)

By LS(p)[i] we refer to the i-th element of LS(p), i.e., mi, and ∃! stands for exists unique.

Definition 2.3. We define HS(p) as the number of breaks (or holes) of participant p for a
given schedule S as follows:

HS(p) = |{LS(p)[i] | i ∈ 1..|LS(p)| − 1, time(S,LS(p)[i]) + 1 6= time(S,LS(p)[i+ 1])}|

Definition 2.4. We define the B2B Scheduling Optimization Problem (B2BSOP) as the
problem of finding a feasible B2B meeting schedule S, where the total number of breaks of
the participants is minimal, i.e., such that it minimizes∑

p∈P
HS(p) (3)

Depending on participants’ requirements, more constraints can be imposed on the meetings:

• Fixed sessions. As an additional constraint, we consider the case where the B2B
meetings can be structured in sessions, each one consisting of a set of consecutive
time slots. Then, it may be the case that some meetings must necessarily be held in
a particular session. Let’s then consider that the set of time slots T is divided into
disjoint sets T1, . . . , Ts and, moreover, we have a mapping session : M → {0, 1, . . . , s},
where session(m) = i ∈ {1..s} means that meeting m must take place at some time
slot of session Ti, and session(m) = 0 means that it does not matter in which session
meeting m is held. Then the schedule should also satisfy the following requirement:

(session(m) = i ∧ i > 0) =⇒ time(S,m) ∈ Ti m ∈M

• Fixed Meetings. A meeting can be requested to be held in a specific time slot. This
would mean to have a mapping fixed : M → {0} ∪ T , with fixed(m) = i ∈ T meaning
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that meeting m must take place at time slot i, and fixed(m) = 0 meaning that it does
not matter in which time slot meeting m takes place. Then the schedule should also
satisfy the following requirement:

fixed(m) > 0 =⇒ time(S,m) = fixed(m) m ∈M

• Forbidden time slots. A participant could request not to have any meeting in some
time slots. Then, we would have a mapping forb : P → 2T , with forb(p) denoting the
set of forbidden time slots for participant p. Then the schedule should also satisfy the
following requirement:

p ∈ m =⇒ time(S,m) /∈ forb(p) p ∈ P,m ∈M

• Meeting precedences. Sometimes it may be required that some meetings are sched-
uled before others. Therefore, we would have a mapping prec : M → 2M , with prec(m)
denoting the set of meetings that must be held before m. Then the schedule should
satisfy the following requirement:

time(S,m′) < time(S,m) m ∈M,m′ ∈ prec(m)

Sometimes optimality with respect to the total number of breaks may not be enough,
and a certain notion of fairness may be required:

• Fairness. We could consider, as a sort of meta-constraint, a fairness requirement
on the number of breaks among participants. In particular, we could ask for feasible
schedules S such that the difference between the number of breaks of every two distinct
participants is bounded by a certain quantity d.

|HS(p1)−HS(p2)| ≤ d p1, p2 ∈ P : p1 6= p2

Note that feasibility and optimality can be guaranteed without knowing the exact lo-
cation where each meeting will be held, but bounding the number of meetings to be held
in the same time slot to the number of available locations. Therefore, in this work, we will
not consider the location assigned to each meeting, but the total number of meetings per
time slot.

Without loss of generality we restrict the models and experiments to two distinct ses-
sion types, namely TAM and TPM , corresponding to morning and afternoon time slots,
respectively, and such that T = TAM ] TPM .

For the sake of readability we define Mp to denote the set of meetings of participant p,
and MAM (resp. MPM ) to denote the set of meetings to be held in the morning (resp. af-
ternoon) sessions.
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3. Constraint Programming Models

A natural CP model for the B2BSOP defines variables

spt p ∈ P, t ∈ T

with domain in Mp∪{0} to represent which meeting participant p will hold at time t, value
0 corresponding to no meeting. Pesant et al. (2015) shown that the spt viewpoint was much
better suited to CP than the alternative by Bofill et al. (2014). Therefore, in this section we
consider this viewpoint, which is moreover very simple and essentially requires two kinds of
global constraints:

• The Global Cardinality Constraint, that counts the number of occurrences of values in
a sequence. This constraint will deal with the feasibility of the problem by ensuring
that all meetings are scheduled, and that the available number of locations is not
surpassed by the number of meetings scheduled at each time slot. Notice that the
viewpoint itself ensures that a participant will have no two meetings scheduled at the
same time.

• The Cost Regular Constraint, that forces a sequence of variables to be a word of a
regular language and can assign costs to certain patterns. This constraint will be used
to deal with the optimization of the schedule, by counting the number of breaks of
the participants.

3.1 Feasibility

Here is our (abstract) model for the feasibility subproblem:

gcc({sp?}, 〈0〉++list(Mp), 〈{|T | − |Mp |}, {1}, . . . , {1}〉) p ∈ P (4)

gcc({s?t}, 〈0〉++list(M), 〈{|P | − 2|L|, . . . , |P |}, {0, 2}, . . . , {0, 2}〉) t ∈ T (5)

spt ∈ Mp ∪ {0} p ∈ P,
t ∈ T (6)

where we use list(X) to denote a permutation of the elements of set X, and we use ++ to
denote list concatenation.

Constraints (4) use a global cardinality constraint (Régin, 1996) on the decision variables
of a given participant to ensure that each of her meetings appears once (the first component
of the vector of occurrences, corresponding to value 0, indicates the number of time slots
without a meeting). Constraints (5) use a global cardinality constraint on the decision
variables of a given time slot to express two things: the first component says that the
number of participants not having a meeting must be at least |P | − 2|L| because we can
hold at most |L| meetings and each meeting appears twice (once for each participant); the
other components, for each meeting, say that the two participants to a given meeting must
attend it in the same time slot and therefore a meeting occurs twice or not at all.
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3.2 Optimization

We now model the optimization component of our problem by modelling break patterns.
We define a variable bp for each participant p giving the number of breaks in her schedule
and seek to minimize the total number of breaks in the schedule. In order to link the bp
variables to the main spt variables we need to consider the sequence of values taken by
the decision variables of a participant: each subsequence of zeros in between scheduled
meetings for p corresponds to a break and bp represents how many such breaks there are in
the sequence. For example, patterns 0??00?00 and ?000?0?0 for eight time slots and three
meetings feature respectively one and two breaks.

To express this globally we could enumerate each possible pattern, associate its number
of breaks and use a table constraint. For given T , Mp , and maximum number of breaks
b′ this makes

b′∑
i=0

(
|Mp | − 1

i

)
·
(
|T | − |Mp |+ 1

i+ 1

)
patterns. Even if we restrict ourselves to at most b′ = 2 breaks, the number of patterns is
in Θ(|Mp |2(|T | − |Mp |)3) which, when the number of meetings is about half of the number
of time slots, simplifies to Θ(|Mp |5). Considering that the largest instance has 22 time
slots with some participants holding 11 meetings, we could end up generating hundreds of
thousands of patterns.

0start 1

1′

2

2′

3

0

m

0

m

0

m 0

m

0

m
0

Figure 1: Automaton A1 for a participant with three meetings. Arc label “m” stands for
any meeting and label “0” for no meeting. Only the red dashed arcs carry a cost,
of one unit, to mark the start of a break.

A much more compact way to express this uses an automaton on 2|Mp | states that
recognizes precisely these patterns. Figure 1 presents such an automaton, referred to as
A1, for a participant with three meetings. Observe however that by concentrating on pat-
terns without distinguishing between meetings we may miss some inferences. For example
any assignment from the sequence of domains 〈{m1,m2,m3, 0}, {m1,m2,m3, 0}, {m4, 0},
{m4, 0}, {m1,m2,m3, 0}, {m1,m2,m3, 0}〉 corresponding to four meetings being scheduled
over six time slots (some of them forbidden for some meetings) will necessarily introduce
at least one break but such an automaton will not recognize it. To catch this, a more fine-
grain automaton distinguishing between meetings will have 2|Mp |+1 − 2 states essentially
representing all subsets of meetings. Figure 2 presents such an automaton, referred to as
A2, again for a participant with three meetings. Because this automaton has significantly
more states, we will refrain from using it.
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0

Figure 2: Automaton A2 for a participant with three meetings. Arc label “mi” stands for
that particular meeting and label “0” for no meeting. Only the red dashed arcs
carry a cost, of one unit, to mark the start of a break.

Notice that, in fact, both automata are only accepting sequences with the exact number
of meetings of each participant. However, Constraints (4) are already enforcing that all
meetings of each participant are scheduled exactly once. Therefore, we can use an even
more compact automaton that is only taking care of the break patterns. Figure 3 presents
such automaton that we refer to as A0. This automaton has only three states and does
not care about the number of meetings occurring in the sequence, so it will be the same for
each participant.

When using automaton A1, Constraints (4) are still needed because the automaton is
only counting the number of meetings of each participant but does not control at all if
there is any repetition. Conversely, when using automaton A2 we could save the use of
Constraints (4) because this automaton only accepts participants’ schedules with all their
meetings occurring exactly once.

0start 1

1′

0

m
m

0

0

m

Figure 3: Automaton A0 for a participant with any number of meetings. Arc label “m”
stands for any meeting and label “0” for no meeting. Only the red dashed arc
carries a cost, of one unit, to mark the end of a break.
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Then, the objective function and related constraints are defined as follows:

min
∑
p∈P

bp s.t. (7)

bp = 0 p ∈ P : |Mp | ∈ {0, 1, |T |} (8)

cost regular(〈sp?〉,A, bp) p ∈ P : 1 < |Mp | < |T | (9)

bp ∈ N p ∈ P (10)

Constraints (8) fix bp to zero for participants who trivially have no break in their schedule
(e.g., they have a single meeting or as many meetings as there are time slots).

