
HAL Id: hal-03775319
https://amu.hal.science/hal-03775319

Submitted on 12 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining Clause Learning and Branch and Bound for
MaxSAT (Extended Abstract)

Chu-Min Li, Zhenxing Xu, Jordi Coll, Felip Manyà, Djamal Habet, Kun He

To cite this version:
Chu-Min Li, Zhenxing Xu, Jordi Coll, Felip Manyà, Djamal Habet, et al.. Combining Clause Learn-
ing and Branch and Bound for MaxSAT (Extended Abstract). 31ST INTERNATIONAL JOINT
CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI 2022), Jul 2022, Vienne, Austria. �hal-
03775319�

https://amu.hal.science/hal-03775319
https://hal.archives-ouvertes.fr

Combining Clause Learning and Branch and Bound for MaxSAT
(Extended Abstract)∗

Chu-Min Li1,2,3 , Zhenxing Xu1 , Jordi Coll3 , Felip Manyà4 , Djamal Habet3 and Kun He1
1Huazhong University of Science and Technology, Wuhan, China

2Université de Picardie Jules Verne, Amiens, France
3Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
4Artificial Intelligence Research Institute (IIIA), CSIC, Bellaterra, Spain

chu-min.li@u-picardie.fr, lxadd515@hust.edu.cn, jordi.coll@lis-lab.fr, felip@iiia.csic.es,
Djamal.Habet@univ-amu.fr, brooklet60@hust.edu.cn

Abstract
Branch and Bound (BnB) has been successfully
used to solve many combinatorial optimization
problems. However, BnB MaxSAT solvers per-
form poorly when solving real-world and academic
optimization problems. They are only competi-
tive for random and some crafted instances. Thus,
it is a prevailing opinion in the community that
BnB is not really useful for practical MaxSAT solv-
ing. We refute this opinion by presenting a new
BnB MaxSAT solver, called MaxCDCL, which
combines clause learning and an efficient bound-
ing procedure. MaxCDCL is among the top 5 out
of a total of 15 exact solvers that participated in
the 2020 MaxSAT Evaluation, solving several in-
stances that other solvers cannot solve. Further-
more, MaxCDCL solves the highest number of in-
stances from different MaxSAT Evaluations when
combined with the best existing solvers.

1 Introduction
The Maximum satisfiability problem (MaxSAT) is an opti-
mization version of the satisfiability problem (SAT). The goal
of MaxSAT is to find an assignment that satisfies the maxi-
mum number of clauses in a given multiset. If we distinguish
between hard and soft clauses, we have Partial MaxSAT and
its goal is to satisfy all the hard clauses and the maximum
number of soft clauses. This paper considers both MaxSAT
and Partial MaxSAT.

SAT and MaxSAT share many features, but in practice
solving MaxSAT is much harder than solving SAT. Indeed,
since several clauses can be falsified in a MaxSAT solution,
some fundamental SAT techniques such as unit propagation
cannot be used in MaxSAT as they are used in SAT. De-
spite this difficulty, thanks to the huge efforts of the scientific
community, it is currently possible to solve many challeng-
ing real-world and academic NP-hard optimization problems
encoded as MaxSAT instances. For this reason, MaxSAT has

∗This is an extended abstract of a paper that won the Best Pa-
per Award at the 27th International Conference on Principles and
Practice of Constraint Programming (CP 2021).

received a growing interest from academy and industry in re-
cent years.

We distinguish two types of exact MaxSAT algorithms:
Branch-and-Bound (BnB) algorithms [Li and Manyà, 2021],
which directly tackle MaxSAT with a bounding procedure
but without unit propagation and clause learning; and SAT-
based algorithms [Bacchus et al., 2021], which transform
MaxSAT into a sequence of SAT instances that are solved
with a Conflict-Driven Clause Learning (CDCL) SAT solver.