The cost regular constraint (9) on any of the previously given automata (A1,A2,A0)
makes variable bp equal to the sum of the costs of the arcs on the path corresponding to the
values taken by the sequence of variables 〈sp?〉 (see Demassey, Pesant, & Rousseau, 2006).
An upper bound on bp will limit the feasible paths in the automaton and possibly remove
arcs (i.e., filter values in a domain) that do not belong to any feasible path. Conversely,
the smallest cost of the possible paths given the current domains of the variables provides
a lower bound on bp.

Regarding non-zero labels of automata A1 and A0, they can be meeting identifiers or
they can be a reified value representing that there is a scheduled meeting or not. This
second option requires the introduction of reification variables but reduces the size of the
automaton since the number of possible transitions per state is just two (see Appendix A
for more implementation details).

3.3 Additional Constraints

We now describe the constraints that need to be added for the variations of the problem
described in Section 2.

• Fixed sessions. Constraints (11) and (12) disallow afternoon (resp. morning) meet-
ings taking place during morning (resp. afternoon) time slots.

spt ∈ MAM ∪ {0} p ∈ P, t ∈ TAM (11)

spt ∈ MPM ∪ {0} p ∈ P, t ∈ TPM (12)

• Fixed meetings. Constraints (13) ensure that every fixed meeting is scheduled
in its corresponding time slot for each of its two participants. Recall that the fact
that each meeting is scheduled exactly once is already enforced by global cardinality
constraints (4) or the automata.

sp1,fixed(m) = m

sp2,fixed(m) = m m = (p1, p2) ∈M : fixed(m) > 0 (13)

• Forbidden time slots. Constraints (14) ensure that there is no meeting scheduled
for a participant during one of his forbidden time slots.

spt = 0 p ∈ P, t ∈ forb(p) (14)

271
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• Meeting precedences. Constraints (15) define auxiliary variables indicating the
time slot in which each meeting is held, which are linked, using an implicit element
constraint, to the main decision variables through Constraints (16). Constraints (17)
then express the precedences between meetings.

tm ∈ T m ∈M (15)

sptm = m p ∈ P,m ∈ Mp (16)

tm′ < tm m ∈M,m′ ∈ prec(m) (17)

• Fairness. Constraints (18) ensure some fairness between individual schedules by
requiring that the number of breaks among individual schedules differ by at most
some integer parameter d.

bp − min
p′∈P

bp′ ≤ d p ∈ P (18)

4. MaxSAT Models

In this section we present the MaxSAT formulations for the B2BSOP, starting with the
base encoding, which is next extended in order to improve its performance in practice. We
describe a meta-encoding using cardinality constraints such as at-most-k or exactly-k. These
constraints can be translated into MaxSAT in different ways. In Section 4.6 we detail the
chosen method for each of these constraints.

4.1 MaxSAT Base Encoding

The B2BSOP can be encoded to a partial MaxSAT formula (Li & Manyà, 2009), where
some clauses are marked as hard whereas others are marked as soft, and the goal is to find an
assignment to the variables that satisfies all hard clauses and falsifies the minimum number
of soft clauses. In our case, the falsification of a soft clause will represent the existence of
a break for some participant.

• Variables and viewpoint. The MaxSAT model is based in the viewpoint given
by Boolean variables stating whether a meeting is scheduled or not in a time slot.
With these variables we are able to model feasibility, and all additional constraints
not related to breaks (i.e., not related to fairness nor optimization). The variables are

schedulei,j : meeting i is held at time slot j

• Basic constraints for feasibility.

– At most one meeting involving the same participant is scheduled at each time
slot.

atMost(1, {schedulei,j | i ∈ Mp}) p ∈ P, j ∈ T (19)

– Each meeting not in a fixed session is scheduled in a time slot (see also (22)
and (24)).

exactly(1, {schedulei,j | j ∈ T}) i ∈M \ (MAM ∪MPM ) (20)
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– There are at most as many meetings scheduled in a given time slot as available
locations |L|.

atMost(|L|, {schedulei,j | i ∈M}) j ∈ T (21)

With these constraints we get a total mapping from meetings to time slots, except for
those meetings that must be held in a particular session (MAM and MPM meetings).
Those are considered in the following subsection.

4.2 Additional Constraints

We now describe the constraints that need to be added for the variations of the problem
described in Section 2.

• Fixed sessions. Each meeting with a fixed session is scheduled in a slot of the
required session, and is not scheduled in a slot of another session.

exactly(1, {schedulei,j | j ∈ TAM }) i ∈ MAM (22)

¬schedulei,j i ∈ MAM , j ∈ TPM (23)

exactly(1, {schedulei,j | j ∈ TPM }) i ∈ MPM (24)

¬schedulei,j i ∈ MPM , j ∈ TAM (25)

• Fixed meetings. Every fixed meeting is scheduled in its corresponding time slot.

schedulem,fixed(m) m ∈M : fixed(m) > 0 (26)

• Forbidden time slots. No meeting is scheduled in a forbidden time slot for any of
its participants. ∧

i∈Mp , j∈forb(p)

¬schedulei,j p ∈ P (27)

• Meeting precedences. All meetings are scheduled after the meetings that must
precede them.

schedulei′,j′ → ¬schedulei,j i ∈M, i′ ∈ prec(i), j, j′ ∈ T : j′ ≥ j (28)

• Fairness. In order to be able to enforce fairness among participants’ schedules, as to
minimize the overall number of breaks, we need to be able to detect idle time slots.
To this end, we introduce some auxiliary variables:
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usedSlotp,j : participant p has a meeting scheduled at time slot j.

meetingHeldp,j : participant p has a meeting scheduled at or before time slot j.

endHolep,j : participant p has an idle time period (break) finishing at time slot j.

We also need to add constraints to define the semantics of these variables:

– If a meeting is scheduled in a certain time slot, then that time slot is used by
both participants of the meeting.

schedulei,j → (usedSlotp1,j ∧ usedSlotp2,j) i = (p1, p2) ∈M, j ∈ T (29)

In the reverse direction, if a time slot is used by some participant, then one of
the meetings of that participant must be scheduled at that time slot.

usedSlotp,j →
∨

i∈Mp

schedulei,j p ∈ P, j ∈ T (30)

– For each participant p and time slot j, meetingHeldp,j is true if and only if
participant p has had a meeting at or before time slot j.

¬usedSlotp,1 → ¬meetingHeldp,1 p ∈ P (31)

(¬meetingHeldp,j−1 ∧ ¬usedSlotp,j)→ ¬meetingHeldp,j p ∈ P, j ∈ T \ {1}
(32)

usedSlotp,j → meetingHeldp,j p ∈ P, j ∈ T (33)

meetingHeldp,j−1 → meetingHeldp,j p ∈ P, j ∈ T \ {1}
(34)

Now we can characterize breaks in participants’ schedules. If some participant does
not have any meeting in a certain time slot, but she has had some meeting before,
then she is having break. We reify such pattern with auxiliary variables endHolep,j

in order to count the number of breaks of each participant. This will allow us to find
the maximum and minimum number of breaks among all participants, and to enforce
fairness by bounding their difference.

– endHolep,j is true if and only if participant p has a break finishing at time slot j.

endHolep,j ↔ ¬usedSlotp,j ∧meetingHeldp,j ∧ usedSlotp,j+1

p ∈ P, j ∈ T \ {|T |} (35)

– The list of variables sortedHolep,1, . . . , sortedHolep,|T |−1 corresponds to the unary
representation of the number of breaks of each participant p. In other words,
sortedHolep,j holds iff participant p has at least j breaks in her schedule. This
list is obtained by sorting decreasingly the endHole variables.

sort([endHolep,j : j ∈ T ], [sortedHolep,j : j ∈ T \ {|T |}]) p ∈ P (36)
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– max 1, . . . ,max b(|T |−1)/2c and min1, . . . ,minb(|T |−1)/2c are unary representations
of bounds on the maximum and minimum number of breaks among all partici-
pants, respectively.

sortedHolep,j → max j p ∈ P, j ∈ 1..b(|T | − 1)/2c (37)

¬sortedHolep,j → ¬minj p ∈ P, j ∈ 1..b(|T | − 1)/2c (38)

Note that there can be at most b(|T | − 1)/2c breaks per participant.

Constraints (37) ensure that max 1,. . . ,max b(|T |−1)/2c (interpreted as a unary rep-
resentation of a number) is greater or equal than the maximum number of holes
among all participants, and Constraints (38) ensure that min1,. . . ,minb(|T |−1)/2c
is smaller or equal than the minimum number of holes among all participants.

Finally, Constraints (39) and (40) enforce the required fairness degree.

– The difference between the maximum and minimum number of breaks must be
at most d.

¬minj ∧max j → dif j j ∈ 1..b(|T | − 1)/2c (39)

atMost(d, {dif j | j ∈ 1..b(|T | − 1)/2c}) (40)

4.3 Optimization

Minimization of the number of breaks is achieved by means of soft constraints. We simply
post as soft constraint the negation sortedHolep,j variables. Knowing that each participant
will have at most b(|T | − 1)/2c breaks, we have a limited number of soft constraints.

¬sortedHolep,j p ∈ P, j ∈ 1..b(|T | − 1)/2c (41)

Note that, each sortedHolep,j variable set to true, increases the cost by 1.
In case there is no homogeneity (i.e., d = ∞) we could simply post as soft constraints

the reified clauses characterizing holes from Constraints (35).

(¬usedSlotp,j ∧meetingHeldp,j)→ ¬usedSlotp,j+1 p ∈ P, j ∈ T \ {|T |} (42)

Remark 4.1. If we were considering optimization but no fairness, Constraints (31) and
(32) would not be necessary, since minimization of the number of breaks would force the
value of meetingHeldp,j to be false for every participant p and time slot j previous to the first
meeting of p. However, since we are also seeking fairness, these constraints are mandatory.
Without them, the value of meetingHeldp,j could be set to true for time slots j previous to
the first meeting of p, inducing a fake break in order to satisfy the (hard) fairness constraints
defined in Section 4.2.

4.4 Implied Constraints

We have identified the following implied constraints.

• Implied Constraint 1. The number of meetings of a participant p as derived from
usedSlotp,j variables must match the total number of meetings of p.

exactly(|Mp |, {usedSlotp,j | j ∈ T}) p ∈ P (43)
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• Implied Constraint 2. The number of participants having a meeting in a given
time slot is bounded by twice the number of available locations.

atMost(2× |L|, {usedSlotp,j | p ∈ P}) j ∈ T (44)

As we will see in the experiments, both implied constraints are really helpful and, in
combination, they allow to solve all original instances within the given time limit. A possible
reason for such efficiency is that they are able to detect inconsistent partial assignments that
are not detectable without these implied constraints. Consider for instance a participant p
with still m meetings to schedule within m still available time slots. Suppose that one of such
time slots, say j, became unavailable due to the scheduling of as many meetings as available
locations, and that none of these meetings involves participant p. Then, Constraint (44)
will set variable usedSlotp,j to false but this will clash with Constraint (43) that will enforce
usedSlotp,j to be true.

4.5 Further Improvements

We have also improved the encoding taking into account further knowledge of the problem.
Namely, we know that the number of participants having a meeting in a given time slot is
even because meetings always involve two distinct participants. We also know that among
all the meetings of a same participant, just one can take place in a particular timeslot.

4.5.1 Even number of participants

Let oj,1, ...oj,2×|L| be the output variables of the cardinality network corresponding to Con-
straint (44) for a given timeslot j ∈ T . To enforce that the number of participants is an
even number in all time slots we add the following clauses:

oj,i → oj,i+1 i ∈ {1, 3, ...2× |L| − 1}, j ∈ T (45)

4.5.2 At most one meeting of a same participant

When counting the number of scheduled meetings in a timeslot, in Constraints (21), we
have to bound them by the number of available locations |L|. However, we do not need to
consider all possible meetings simultaneously because plenty of them are mutually exclusive,
e.g., among all meetings of the same participant just one can be held.

Therefore, instead of considering all meetings in Constraints (21) we will consider clus-
ters of meetings, where all meetings of a cluster share the same participant, hence being
mutually exclusive. We greedily compute a partition Π of meetings where each subset is
one of such clusters. Then, for each cluster c and timeslot j ∈ T we introduce an auxiliary
variable clc,j . We add the following clauses:

schedulei,j → clc,j c ∈ Π, i ∈ c, j ∈ T (46)

and change Constraints (21) by the following:

atMost(|L|, {clc,j | c ∈ Π}) j ∈ T (47)
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The idea is that since at most one meeting of each cluster can be scheduled in each time
slot, it suffices to limit the number of active clusters to |L| at any time. This results in a
significant reduction on the number of variables and clauses of the generated formulas. This
is so because the number of input variables of the atMost constraints of Constraints (21)
are reduced between 2 and 4 times. For example, the input of those cardinality constraints
for instance ticf-14crafa is reduced from 302 to just 79 variables. This results in a formula
of just 119,577 variables and 389,280 clauses, instead of the 241,149 variables and 632,820
clauses of the corresponding formula without this improvement. Moreover, as we will see
in Table 3, solving time of this instance is almost halved.

4.6 Encoding of Global Constraints

The cardinality constraints stating that at most (atMost) or exactly (exactly) k of a given
set of variables must be true have been encoded as follows.

• atMost(1, ): quadratic number of pairwise mutex clauses.

• exactly(1, ): commander-variable encoding (Klieber & Kwon, 2007).

• exactly(k, ): cardinality networks (Ab́ıo et al., 2013).

• atMost(k, ) of Constraints (21), (40) and (47): sequential counter (Sinz, 2005).

• atMost(k, ) of Constraints (44): cardinality network (Ab́ıo et al., 2013).

• sort( , ) of Constraints (36): cardinality network (Ab́ıo et al., 2013).

These are the encodings that we found to return the best results on this problem.

5. Mixed-Integer Programming Model

In this section we provide a native MIP formulation that exactly solves the B2BSOP. This
formulation is based on the logical model presented by Pesant et al. (2015), extended with
new constraints to encode additional participants’ requirements. In this formulation, the
feasibility of the problem is encoded with a set of binary variables representing that a
meeting is held in a particular time slot, where a set of constraints on these variables
enforces a feasible schedule without considering the minimization of breaks. Then, the
objective function is encoded using binary variables determining the terminating time slots
of the breaks of each participant, which are linked to the feasibility problem through a
series of linearized logical constraints. Although there exist other MIP formulations to this
problem (Pesant et al., 2015), they do not show remarkable improvements solving real-world
B2B instances, so they are not considered in this work.

At the end of this section we also provide further improvements of the introduced MIP
formulation.
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5.1 Feasibility

We first give the formulation to enforce the feasibility of a solution. Let xmt be a binary
variable that equals 1 if a meeting m is held at time t. Using these variables, the following
constraints enforce the feasibility of a schedule:

∑
t∈T

xmt = 1 m ∈M (48)∑
m∈Mp

xmt ≤ 1 p ∈ P, t ∈ T (49)

∑
m∈M

xmt ≤ |L| t ∈ T (50)

xmt = 0 m ∈MAM , t ∈ TPM (51)

xmt = 0 m ∈MPM , t ∈ TAM (52)

Constraints (48) force each meeting to be held exactly once. Constraints (49) force each
participant to be in at most one meeting at a time. Constraints (50) force the number
of meetings at any time to be at most the number of available locations. Finally, Con-
straints (51) and (52) force the fixed sessions.

5.2 Optimization

In order to define the optimization function of the B2BSOP, we define the following vari-
ables:

b′ ∈ N Variable upper bounding the maximum number of breaks assigned
to any participant.

ypt ∈ {0, 1} Indicator if participant p has a meeting at time t.
zpt ∈ {0, 1} Equals 1 for time t starting from participant p′s first meeting.
hpt ∈ {0, 1} Indicator if time t terminates a break for participant p.

The variables hpt contribute a value of 1 to the objective function. The necessary
constraints linking these variables to the model are the following.

∑
t∈T

ypt = |Mp| p ∈ P (53)

xmt ≤ ypt p ∈ P,m ∈Mp, t ∈ T (54)

ypt ≤ zpt p ∈ P, t ∈ T (55)

zpt ≤ zp,t+1 p ∈ P, t ∈ T, t ≤ |T | − 1 (56)

yp,t+1 − hpt ≤ ypt + 1− zpt p ∈ P, t ∈ T, t ≤ |T | − 1 (57)∑
t∈T

hpt ≤ b′ p ∈ P (58)∑
t∈T

hpt ≥ b′ − d p ∈ P (59)
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Constraints (53) through (56) link the y and z variables to the formulation. Con-
straints (57) then link the h variables to the formulation, forcing a break to be counted after
an idle period. Constraints (58) and (59) are fairness constraints that limit the difference
in the number of breaks per participant. We then define the problem as the minimization
of the objective function: ∑

p∈P

∑
t∈T

hpt (60)

subject to constraints (48) through (52) and (53) through (59).

5.3 Additional Constraints

We add the following constraints for the extensions of the problem described in Section 2
that are not supported by Pesant et al. (2015):

• Fixed meetings. Every fixed meeting is scheduled in its corresponding time slot.

xm,fixed(m) = 1 m ∈M : fixed(m) > 0 (61)

• Forbidden time slots. No meeting is scheduled in a forbidden time slot for any
participant.

ypt = 0 p ∈ P, t ∈ forb(p) (62)

• Meeting precedences. Every meeting is scheduled after the meeting that precedes
it.

xmt ≤
∑
t′<t

xm′t′ m ∈M,m′ ∈ prec(m), t ∈ T (63)

5.4 Further Improvements

In order to improve the model, we also add the following implied constraints.

∑
p∈P

ypt ≤ 2 ∗ |L| t ∈ T (64)

zp(|T |) = 0 p ∈ P : |Mp| = 0 (65)

zp(|T |) = 1 p ∈ P : |Mp| > 0 (66)

zpt = 1 p ∈ P, t ∈ T : |Mp| = |T | (67)

hpt = 0 p ∈ P, t ∈ T : |Mp| ≤ 1 ∨ |Mp| = |T | (68)

d ≥ b′ −max(0,min
p∈P

(min(|Mp| − 1, |T | − |Mp|))) (69)

Constraint (64) is analogous to Implied Constraint (44) of the MaxSAT model. Notice
however, that Implied Constraint (43) of the MaxSAT model is analogous to Constraint (53)
of the MIP model. Constraints (65), (66) and (67) enforce that variables zpt have the
right value in the last time slot, according to the number of meetings of each participant.
Constraint (68) enforces the right value of variables hpt for those participants that will not
have any break according to their number of meetings. Finally, Constraint (69) bounds b′

taking into account the maximum possible number of breaks of the participant.
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6. Comparing Models

Even though the models described in the previous sections are meant to be used with differ-
ent solving approaches and therefore are likely to each be expressed in the most appropriate
yet distinct formalism for the approach used, it can be instructive to examine the main dif-
ferences between them, beyond the usual observation that CP models typically use fewer
variables (not being Boolean/binary) and fewer constraints (thanks to global constraints
representing common combinatorial substructures).