SAT-based MaxSAT solvers are usually much better than
BnB MaxSAT solvers in solving many real-world optimiza-
tion problems because they indirectly exploit clause learning
via the SAT solver. Unfortunately, it is hard for a BnB solver
to exploit clause learning. In a CDCL SAT solver, a back-
tracking happens only when a clause is falsified, from which a
sequence of resolution steps is performed to learn a clause ex-
plaining the backtracking. However, a BnB MaxSAT solver
also needs to backtrack when it computes a lower bound equal
to the upper bound [Li et al., 2007]. In this case, no clause is
explicitly falsified, making it hard to learn a clause. Probably
because of this difficulty, there has been no advance allow-
ing to significantly speed up BnB MaxSAT solvers in recent
years, as illustrated by their absence in the annual MaxSAT
Evaluation since 2017.

This paper proposes an original approach that allows a
BnB MaxSAT solver to learn a clause when it computes
a lower bound equal to the upper bound, together with a
new bounding procedure, because the one in current BnB
MaxSAT solvers is not adequate for large instances. This ap-
proach is implemented in a new BnB MaxSAT solver, called
MaxCDCL. The experimental results show that MaxCDCL
is among the top 5 out of a total of 15 exact solvers in
the 2020 MaxSAT Evaluation, solving several instances that
other solvers cannot solve. Furthermore, MaxCDCL, when
combined with the best existing solvers, solves the high-
est number of instances from different MaxSAT Evaluations.
More importantly, our results refute the prevailing opinion
stating that, although BnB is a powerful technique in combi-
natorial optimization, it is not really useful for MaxSAT.

This paper is an extended abstract of [Li et al., 2021]. The
original paper contains additional experiments and a more
detailed description of MaxCDCL, including techniques and
implementation details that have a high impact on the perfor-

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Sister Conferences Best Papers Track

5299

mance of the solver.

2 MaxCDCL: A BnB Algorithm Using CDCL
for MaxSAT

This section describes the general structure of MaxCDCL and
the two most relevant techniques of MaxCDCL: the combina-
tion of BnB and clause learning, and the new bounding pro-
cedure.

We first review some basic concepts: A Partial MaxSAT
instance ϕ is formed by a multiset of hard and soft clauses,
where a clause is a disjunction of literals and a literal is a
propositional variable x or its negation ¬x. An assignment
for ϕ assigns either true (1) or false (0) to each variable of ϕ,
satisfies a clause if some literal is true, and falsifies a clause
if all its literals are false. A clause is unit if all literals are
false but one is unassigned. Partial MaxSAT is to find an as-
signment that satisfies all the hard clauses and the maximum
number of soft clauses. SAT is Partial MaxSAT without soft
clauses and (unweighted) MaxSAT is Partial MaxSAT with-
out hard clauses.

2.1 General Structure of MaxCDCL
MaxCDCL represents the input partial MaxSAT instance us-
ing two sets: H and S. Set H contains the input hard clauses
and set S contains a new literal y for each input soft clause sc
after adding the hard clauses encoding y ↔ sc to H . We say
that y is a soft literal because it is satisfied if and only if the
corresponding soft clause is satisfied. The cost of a solution is
the number of falsified soft clauses and is equal to |falseS|,
where falseS denotes the set of falsified soft literals.

MaxCDCL is a generalization of the CDCL SAT algo-
rithm. Roughly speaking, a CDCL SAT solver explores a
search tree by alternating a search phase, where literals are
assigned until either a solution or a conflict is found, and a
learning phase that is executed after finding a conflict to learn
a new clause. Unit Propagation (UP) is the main inference
rule applied during the search: if there is a unit clause in H ,
its unassigned literal l must be set to 1. UP is applied during
the search until a clause is falsified (a conflict is found) or no
more unit clauses remain in H . If UP terminates without find-
ing a conflict, a new literal is picked following a heuristic and
is set to 1 (we make a decision) and UP is applied again. A
solution is found when all the variables are assigned without
finding a conflict.