The most immediate and fundamental difference is in the choice of variables. The CP
models are participant-centered, using variables whose value represents the meeting attended
by a participant at a given time. This makes it easy to retrieve what a given participant
is doing at a particular time but not so much when a given meeting is set to happen. The
MaxSAT models, following what was proposed by Bofill et al. (2014), are meeting-centered,
featuring Boolean variables stating whether a meeting is happening at a given time. This
makes it easy to retrieve when a given meeting occurs but not so much a given participant’s
schedule. The MIP model is meeting-centered as well and almost identical to the MaxSAT
models as far as the feasibility part is concerned: Boolean variables become binary variables
and cardinality constraints become (pseudo-Boolean) linear constraints.

The meeting-centered viewpoint could have been an alternative for CP however such a
representation would not have allowed expressing constraints directly on the sequence of
meetings for a participant, which is important to evaluate the cost of an individual schedule
and ultimately the objective we seek to minimize. All constraints in the CP models are easily
expressed using the participant-centered variables except if we add meeting precedences, for
which auxiliary variables providing a meetings viewpoint are defined and linked to the main
variables. Feasibility constraints in the MaxSAT and MIP models are easily expressed using
meeting-centered variables but optimization and fairness constraints — both related to a
participant’s schedule — require auxiliary variables.

Another distinctive feature is how optimization is handled. For our CP and MIP ap-
proaches, all constraints are considered hard. In the CP model, optimization constraint
cost regular assigns a unit cost to each break in a schedule and provides a cost variable
thus summing breaks and that can be used by the objective function. The logical MIP
model described in this paper defines the objective function through auxiliary variables but
other MIP models described in Pesant et al. (2015), closer to the CP model, linearize the
cost regular formulation. In contrast, for our MaxSAT approach some constraints —
those enforcing that there should be no break — are specified as soft so that maximizing
the number of satisfied soft constraints achieves the desired objective.

For all three approaches, sometimes adding redundant/implied constraints (cuts) helps
solve problems faster. Such is the case here for the implied constraints mentioned for
MaxSAT and MIP — these do not need to be added in our CP models because they are
already expressed through the global cardinality constraints.

7. Evaluation

In this section we describe the results of the experimental investigation performed. In
particular, we present:
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Table 1: Description of original B2B instances.
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#participants 70 76 70 78 60 60 60 60 42 42 47 46 47 60 60 60 70 76 70 78
#meetings 154 195 154 302 237 237 236 236 125 125 180 184 180 237 237 236 154 195 154 302
#time slots 21 22 21 22 10 10 10 10 8 8 10 10 10 10 10 10 21 22 21 22
#locations 14 14 12 22 27 25 25 24 21 16 21 21 19 27 25 25 14 14 12 22
%forbidden 6.3 4.6 6.3 10.8 12.3 12.3 12.3 12.3 12.5 12.5 10 10 10 10 10 10 4.8 4.6 4.8 4.6
AM/PM? Y Y Y Y N N N N N N N N N N N N Y Y Y Y
%morningslots 13 12 13 12 - - - - - - - - - - - - 13 12 13 12

• An evaluation of the different CP models, using A0 and A1 automata, considering
the complete schedule of each participant or a reified version of it. This is done in
Subsection 7.1.

• An evaluation of the different MaxSAT encodings with the distinct improvements
proposed on the original instances. This is done in Subsection 7.2.

• An evaluation of the proposed MIP models, again on the original instances. This is
done in Subsection 7.3.

• A comparison of the best CP, MaxSAT and MIP configurations. The comparison
is done on the original instances as well as on crafted versions of those original in-
stances where additional constraints have been considered (fixed sessions, fixed meet-
ings, forbidden time slots, precedences and distinct fairness values). This is done in
Subsection 7.4.

In Table 1 we describe the characteristics of the original B2B instances used in the
experiments. In particular, we report the number of participants, meetings, time slots and
locations for each instance, as well as the percentages of forbidden time slots and morning
time slots. We recall that these instances have been already used in previous works (Bofill
et al., 2014; Pesant et al., 2015; Bofill et al., 2015). There are no instances with fixed
meetings or meeting precedences. As in previous works, the value of fairness d has been set
to 2.

The experiments have been run on a cluster of CPU nodes Intel Xeon E3-1220v2 at 3.10
GHz with 8GB of RAM. The timeout is 7200 seconds in all experiments.

7.1 CP Evaluation

We have considered the models described in Section 3 with automata A0 and A1 (automaton
A2 was too big). Moreover, we have used these automata either on the s variables (the ones
describing the complete schedule of each participant) or on a reification of them (reified)
meaning having meeting/not having meeting.

These models have been implemented using MiniZinc. Thanks to this we have been able
to easily compare three solving methodologies: pure CP with Gecode2 (Schulte, Tack, &

2. https://github.com/Gecode/gecode.
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Lagerkvist, 2019) version 6.2.0, Lazy Clause Generation with Chuffed3 (Chu, 2011) commit
23b9fce, and integer programming with IBM ILOG Cplex4 (Cplex, 2009) version 12.9.0. In
Appendix A we provide a complete MiniZinc model and details on how to build the different
variants.

Regarding search strategies,5 we considered input order and first fail strategies
for s variables, resulting in no significant performance difference but being slightly better
input order. This is the search strategy used for Gecode. However, for Chuffed we ob-
tained much better results with a search strategy that first tries to make the objective value
as small as possible, and then continues with input order over variables s. Moreover, for
Chuffed we also enable the free search option, which alternates between the given search
strategy and activity-based search strategy.

Table 2: Comparison of A1 and A0 with Chuffed solver. Fairness is set to d = 2. TO stands
for time-out (7200 seconds).

A1 A0

instance complete reified complete reified

forum-13 TO 1 1427.4 0 4182.5 0 2891.2 0
forum-13crafb TO 26 1808.3 6 3551.0 6 1725.6 6
forum-13crafc TO 20 TO 10 TO 21 TO 14
forum-14 TO 104 3465.8 2 3802.1 2 873.9 2
forumt-14 10.9 5 4.2 5 12.6 5 5.6 5
forumt-14crafc 72.5 5 29.0 5 35.8 5 20.2 5
forumt-14crafd 63.7 4 30.9 4 32.0 4 20.9 4
forumt-14crafe 56.3 5 37.5 5 34.9 5 26.3 5
tic-12 2.3 0 0.8 0 2.5 0 0.8 0
tic-12crafc 2.1 0 0.9 0 4.1 0 1.2 0
tic-13 23.6 0 17.3 0 45.6 0 16.9 0
tic-13crafb 8.2 0 3.2 0 4.1 0 2.0 0
tic-13crafc 1746.0 4 847.6 4 1643.9 4 518.2 4
tic-14crafa 54.0 0 25.0 0 46.4 0 22.4 0
tic-14crafc 44.8 0 34.4 0 55.3 0 24.1 0
tic-14crafd 11.5 0 3.4 0 21.4 0 6.2 0
ticf-13crafa TO 2 5657.7 0 TO 2 2973.4 0
ticf-13crafb TO 22 3026.2 3 3932.0 3 2291.9 3
ticf-13crafc TO 20 TO 11 TO 21 TO 13
ticf-14crafa TO 116 5249.8 0 TO 71 1714.8 0

#solved 12 18 16 18

In Table 2 we report on the evaluation of the four possible configurations with Chuffed
on the original instances. As we can observe, reified always solves more instances than

3. https://github.com/chuffed/chuffed.
4. https://www.ibm.com/products/ilog-cplex-optimization-studio.
5. The search strategy originally used by Pesant et al. (2015) is not available in MiniZinc.
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complete. Also, A0 is better than A1, since it solves more instances in complete, and
the same instances but generally faster in reified. This may well be due to the fact that
A0 with reification results in the smallest configuration. Therefore, A0 and reified is the
chosen configuration for the remaining experiments when using Chuffed. We have also
tested Gecode and Cplex solvers with the four configurations of automata, which are not
competitive as shown in Subsection 7.4.1. In particular, the results with Gecode are not
competitive at all, but we include in Table 5 the results with A0 and reified which is
the best option. Regarding Cplex, A0 and reified is also the best option, but as we will
observe in Table 5, using the native MIP model gives much better results than using a MIP
translation of the CP models.

7.2 MaxSAT Evaluation

In this section we analyze the efficiency of the MaxSAT encodings provided in Section 4,
namely: basic (corresponding to the MaxSAT base encoding), imp1, imp2, imp12 and
imp12+, which correspond to the encodings that incorporate the first, the second, and both
implied constraints, as well as the further improvements, respectively. The MaxSAT solver
used is UWrMaxSAT6 (Piotrów, 2019) version 1.0, which was one of the best MaxSAT
solvers of the unweighted track of the 2019 MaxSAT Evaluation.

In Table 3, we report on the solving times obtained with each approach on the set of
original instances. As we can see, adding implied constraints results in better performances.
In particular, with imp12 we are able to solve all the 20 instances (in Section 4.4 we provide
possible hints on the interaction between the implied constraint to early prune wrong partial
assignments). Another interesting observation is that imp1 seems to be a bit faster than
imp2, but each of these two encodings is able to solve two instances that cannot be solved
by the other. This suggests that imp1 and imp2 may be somehow complementary in harder
instances. Finally, imp12+ is able to improve the solving times in 19 of the 20 instances
considered with respect to imp12, hence this is the chosen encoding for the remaining
experiments and we refer to it as MaxSAT.

7.3 MIP Evaluation

In this section we compare the native MIP model provided in Section 5, with and without
the improvements of Subsection 5.4. We refer to these as imp and basic respectivelly. For
solving the MIP models we use IBM ILOG Cplex (Cplex, 2009) version 12.9.0.

As we can see in Table 4, the implied constraints added in Section 5.4 slightly improve
the efficiency of the approach allowing one more instance to be solved and improving the
solving times of many other instances. Therefore, from now on we will use this improved
model and refer to it simply as MIP.

7.4 Comparison

In this section we compare the best CP configuration, the best MaxSAT encoding and the
best MIP formulation on the original instances as well as on crafted modifications from
these. The crafted modifications add some properties that we think are worthy to take

6. https://github.com/marekpiotrow/UWrMaxSat.
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Table 3: Solving times and best solutions found on original B2B instances with MaxSAT.
Fairness is set to d = 2. TO stands for time-out (7200 seconds).

instance basic imp1 imp2 imp12 imp12+

forum-13 2.5 0 2.4 0 6.5 0 2.9 0 2.5 0
forum-13crafb TO 80.6 6 248.1 6 37.5 6 23.3 6
forum-13crafc 17.8 1 2.7 1 43.9 1 22.4 1 2.3 1
forum-14 TO 14.6 2 TO 11.9 2 5.1 2
forumt-14 2.8 5 1.6 5 3.0 5 1.6 5 0.5 5
forumt-14crafc 9.4 5 1.8 5 4.1 5 1.6 5 0.9 5
forumt-14crafd 2.6 4 1.9 4 7.8 4 1.5 4 0.4 4
forumt-14crafe TO TO 92.4 5 1.5 5 0.6 5
tic-12 0.6 0 0.4 0 0.6 0 0.3 0 0.1 0
tic-12crafc 0.8 0 0.5 0 1.4 0 0.2 0 0.3 0
tic-13 1.1 0 1.6 0 2.5 0 1.5 0 0.4 0
tic-13crafb 1.3 0 1.4 0 1.2 0 1.4 0 0.4 0
tic-13crafc TO TO 200.7 4 7.6 4 5.8 4
tic-14crafa 2.5 0 1.7 0 2.9 0 1.8 0 1.0 0
tic-14crafc 51.3 0 3.5 0 5.9 0 1.5 0 0.8 0
tic-14crafd 4.0 0 1.8 0 2.7 0 1.5 0 0.8 0
ticf-13crafa 3.3 0 2.5 0 9.9 0 5.1 0 2.2 0
ticf-13crafb 822.2 3 90.2 3 213.8 3 31.3 3 22.3 3
ticf-13crafc 40.1 1 4.7 1 438.6 1 15.5 1 3.7 1
ticf-14crafa TO 32.7 0 TO 12.4 0 7.6 0

#solved 15 18 18 20 20

into account in the comparisons like, for instance, more constrained instances, unsatisfiable
instances, higher optimums, etc.

7.4.1 Comparison on the Original Instances

In Table 5 we compare all best configurations and encodings of the considered approaches.
As we can see, MaxSAT clearly dominates all other approaches since it is able to solve all
the instances, sometimes orders of magnitude faster than the others. Notice that its worst
reported solving time is of just 24 seconds (within a time-out of 7200 seconds). The next
best approach is Chuffed with 18 solved instances, and then the native MIP model with
16. It is worth noticing that the CP model with Gecode and Cplex is not able to provide
any upper bound for several instances while Chuffed and the native MIP model always
report some solution. Therefore, Gecode and Cplex for CP are not used in the remaining
experiments.

Next we extend the set of benchmarks by introducing some random modifications to
each original B2B instance (forbidden time slots, fixed meetings, and meeting precedences).
We also analyze how the value of the fairness parameter d affects the solvers’ performance.
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Table 4: Solving times and best solutions found on original B2B instances with MIP models,
non-using improvements of Subsection 5.4 (basic) and using them (imp). Fairness
is set to d = 2. TO stands for time-out (7200 seconds).

instance basic imp

forum-13 3765.7 0 648.4 0
forum-13crafb TO 22 TO 12
forum-13crafc TO 6 TO 8
forum-14 TO 28 TO 21
forumt-14 173.1 5 44.9 5
forumt-14crafc 143.3 5 894.2 5
forumt-14crafd 1724.4 4 217.6 4
forumt-14crafe TO 5 1311.8 5
tic-12 4.4 0 13.8 0
tic-12crafc 20.4 0 8.9 0
tic-13 3499.1 0 162.5 0
tic-13crafb 62.7 0 44.1 0
tic-13crafc 206.9 4 128.6 4
tic-14crafa 1443.6 0 326.3 0
tic-14crafc 302.8 0 628.1 0
tic-14crafd 872.3 0 194.7 0
ticf-13crafa 2012.5 0 1583.6 0
ticf-13crafb TO 29 TO 17
ticf-13crafc TO 14 TO 3
ticf-14crafa TO 26 TO 22

#solved 13 14

These modifications produce a set of 180 new B2B instances, that we add to the 20 original
ones.

7.4.2 Forbidden Slots

The first modification introduced is on forbidden time slots. In particular, we modify the
original B2B instances by varying the density α of forbidden time slots, with 0 ≤ α ≤ 100,
where α = 0 means that no participant has any forbidden time slot, and α = 100 means
that all participants have all time slots forbidden (thus the instance is trivially infeasible).
We evaluate this modification with α = 0.3% and α = 0.7%. Forbidden time slots are
generated randomly. In order to generate these instances, we previously remove any existing
forbidden time slot. We use such low values of α because we noticed that instances become
unsatisfiable at very low densities. This is due to the existence of participants requesting
as many meetings as available time slots. For them, there would be no feasible schedule
if they had some forbidden time slot (this case never happens in the original instances).
Experiments on these sets of instances are reported in Table 6.
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Table 5: Solving times, and best solutions found, on original B2B problems with CP solvers.
Fairness is set to d = 2. TO stands for time-out (7200 seconds).

instance MaxSAT
CP

MIP
Chuffed Gecode Cplex

forum-13 2.5 0 2891.2 0 TO 55 4174.0 0 648.4 0
forum-13crafb 23.3 6 1725.6 6 TO TO TO 12
forum-13crafc 2.3 1 TO 14 TO 56 TO 10 TO 8
forum-14 5.1 2 873.9 2 TO TO TO 21
forumt-14 0.5 5 5.6 5 TO 27 3201.5 5 44.9 5
forumt-14crafc 0.9 5 20.2 5 TO 24 3866.3 5 894.2 5
forumt-14crafd 0.4 4 20.9 4 TO 3726.6 4 217.6 4
forumt-14crafe 0.6 5 26.3 5 TO TO 6 1311.8 5
tic-12 0.1 0 0.8 0 TO 10 258.0 0 13.8 0
tic-12crafc 0.3 0 1.2 0 TO 10 278.1 0 8.9 0
tic-13 0.4 0 16.9 0 TO 15 3595.7 0 162.5 0
tic-13crafb 0.4 0 2.0 0 TO 14 1842.4 0 44.1 0
tic-13crafc 5.8 4 518.2 4 TO TO 4 128.6 4
tic-14crafa 1.0 0 22.4 0 TO 6955.3 0 326.3 0
tic-14crafc 0.8 0 24.1 0 TO 4986.6 0 628.1 0
tic-14crafd 0.8 0 6.2 0 TO 6375.9 0 194.7 0
ticf-13crafa 2.2 0 2473.4 0 TO 53 TO 5 1583.6 0
ticf-13crafb 22.3 3 2291.9 3 TO TO TO 17
ticf-13crafc 3.7 1 TO 13 TO 56 TO 19 TO 3
ticf-14crafa 7.6 0 1714.8 0 TO TO TO 22

#solved 20 18 0 11 14

It can be observed that MaxSAT is the best solving approach, solving again all the in-
stances. On some instances it is three orders of magnitude faster than the other approaches.
However MIP is slightly faster for proving infeasibility, although it is the approach that
solves the smallest number of benchmarks.