Following the BnB procedure, MaxCDCL tries to find a
solution whose cost is smaller than a given upper bound UB.
When a solution is found, the UB is decreased by taking as
value the cost of this solution. During the search, MaxCDCL
distinguishes between hard and soft conflicts. A hard conflict
occurs when the current partial assignment falsifies a hard
clause. A soft conflict occurs when the current partial assign-
ment cannot be extended to a complete one falsifying fewer
than UB soft clauses. MaxCDCL extends the CDCL SAT
solver by also learning a hard clause from each discovered
soft conflict.

Concretely, when UP does not falsify any hard clause, it
calls, under certain conditions, a lookahead (LA) procedure
to compute a lower bound LB of the number of soft literals

that will be falsified if the current partial assignment is ex-
tended. If a soft conflict is discovered, i.e., if LB≥UB, it is
analyzed to learn a clause for backtracking. Moreover, if no
soft conflict is discovered, but LB = UB−1, MaxCDCL sat-
isfies every free soft literal y not involved in the computation
of LB by applying a procedure called hardening.

2.2 Combining Lookahead and Clause Learning
A subset of soft literals Si = {y1, . . . , y|Si|}, where |Si| ≥ 1,
is inconsistent if they cannot be simultaneously satisfied. This
inconsistency can be represented by the hard clause ¬y1 ∨
· · ·∨¬y|Si|. If the inconsistency is independent of any partial
assignment, the subset is called a global core. Otherwise,
the inconsistency is implied by a subset of literals and the
inconsistent subset of soft literals is called a local core.
Example 1. Let H = {¬y1 ∨ x1 ∨ ¬x2,¬x1 ∨ ¬x3 ∨ ¬x4,
¬y2 ∨ x3,¬y3 ∨ x5}, where y1, y2 and y3 are soft literals. If
no variable is assigned, all soft literals can be simultaneously
satisfied. So, no global core exists. However, if the current
partial assignment is {x2 = 1, x4 = 1}, the subset of soft
literals {y1, y2} is a local core implied by the partial assign-
ment. We write the implication by H∪{x2, x4} → ¬y1∨¬y2.

Proposition 1 provides the foundation of our approach in
the general case.
Proposition 1. Let H be a set of hard clauses, S =
{y1, . . . , y|S|} be the set of all soft literals, k be an inte-
ger, and Li = {li1, . . . , li|Li|} (1 ≤ i ≤ k) be a set of
literals. If, for every i (1 ≤ i ≤ k), H ∪ Li implies a
local core Si = {zi1, . . . , zi|Si|} ⊂ S (i.e., H ∪ Li →
¬zi1 ∨ · · · ∨ ¬zi|Si|), and Si and Sj are disjoint for any
j ̸= i such that 1 ≤ j ≤ k, then every assignment that sat-
isfies H ∪ {¬y1 + · · · + ¬y|S| < k} also satisfies the clause
¬l11 ∨ · · · ∨ ¬l1|L1| ∨ · · · ∨ ¬lk1 ∨ · · · ∨ ¬lk|Lk|.

Given a partial assignment F of H , the application of
Proposition 1 consists in first detecting a local core Si and
then identifying the smallest Li ⊂ F such that H ∪ Li im-
plies Si. If k is the current upper bound UB and k disjoint
local cores are detected, a soft conflict is discovered, and the
clause ¬l11 ∨ · · · ∨¬l1|L1| ∨ · · · ∨¬lk1 ∨ · · · ∨¬lk|Lk|, which
is implied by H ∪{¬y1+ · · ·+¬y|S| < k} and is falsified by
the current partial assignment, can be considered an implicit
clause explaining the soft conflict. This clause can be further
analyzed with standard SAT conflict analysis techniques to
learn a clause to be explicitly added to H to prevent the same
soft conflict in the future, exactly as in the hard conflict case.