7.4.3 Fixed Meetings

In the second modification, we introduce randomly chosen fixed meetings. In particular,
we vary the density β of fixed meetings, with 0 ≤ β ≤ 100, where β = 0 means that no
meeting is fixed and β = 100 corresponds to the instance in which all meetings have to be
scheduled in a fixed time slot. In order to generate these instances, we select β% randomly
chosen meetings, which are assigned to a randomly chosen time slot each. Additionally, we
only allow fixed meetings in a time slot if none of the participants to the meeting has this
time slot as forbidden or another fixed meeting in it. We evaluate this modification with
β = {20, 40}%. Again, bigger β results in a majority of unsatisfiable instances. Experiments
on these sets of instances are reported in Table 7.
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Table 6: Solving times, and best solutions found (’-’ meaning unsatisfiability reported), on
instances with a density of forbidden time slots α = 0.3% and α = 0.7%. Fairness
is set to d = 2. TO stands for time-out (7200 seconds).

instance
α = 0.3% α = 0.7%

MaxSAT Chuffed MIP MaxSAT Chuffed MIP

forum-13 2.1 0 5841.6 0 1563.4 0 2.0 0 6161.0 0 2834.3 0
forum-13crafb 38.0 5 2819.4 5 TO 22 28.4 5 2714.2 5 TO 26
forum-13crafc 5.6 1 TO 14 TO 8 7.6 1 TO 13 TO 4
forum-14 6.8 0 2227.4 0 TO 34 0.7 - 8.0 - 0.1 -
forumt-14 1.0 0 24.0 0 244.2 0 0.3 - 2.5 - 0.1 -
forumt-14crafc 0.8 0 26.5 0 296.4 0 0.3 - 2.4 - 0.1 -
forumt-14crafd 0.3 - 2.8 - 0.1 - 0.3 - 2.5 - 0.1 -
forumt-14crafe 0.3 - 2.7 - 0.1 - 0.5 - 2.6 - 0.1 -
tic-12 0.2 - 0.7 - 0.1 - 0.1 - 1.1 - 0.1 -
tic-12crafc 0.3 - 0.7 - 0.1 - 0.7 - 0.7 - 0.1 -
tic-13 0.3 - 1.3 - 0.1 - 0.3 - 1.3 - 0.1 -
tic-13crafb 0.3 0 1.9 0 11.6 0 0.5 - 2.3 - 0.1 -
tic-13crafc 0.3 - 1.4 - 0.1 - 0.3 - 1.4 - 0.1 -
tic-14crafa 1.0 0 24.8 0 181.7 0 0.3 - 2.6 - 0.2 -
tic-14crafc 0.8 0 28.5 0 235.9 0 0.4 - 2.5 - 0.1 -
tic-14crafd 0.4 - 2.7 - 0.1 - 0.3 - 2.8 - 0.1 -
ticf-13crafa 2.3 0 5933.1 0 1042.1 0 2.0 0 5245.9 0 2548.6 0
ticf-13crafb 37.4 5 2799.8 5 TO 22 28.3 5 5385.6 5 TO 22
ticf-13crafc 5.2 1 TO 13 TO 7 7.4 1 TO 11 TO 4
ticf-14crafa 6.6 0 2776.4 0 TO 34 0.4 - 13.5 - 0.1 -

#solved 20 18 14 20 18 16

The introduction of fixed meetings results in a significant increase of optimums, some of
them reaching to 50 breaks. We have observed that some of the infeasibilities are due to the
homogeneity constraint (notice that with a higher number of holes, fairness may become
more difficult). This increase of optimums does not hurt at all the MaxSAT approach, which
dominates again the other approaches and notably reduces the solving times compared to
the original instances. This improvement in solving times also applies to Chuffed, which
now is able to solve all the instances with both densities. Regarding MIP, it worsens its
performance with β = 20% but it is able to solve all instances with β = 40%. Notice that
with β = 40% we already have more than half of instances unsatisfiable and all approaches
are able to solve them easily.

7.4.4 Precedences

The third modification introduces random precedences among meetings. In this case, we
modify the density γ of precedences among the meetings of all participants, with 0 ≤
γ ≤ 100, where γ = 0 means that no meeting must precede another, whereas γ = 100
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Table 7: Solving times, and best solutions found, on instances with a density of fixed meet-
ings β = 20% and β = 40%. Fairness is set to d = 2. TO stands for time-out
(7200 seconds).

instance
β = 20% β = 40%

MaxSAT Chuffed MIP MaxSAT Chuffed MIP

forum-13 1.8 20 90.9 20 1632.58 20 1.4 49 30.8 49 27.4 49
forum-13crafb 2.2 30 149.6 30 TO 33 0.4 - 0.1 - 0.1 -
forum-13crafc 1.8 20 327.3 20 TO 21 1.4 50 98.0 50 116.8 50
forum-14 4.7 20 725.9 20 TO 38 0.7 - 8.6 - 0.8 -
forumt-14 0.5 7 36.7 7 92.8 7 0.3 - 1.8 - 0.2 -
forumt-14crafc 0.5 7 30.3 7 307.2 7 0.4 - 1.8 - 0.1 -
forumt-14crafd 0.4 9 15.1 9 18.1 9 0.4 - 1.9 - 0.1 -
forumt-14crafe 0.5 9 19.1 9 40.1 9 0.3 - 2.1 - 0.1 -
tic-12 0.1 1 0.9 1 1.1 1 0.1 - 0.6 - 0.1 -
tic-12crafc 0.3 1 1.1 1 1.0 1 0.2 - 0.6 - 0.1 -
tic-13 0.4 2 1.9 2 47.2 2 0.5 13 13.3 13 6.0 13
tic-13crafb 0.2 1 3.2 1 23.5 1 2.0 16 2.2 16 1.4 16
tic-13crafc 1.0 6 19.7 6 13.2 6 15.7 16 1892.1 16 6.6 16
tic-14crafa 0.5 2 12.1 2 116.8 2 0.3 - 1.9 - 0.1 -
tic-14crafc 0.6 3 30.6 3 140.4 3 0.4 - 2.0 - 0.1 -
tic-14crafd 0.4 2 17.2 2 97.9 2 0.4 2.0 - 0.2 -
ticf-13crafa 2.1 20 93.0 20 3600.3 20 1.2 49 40.9 49 53.1 49
ticf-13crafb 2.5 27 208.9 27 TO 30 0.7 - 0.1 - 0.1 -
ticf-13crafc 2.0 20 532.2 20 TO 22 1.2 49 66.5 49 145.0 49
ticf-14crafa 4.9 21 791.5 21 TO 36 0.5 - 13.5 - 0.7 -

#solved 20 20 14 20 20 20

corresponds to the case where, for each participant, all her meetings must be preceded by
another (which is trivially infeasible). We evaluate this modification with γ = {15, 25}%.
Experiments on these sets of instances are reported in Table 8.

Once more MaxSAT is the best approach solving all the instances, but this modification
makes some of them a bit harder than the original ones. Chuffed is the second best solving
technique, but again MIP is the fastest at solving unsatisfiable instances.

7.4.5 Fairness

Finally, we analyze how the value of the fairness parameter d affects the results. To this
purpose, we set the value of fairness to d = {0, 1, 3}. We recall that the value d represents the
maximum difference in the number of breaks between any two participants. For instance,
when d = 0, all participants are forced to have the same number of breaks. We recall that
the experiments presented before correspond to the case where d = 2. Experiments on these
sets of instances are reported in Tables 9, 10 and 11, respectively.

288



Constraint Solving Approaches to the b2b Meeting Scheduling Problem

Table 8: Solving times, and best solutions found (’-’ meaning unsatisfiability reported), on
instances with a density of precedences among meetings γ = 15% and γ = 25%.
Fairness is set to d = 2.

instance
γ = 15% γ = 25%

MaxSAT Chuffed MIP MaxSAT Chuffed MIP

forum-13 2.3 0 2053.0 0 4567.6 0 1.3 - 3.1 - 0.1 -
forum-13crafb 1.9 - 10.7 - 0.1 - 1.9 - 8.3 - 0.1 -
forum-13crafc 2.4 1 TO 12 TO 7 1.3 - 3.8 - 0.1 -
forum-14 21.9 2 2085.3 2 TO 34 2.5 - 7.8 - 0.1 -
forumt-14 0.4 5 37.8 5 504.2 5 1.0 5 176.1 5 2791.1 5
forumt-14crafc 0.9 5 42.7 5 569.1 5 1.5 5 127.8 5 1195.2 5
forumt-14crafd 0.4 4 46.4 4 TO 6 1.4 4 63.4 4 1068.7 4
forumt-14crafe 1.0 5 49.7 5 TO 5 0.9 5 111.0 5 5440.1 5
tic-12 0.2 0 1.6 0 12.6 0 0.2 0 8.6 0 218.3 0
tic-12crafc 0.3 0 1.5 0 9.0 0 0.6 0 18.9 0 267.7 0
tic-13 0.4 0 27.9 0 243.0 0 0.8 0 65.3 0 4698.0 0
tic-13crafb 0.7 0 27.5 0 846.0 0 0.6 0 57.6 0 565.8 0
tic-13crafc 6.8 4 485.6 4 195.8 4 6.7 4 873.5 4 3001.2 4
tic-14crafa 1.1 0 62.0 0 661.8 0 1.4 0 153.8 0 TO 2
tic-14crafc 0.8 0 44.0 0 1265.0 0 1.3 0 133.4 0 TO 2
tic-14crafd 0.8 0 52.7 0 787.7 0 1.5 0 107.4 0 TO 5
ticf-13crafa 2.8 0 4185.2 0 4795.9 0 1.8 - 3.3 - 0.1 -
ticf-13crafb 2.1 - 6.6 - 0.1 - 2.1 - 5.0 - 0.1 -
ticf-13crafc 3.9 1 TO 12 TO 7 1.7 - 3.3 - 0.1 -
ticf-14crafa 170.5 0 7013.5 0 TO 45 2.7 - 11.8 - 0.1 -

#solved 20 18 14 20 20 17

First of all we can observe that with d = 0 there are a lot of unsatisfiable instances.
Notice that there are instances with participants that cannot have any break in their sched-
ules (because they have just one meeting or they have as many meeting as time periods).
Therefore, all the problems with an optimum bigger than 0 in their corresponding original
instance will become unsatisfiable by setting the fairness to d = 0. Solving times are smaller
for all the approaches. In fact, in this setting MIP is the second best, being able to close
all the instances. For d = 1 and d = 3, no unsatisfiable instance appears and solving times
are quite similar than with d = 2. MaxSAT is again the best solving approach.

8. Conclusions

We have precisely formulated the Business-to-Business Meeting Scheduling Optimization
problem (B2BSOP) and presented a comparative study of different model-and-solve exact
approaches to this problem. In particular, we have evaluated CP, MaxSAT and MIP for-
mulations, and considered distinct CP solving technologies. The considered approaches are
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Table 9: Solving times, and best solutions found (’-’ meaning unsatisfiability reported), on
instances with fairness d = 0.

instance MaxSAT Chuffed MIP

forum-13 2.1 0 1190.4 0 38.9 0
forum-13crafb 1.4 - 7.2 - 0.4 -
forum-13crafc 1.6 - TO 106.1 -
forum-14 1.6 - 10.8 - 0.4 -
forumt-14 0.2 - 5.5 - 0.1 -
forumt-14crafc 0.2 - 4.6 - 0.1 -
forumt-14crafd 0.2 - 5.0 - 0.1 -
forumt-14crafe 0.2 - 4.5 - 0.2 -
tic-12 0.2 0 2.3 0 0.2 0
tic-12crafc 0.2 0 2.3 0 0.1 0
tic-13 0.3 0 6.1 0 2.8 0
tic-13crafb 0.3 0 5.8 0 0.2 0
tic-13crafc 0.2 - 4.2 - 1.1 -
tic-14crafa 0.6 0 5.6 0 0.6 0
tic-14crafc 0.6 0 4.5 0 2.6 0
tic-14crafd 0.3 0 5.5 0 0.8 0
ticf-13crafa 2.3 0 3595.5 0 38.4 0
ticf-13crafb 1.5 - 8.4 - 0.6 -
ticf-13crafc 2.2 - TO 914.8 -
ticf-14crafa 6.3 0 67.2 0 3736.4 0

#solved 20 18 20

refinements and improvements of the best approaches as reported by Pesant et al. (2015)
and Bofill et al. (2015). In particular:

• We consider some extensions of the problem with additional constraints.

• We provide a complete MiniZinc model, and details on how to build the three variants
tested in the experiments.

• We provide a much more compact automaton to identify participants’ schedules breaks
for optimization.

• We compare the performance of the four MiniZinc models with three distinct solving
technologies: CP (Gecode), Lazy Clause Generation (Chuffed) and Linear Integer
Programming (Cplex).

• We provide further details of the MaxSAT model and extend it to deal with the new
constraints.

• We provide two more refinements of the encoding that improve even more the MaxSAT
approach performance.
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Table 10: Solving times, and best solutions found, on instances with fairness d = 1.
instance MaxSAT Chuffed MIP

forum-13 1.8 0 3604.0 0 616.0 0
forum-13crafb 43.4 6 3071.2 6 TO 21
forum-13crafc 2.4 1 TO 13 TO 6
forum-14 6.2 2 1600.0 2 TO 45
forumt-14 0.4 5 5.8 5 153.8 5
forumt-14crafc 0.5 5 20.8 5 216.3 5
forumt-14crafd 0.5 4 17.3 4 TO 5
forumt-14crafe 0.6 5 21.3 5 2016.3 5
tic-12 0.1 0 0.9 0 10.8 0
tic-12crafc 0.1 0 1.1 0 10.4 0
tic-13 0.3 0 12.9 0 13.5 0
tic-13crafb 0.2 0 2.4 0 31.6 0
tic-13crafc 6.1 4 516.2 4 98.1 4
tic-14crafa 0.7 0 21.5 0 37.9 0
tic-14crafc 0.7 0 16.0 0 301.2 0
tic-14crafd 0.6 0 5.1 0 177.5 0
ticf-13crafa 2.3 0 1629.6 0 1381.6 0
ticf-13crafb 28.9 3 2475.1 23 TO 26
ticf-13crafc 4.4 1 TO 11 TO 3
ticf-14crafa 6.6 0 1432.12 0 TO 50

#solved 20 18 13

• We improve the MIP model by Pesant et al. (2015), and adapt it to deal with the new
constraints.

The considered dataset consists of industrial B2B instances, with some variants including
constraints like precedences between meetings and forbidden time slots. We contribute 180
new instances. Some of these variants increase the number of breaks of participants but do
not make optimization harder. Experimental results show that the MaxSAT approach is
state-of-the-art for this problem among the considered technologies. Interestingly, we have
observed that the use of some implied constraints in the MaxSAT encodings improves their
performance, allowing to solve all the instances of the extended benchmark set. Among CP
solving technologies, Lazy Clause Generation dominates all other approaches, and using
the smallest automaton on the reified schedules turns to be the best configuration for all
solvers. Gecode is not competitive in the considered datasets, not being able to solve any
instance within the given time limit. Using Cplex to solve the CP formulation provides a
worse performance than using the native MIP model.

As further work we consider to investigate other variants of the B2BSOP, such as con-
sidering meetings with more than two participants, or allowing a participant to have more
than one meeting at a time (assuming, for instance, that a company is sending two rep-
resentatives to the brokerage event). Another interesting property of the schedules is to
minimize the number of location changes that participants have to do. This was prelimi-
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Table 11: Solving times, and best solutions found, on instances with fairness d = 3.
instance MaxSAT Chuffed MIP

forum-13 2.3 0 1419.6 0 1026.9 0
forum-13crafb 11.9 6 1401.6 6 TO 17
forum-13crafc 2.7 1 TO 12 TO 3
forum-14 7.2 2 1064.0 2 TO 53
forumt-14 0.4 5 4.8 5 213.0 5
forumt-14crafc 0.8 5 24.3 5 246.1 5
forumt-14crafd 0.5 4 21.2 4 87.5 4
forumt-14crafe 0.5 5 38.7 5 814.6 5
tic-12 0.2 0 0.8 0 18.4 0
tic-12crafc 0.2 0 1.7 0 6.2 0
tic-13 0.6 0 21.9 0 189.3 0
tic-13crafb 0.3 0 2.1 0 80.0 0
tic-13crafc 3.9 4 499.7 4 87.2 4
tic-14crafa 0.7 0 31.5 0 227.4 0
tic-14crafc 1.0 0 37.9 0 143.1 0
tic-14crafd 0.6 0 5.9 0 195.5 0
ticf-13crafa 2.6 0 5917.4 0 2964.9 0
ticf-13crafb 27.0 3 3328.2 3 TO 11
ticf-13crafc 4.4 1 TO 10 TO 14
ticf-14crafa 7.5 0 4211.5 0 TO 30

#solved 20 18 14

narily studied by Bofill et al. (2014), but we believe that a more integrated approach should
be considered.
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Appendix. MiniZinc Models

In this appendix we provide MiniZinc models for the CP approach. Namely, we fully
provide and comment the MiniZinc model using automaton A1 without meeting/no-meeting
reification. Finally we also provide the changes needed in order to use this reification and
automaton A0.

MiniZinc Model without Reification and with Automaton A1

MiniZinc models start with global constraints inclusions and follow with the parameters.
Parameters get values from each particular instance defined in corresponding dzn files.

We remark that, although the meetings in the parameters requested, fixed and
precedences are indexed from 1 to nMeetings, and precedences range over set
of 1..nMeetings, parameter meetingsxBusiness and variable s (in Listing 2) shift
by one the meeting references and range from 1 to nMeetings+1. We do this because the
MiniZinc global constraint cost_regular does not allow 0s in the sequence to recognize.
Recall that automata defined in Section 3.2 use 0 as no-meeting. Then, thanks to this
shifting, we can use now 1 as “no-meeting” instead of 0.

Listing 1: Parameters
include "globals.mzn";

% PARAMETERS
int: nBusiness; % number of participants
int: nMeetings; % number of meetings
int: nTables; % max number of simultaneous meetings
int: nTotalSlots; % number of timeslots
int: nMorningSlots; % number of morning slots
int: diference; % diference for fairness
array[1..nMeetings,1..3] of int: requested; % two participants
and preferred session (1 morning, 2 afternoon, 3 no
preference) of each meeting

array[1..nBusiness] of 0..nTotalSlots: nMeetingsBusiness; %
number of meetings of each participant

array[1..nBusiness] of set of 1..nMeetings+1: meetingsxBusiness;
% set of (shifted + 1) meetings of each business, (where 1 =
no meeting)

array[1..nMeetings] of 0..nTotalSlots: fixed; % fixed timeslot
for each meeting (0 = no fixed)

array[1..nBusiness] of set of 0..nTotalSlots: forbidden; % set
of forbidden timeslots per participant

array[1..nMeetings] of set of 1..nMeetings: precedences; % set
of meetings preceding each meeting

Then, variables follow. For each variable we define its domain, which typically depends
on parameters.
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Listing 2: Variables
% VARIABLES
array[1..nBusiness,1..nTotalSlots] of var 1..nMeetings+1: s; %
main variable stating for each business and timeslot which
(shifted +1) meeting is scheduled (1 = no meeting)

array[1..nTotalSlots,1..nMeetings+1] of var 0..nBusiness:
countMeetings; % auxiliar varible to count the number of
occurrences of (shifted +1) meetings in the schedules (1 = no
meeting), its domain is bounded in forthcoming constraint with
[nBusiness-2*nTables..nBusiness,{0,2}....{0,2}]

array[1..nBusiness] of var 0..nTotalSlots-1: b; % auxiliary cost
variable for each business

array[1..nMeetings] of var 1..nTotalSlots: timeOfMeeting; %
timeslot in which each meeting is held

var 0..nMeetings: mini; % auxiliary variable with the minimum
number of breaks among all participants used to enforce fairness

var 0..nMeetings: cost; % total cost variable to minimize

Then constraints follow. We first introduce feasibility related constraints and then
optimization ones.