The detection of a local core Si is implemented by using
UP in a lookahead procedure as in existing BnB MaxSAT
solvers [Li et al., 2009; Li et al., 2005; Li et al., 2006]. The
advantage of this procedure is that Si is minimal w.r.t. UP,
in the sense that UP cannot detect any local core that is a
proper subset of Si under the same partial assignment [Li et
al., 2010]. This advantage is essential for our approach, be-
cause MaxCDCL needs to learn clauses of good quality from
the detected local cores. The other existing BnB MaxSAT
solvers [Abramé and Habet, 2014; Heras et al., 2008; Kuegel,
2010; Li et al., 2007] detect disjoint local cores, but instead
of explaining them with a learnt clause they simply backtrack,
which is very different from MaxCDCL.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Sister Conferences Best Papers Track

5300

2.3 A Probing Strategy for Lookahead
Existing BnB MaxSAT solvers usually tackle random or
crafted instances of limited size and look ahead at each
branch. However, such a treatment might be too costly and
useless for large instances. If the lower bound is not tight
enough to prune the current branch, the time spent to com-
pute the lower bound is lost. When k = UB−|falseS|, the
lookahead procedure has to detect k disjoint local cores to be
successful. Generally, the greater the value of k, the lower the
probability of lookahead to be successful.

MaxCDCL uses a probing strategy to determine if looka-
head has to be applied at the current branch. With probability
0.01, lookahead is applied for probing purposes. The mean
avgp and the standard deviation devp of the number of de-
tected local cores in a successful probing lookahead are com-
puted to select the branches where lookahead is applied.

Inspired by the 68-95-99.7 rule in statistics, which says
that the values within one (two, three) standard deviation
of the mean account for about 68% (95%, 99.7%) of a nor-
mal data set, we reasonably assume that the number of cores
detected in a successful lookahead is probably lower than
avgp + coef ∗ devp when coef = 3. So, lookahead is not
applied at the current branch when k > avgp+ coef ∗ devp.
However, since the probing may not get exact information
and the values may not follow a perfect normal distribution,
coef is dynamically adjusted to maintain the success rate of
lookahead between lowRate and highRate, where lowRate
and highRate are parameters intuitively fixed to 0.6 and
0.75, respectively.

3 Experimental Evaluation
We report on an experimental investigation to assess the per-
formance of MaxCDCL. We ran all experiments with Intel
Xeon CPUs E5-2680@2.40GHz under Linux with 32GB of
memory, using the following benchmark sets:
MSE19∪20: The union of all the instances used in the com-
plete unweighted track of the MaxSAT Evaluations (MSE)
2019 and 2020, considering a total of 1000 distinct instances.
MC: A subset of the Master Collection of instances from
the MaxSAT evaluations held until 2019 1, which contains
76 subfamilies of (partial) MaxSAT instances. MC includes
all the instances of the 63 subfamilies having 100 instances
or less, and the first 100 instances as they occur in the natural
order in each of the remaining 13 subfamilies, considering a
total of 3614 instances.

The cutoff time is one hour (3600s) per instance as in the
MaxSAT Evaluation. For MaxCDCL and its variants, this
includes 60 seconds to find a feasible upper bound UBf with
SatLike (version 3.0) [Cai and Lei, 2020].

The experiments are presented as follows. Firstly, we
analyse the impact of the components implemented in Max-
CDCL. Secondly, we compare the performance of MaxCDCL
with that of the top 5 solvers in MSE2020. Finally, we show
the complementarity of MaxCDCL with the top 5 solvers by
comparing the number of instances solved using a portfolio
solver with and without MaxCDCL.

1www.cs.toronto.edu/maxsat-lib/maxsat-instances/master-
set/unweighted/

Solver #solv avg #solv avg

MaxCDCL\LA 505 255s 2183 194s
MaxCDCL\harden 664 281s 2878 194s
MaxCDCLalwaysLA 681 249s 2962 193s
MaxCDCL 734 256s 3022 156s

Table 1: Comparison of MaxCDCL with its variants for MSE19∪20
(left) and MC (right).

3.1 MaxCDCL Components
Table 1 compares MaxCDCL with the following variants:

MaxCDCL\LA. MaxCDCL without lookahead, i.e., soft
conflicts are only detected when |falseS|=UB.

MaxCDCL\harden. MaxCDCL without hardening.

MaxCDCLalwaysLA. MaxCDCL with lookahead at every
branch without using the probing strategy of Section 2.3.

In Table 1, columns “#solv” give the number of solved in-
stances and columns “avg” give the mean time in seconds
(including the 60s used by SatLike) needed to solve these in-
stances. These results indicate that a careful configuration
combining clause learning and BnB is crucial for the per-
formance of MaxCDCL, including hardening based on local
core detection and the selective and adaptive application of
lookahead. The absence of any of these components leaves a
significant number of instances out of reach of MaxCDCL.

3.2 Comparison with Top 5 Solvers in MSE2020
A total of 15 solvers competed in the complete unweighted
track of MSE2020 [Bacchus et al., 2020]. We consider
the top 5 solvers: MaxHS (mhs in short) [Bacchus, 2020],
EvalMaxSAT (eval in short) [Avellaneda, 2020], RC2-B (rc2
in short) [Ignatiev et al., 2019], open-wbo-res-mergesat-v2
(Open-WBO or owbo in short) [Martins et al., 2014], and
UWrMaxSAT (uwr in short) [Piotrów, 2020]. We executed
the versions used in MSE2020 in all the experiments. Table 2
shows the results for MSE19∪20 and MC, respectively.

We observe that MaxCDCL solves more instances than two
and four top 5 solvers in MSE19∪20 and MC, respectively.
More importantly, MaxCDCL solves a significant number
of instances that other solvers cannot solve. For example,
MaxCDCL solves 116 instances in MC that MaxHS does not
solve. If we consider all the solvers together, there is also a
significant number of instances solved by MaxCDCL that no
other solver can solve: 16 instances in MSE19∪20 and 67 in-
stances in MC. These results show that the existing MaxSAT
solvers can solve similar classes of instances. However, Max-
CDCL has the potential to solve new kinds of instances that
are not solvable with the current MaxSAT techniques. It is
important to note that MaxCDCL is far from being as opti-
mized as the other solvers, which are the result of a process
of continuous improvements since more than ten years in a
broad community.

3.3 Combining MaxCDCL with Existing Solvers
Given two deterministic solvers X and Y , the easiest way
to try to solve more instances than X and Y alone within a

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Sister Conferences Best Papers Track

5301

Solver #solv avg #uniq #win #solv avg #uniq #win

MaxHS 769 177s 11 36 3037 85.5s 26 116
EvalMaxSAT 759 129s 1 43 3002 69.7s 4 147
UWrMaxSAT 745 128s 3 42 2969 51.6s 7 141
RC2-B 728 164s 0 62 2948 70.1s 1 173
Open-WBO 695 157s 3 71 2906 89.7s 4 190
MaxCDCL 734 256s 16 - 3022 156s 67 -

Table 2: Results for MSE19∪20 (left) and MC (right) with top 5 solvers. Column “#uniq” has the number of instances that were only solved
by the solver in the row. Column “#win” has the number of instances solved by MaxCDCL but not by the solver in the row.