As explained in Section 3, feasibility is basically dealt with by using the global constraint
global_cardinality. Recall that global_cardinality(seq, values, occur),
is enforcing that each values[i] occurs exactly occur[i] times in seq . Most of these
parameters are created with list comprehensions.

Listing 3: Feasibility Constraints

% CONSTRAINTS
% Feasibility Constraints
% Refine the domain of variable s according to meetings of each
business

constraint
forall (b in 1..nBusiness)(

forall (t in 1..nTotalSlots)( s[b,t] in meetingsxBusiness[b]
)

);

% Bound the possible occurrences of meetings in the schedule
using auxiliary variable countMeetings to be used in the
forthcoming global_cardinality constraint. No-meeting (1 value)
will occur at least nBusiness-2*nTables times, and all other
meetings can occur 0 or 2 times.

constraint
forall (t in 1..nTotalSlots)(

forall (m in 1..nMeetings+1)(
if m==1 then
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countMeetings[t,m] in (nBusiness-2*nTables)..nBusiness
else

countMeetings[t,m] in {0,2}
endif

)
);

constraint
forall (t in 1..nTotalSlots)(

nBusiness-sum(p in 2..nMeetings+1) (countMeetings[t,p]) ==
countMeetings[t,1]

);

% Constraint ensuring that each participant has all her meetings
scheduled and no more (counting the number of occurrences of
1s).

constraint
forall (p in 1..nBusiness)(

global_cardinality(
[s[p,t] | t in 1..nTotalSlots],
[i | i in 1..nMeetings+1],
[nTotalSlots-nMeetingsBusiness[p]]++

[if requested[m-1,1]==p \/ requested[m-1,2]==p then 1
else 0 endif | m in 2..nMeetings+1])

);

% Constraint ensuring that participants of a meeting in a same
timeslot are 0 or two (meeting 1 is a special case that depends
on the number of participants, meetings and total timeslots)

constraint
forall (t in 1..nTotalSlots)(

global_cardinality(
[s[p,t]|p in 1..nBusiness],
[i|i in 1..nMeetings+1],
[countMeetings[t,m]|m in 1..nMeetings+1])

);

Again, as explained in Section 3, optimization is basically dealt with by using the
cost_regular global constraint. This constraint is only applied to businesses p that
may have schedules with holes, i.e., businesses with more than one meeting and less than
nTotalSlots meetings, otherwise b[p]==0. We recall that the MiniZinc global constraint
cost_regular(seq,nest,alpha,trans,ini,final,trans_cost,cost) ensures
the sequence seq to be a word made of numbers from 1 to alpha belonging to the regular
language defined by the automaton with nest states, initial state ini, set of final states
final and transitions trans. These transitions are described as a 2D array stating, for
each state and possible symbol of the alphabet (in the considered code, 1..nMeetings+1),
which is the destination state (state 0 is the error state). In addition, cost is summing up
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the cost of each transition used to accept the sequence. The cost of the transitions is defined
in parameter trans_cost as an array of costs per state and symbol. In the provided code
we are defining automaton A1 and we look for breaks over the sequences [s[p,t]|t in
1..nTotalSlots] of meetings scheduled in all time slots of each participant p. Once
more, most of these parameters are created with list comprehensions. Notice however the
use of array2d to transform lists to 2D arrays.

Listing 4: Optimization
% Optimization Constraints
% cost_regular with A_1 Automaton and considering variable s to
identify breaks

% cost will sum the costs of all participants
constraint

forall (p in 1..nBusiness)(
if nMeetingsBusiness[p] <= 1 \/ nMeetingsBusiness[p] ==
nTotalSlots then
b[p]==0

else
cost_regular(

[s[p,t]|t in 1..nTotalSlots],
2*nMeetingsBusiness[p],
nMeetings+1,
array2d(1..2*nMeetingsBusiness[p],1..nMeetings+1,

[1]++[if i in meetingsxBusiness[p] then 2
else 0 endif|i in 2..nMeetings+1]++

[if e mod 2==0 then
if a==1 then

e+1
else if a in meetingsxBusiness[p] then

e+2
else

0
endif

endif
else if a==1 then

e
else if a in meetingsxBusiness[p] then

e+1
else

0
endif

endif
endif|e in 2..nMeetingsBusiness[p]*2-1,a in
1..nMeetings+1]++
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[2*nMeetingsBusiness[p]]++[0|i in
2..nMeetings+1] ),

1,
{2*nMeetingsBusiness[p]},
array2d(1..2*nMeetingsBusiness[p],1..nMeetings+1,

[0|i in 1..nMeetings+1]++
[if e mod 2==0 /\ a==1 then 1 else 0 endif|e in
2..nMeetingsBusiness[p]*2-1,a in
1..nMeetings+1]++

[0|i in 1..nMeetings+1]),
b[p])

endif
);

constraint
cost == sum(p in 1..nBusiness) (b[p]);

Finally, the remaining constraints dealing with fixed sessions, fixed meetings, forbidden
time slots, precedences and fairness.

Listing 5: Additional constraints.
% Additional Constraints
% fixed session
constraint

forall (m in 1..nMeetings)(
if requested[m,3]==1 then

forall (j in nMorningSlots+1..nTotalSlots)
(s[requested[m,1],j] != m+1)

else
if requested[m,3]==2 then

forall (j in 1..nMorningSlots)
(s[requested[m,1],j] != m+1)

else
true

endif
endif

);

% fixed meeting
constraint

forall (m in 1..nMeetings)(
if fixed[m]!=0 then

(s[requested[m,1],fixed[m]] == m+1) /\
(s[requested[m,2],fixed[m]] == m+1)

else
true
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endif
);

% forbidden timeslots
constraint

forall (p in 1..nBusiness)(
forall (j in forbidden[p])(

if j!=0 then s[p,j]==1 else true endif
)

);

% precedences
constraint forall(p in 1..nBusiness, m in meetingsxBusiness[p]
where m!=1)

(s[p,timeOfMeeting[m-1]] = m);

constraint forall(m in 1..nMeetings, j in precedences[m])
(timeOfMeeting[j] < timeOfMeeting[m]);

% Fairness
constraint

if diference>=0 then
minimum(mini,b) /\
forall (p in 1..nBusiness)(b[p]- mini <= diference)

else
true

endif;

We also show the search strategy used with Chuffed and the objective function.

Listing 6: Search strategy for Chuffed.
solve :: seq_search([int_search([cost], input_order,
indomain_min),int_search(s, input_order, indomain_min)])
minimize cost; % search strategy and objective for Chuffed

Using Reification and Automaton A0

Taking the previous Minizinc model, we just need to replace the automaton A1 of Listing 4
by the following one for A0:

Listing 7: Automaton A0 with Meeting/No-meeting Reification.
constraint

forall (p in 1..nBusiness)(
if nMeetingsBusiness[p] <= 1 \/ nMeetingsBusiness[p] ==
nTotalSlots then
b[p]==0
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else
cost_regular([ bool2int(s[p,t] > 1) + 1 | t in
1..nTotalSlots ], 3, 2,
[|1,2|3,2|3,2|],
1, 1..3,
[|0,0|0,0|0,1|],
b[p])

endif
);

Notice that here, instead of directly working with the sequence of multivalued variables
[s[p,t]|t in 1..nTotalSlots], we deal with an ad-hoc sequence of Boolean values
[bool2int(s[p,t]>1)+1|t in 1..nTotalSlots] which indicate whether meeting
p has a meeting or not at a certain time slot.

Global Constraints with Specialized Propagators for Chuffed

Chuffed solver has specialized propagators for the global_cardinality_low_up con-
straint. In order to take advantage of them, we implement constraint (4) as follows, in
replacement of the first global_cardinality in Listing 3:

Listing 8: Minizinc code for Constraint (4)
constraint

forall (p in 1..nBusiness)(
global_cardinality_low_up([s[p,t]|t in 1..nTotalSlots],

[i|i in 1..nMeetings+1],
[nTotalSlots-nMeetingsBusiness[p]]++

[if requested[m-1,1]==p \/ requested[m-1,2]==p then 1
else 0 endif|m in 2..nMeetings+1],

[nTotalSlots-nMeetingsBusiness[p]]++
[if requested[m-1,1]==p \/ requested[m-1,2]==p then 1
else 0 endif|m in 2..nMeetings+1])

);

The global_cardinality_low_up constraint alone does not allow to model Con-
straints (5) but, in order to improve propagation, we can add the following as a redundant
constraint in addition to the second global_cardinality in Listing 3:

Listing 9: Redundant Minizinc code for Constraint (5)
constraint

forall (t in 1..nTotalSlots)(
global_cardinality_low_up([s[p,t]|p in 1..nBusiness],
[i|i in 1..nMeetings+1],
[nBusiness-2*nTables]++[0|m in 1..nMeetings],
[nBusiness]++[2|m in 1..nMeetings])

);
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