X \ Y mhs eval uwr rc2 owbo mcdcl mhs eval uwr rc2 owbo mcdcl

mhs 747 777 777 770 763 785 3009 3068 3073 3056 3049 3130
eval 777 745 760 751 760 786 3068 2972 3019 2986 3013 3126
uwr 777 760 730 745 746 774 3073 3019 2951 3000 2998 3098
rc2 770 751 745 713 745 778 3056 2986 3000 2921 2981 3105
owbo 763 760 746 745 675 746 3049 3013 2998 2981 2865 3076

mcdcl 785 786 774 778 746 711 3130 3126 3098 3105 3076 2992

3600s 769 759 745 728 695 734 3037 3002 2969 2948 2906 3022

Table 3: Results for MSE19∪20 (left) and MC (right). The entry in cell (X,Y) for X ̸= Y is the number of instances solved by running
solver X for 1800 seconds, and then solver Y from scratch for 1800 seconds if the instance is not solved by X . The entry in cell (X,X) (in
the diagonal in grey) is the number of instances solved by running solver X for 1800 seconds. Column X in the last row recalls the results of
solver X with 3600 seconds. The best results are in bold.

time limit T is to combine X and Y by running X within a
time limit T/2, and then Y from scratch within the remaining
time T/2 if the instance is not solved by X . Table 3 shows
the results of all possible pairwise combinations of the top 5
solvers in MSE2020 and MaxCDCL (mcdcl) for T = 3600s.

Combining any of the top 5 solvers with MaxCDCL solves
more instances than this solver and MaxCDCL alone within
3600s, while this is not always true when combining two top
5 solvers. This shows that MaxCDCL is more complemen-
tary with the top 5 solvers than other solvers. More impor-
tantly, MaxCDCL combined with the top 2 solvers, MaxHS
and EvalMaxSAT, solves the highest numbers (785 and 786)
of instances in MSE19∪20. This result is significantly better
than that of MaxHS or EvalMaxSAT alone, and the best com-
bination without MaxCDCL only solves 777 instances. The
results are even more striking in MC, where the worst com-
bination of MaxCDCL with a top 5 solver is better than any
other combination not including MaxCDCL, and combining
MaxHS and MaxCDCL gives the best results, solving 93 in-
stances more than MaxHS alone, and 57 instances more than
the best combination without MaxCDCL.

4 Conclusion
We described MaxCDCL, a MaxSAT solver that combines,
for the first time to the best of our knowledge, branch and
bound and clause learning. The performance of MaxCDCL
comes from a careful configuration combining clause learn-
ing and BnB, including hardening based on local core detec-
tion and the selective and adaptive application of lookahead.

Unlike SAT-based MaxSAT solvers, which use a CDCL
SAT solver as a black box and do not interfere in the internal
operations of the SAT solver, MaxCDCL itself can be consid-

ered a SAT solver extended to handle soft conflicts. Also, un-
like model-guided SAT-based solvers, MaxCDCL computes
a lower bound LB of the number of soft clauses that will be
falsified (but are not yet falsified), and therefore it can back-
track much earlier. MaxCDCL, core-guided or MHS-guided
MaxSAT solvers all identify cores. However, the latter only
identify global cores (i.e., the cores that do not depend on any
partial assignment), while MaxCDCL detects local cores by
using UP under a partial assignment to derive a soft conflict
for learning a clause and backtracking early.

MaxCDCL is ranked among the top 5 exact MaxSAT
solvers in MSE2020. Furthermore, it solves a significant
number of instances that other solvers cannot solve, suggest-
ing that combining BnB and clause learning has the potential
to solve new kinds of instances that current MaxSAT tech-
niques cannot solve.

The proposed approach opens new and promising research
directions, including the exploitation of the relationships be-
tween SAT and MaxSAT, the adaptation of the MaxCDCL
approach to other problems such as pseudo-Boolean opti-
mization and Max-CSP, or the extension of MaxCDCL to
weighted MaxSAT.

Acknowledgments
This work has been partially funded by the French Agence
Nationale de la Recherche, reference ANR-19-CHIA-
0013-01, and project PID2019-111544GB-C21 funded
by MCIN/AEI/10.13039/501100011033, and partially sup-
ported by Archimedes Institute, Aix-Marseille University.
F. Manyà was supported by mobility grant PRX21/00488 of
the Ministerio de Universidades. We thank the Université de
Picardie Jules Verne for providing the Matrics Platform.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Sister Conferences Best Papers Track

5302

References
[Abramé and Habet, 2014] André Abramé and Djamal Ha-

bet. Ahmaxsat: Description and evaluation of a branch and
bound Max-SAT solver. Journal on Satisfiability, Boolean
Modeling and Computation, 9:89–128, 2014.

[Avellaneda, 2020] Florent Avellaneda. A short descrip-
tion of the solver evalmaxsat. MaxSAT Evaluation 2020,
page 8, 2020.

[Bacchus et al., 2020] Fahiem Bacchus, Jeremias Berg,
Matti Järvisalo, and Ruben Martins. MaxSAT Evalua-
tion 2020: Solver and Benchmark Descriptions, volume
B-2020-2. University of Helsinki, Department of Com-
puter Science, Report Series B, 2020.

[Bacchus et al., 2021] Fahiem Bacchus, Matti Järvisalo, and
Martins Ruben. Maximum satisfiability. In Handbook of
satisfiability, second edition, pages 929–991. IOS Press,
2021.

[Bacchus, 2020] Fahiem Bacchus. MaxHS in the 2020
MaxSAT Evaluation. In MaxSAT Evaluation 2020: Solver
and Benchmark Descriptions, pages 19–20, 2020.

[Cai and Lei, 2020] Shaowei Cai and Zhendong Lei. Old
techniques in new ways: Clause weighting, unit propaga-
tion and hybridization for maximum satisfiability. Artifi-
cial Intelligence, 287:103354, 2020.

[Heras et al., 2008] Federico Heras, Javier Larrosa, and Al-
bert Oliveras. MiniMaxSAT: An efficient Weighted Max-
SAT solver. Journal of Artificial Intelligence Research,
31:1–32, 2008.

[Ignatiev et al., 2019] Alexey Ignatiev, António Morgado,
and João Marques-Silva. RC2: an efficient maxsat solver.
J. Satisf. Boolean Model. Comput., 11(1):53–64, 2019.

[Kuegel, 2010] Adrian Kuegel. Improved exact solver for the
Weighted MAX-SAT problem. In Proceedings of Work-
shop Pragmatics of SAT, POS-10, Edinburgh, UK, pages
15–27, 2010.

[Li and Manyà, 2021] Chu Min Li and Felip Manyà.
MaxSAT, hard and soft constraints. In Handbook of satis-
fiability, second edition, pages 903–927. IOS Press, 2021.

[Li et al., 2005] Chu Min Li, Felip Manyà, and Jordi Planes.
Exploiting unit propagation to compute lower bounds in
branch and bound Max-SAT solvers. In Proceedings of
CP 2005, volume 3709 of LNCS, pages 403–414. Springer,
2005.

[Li et al., 2006] Chu Min Li, Felip Manyà, and Jordi Planes.
Detecting disjoint inconsistent subformulas for computing
lower bounds for Max-SAT. In Proceedings of AAAI 2006,
pages 86–91, 2006.

[Li et al., 2007] Chu Min Li, Felip Manyà, and Jordi Planes.
New inference rules for Max-SAT. Journal of Artificial
Intelligence Research, 30:321–359, 2007.

[Li et al., 2009] Chu Min Li, Felip Manyà, Nouredine Ould
Mohamedou, and Jordi Planes. Exploiting cycle structures
in Max-SAT. In In Proceedings of SAT 2009, volume 5584
of LNCS, pages 467–480. Springer, 2009.

[Li et al., 2010] Chu Min Li, Felip Manyà, Nouredine Ould
Mohamedou, and Jordi Planes. Resolution-based lower
bounds in MaxSAT. Constraints, 15(4):456–484, 2010.

[Li et al., 2021] Chu-Min Li, Zhenxing Xu, Jordi Coll, Fe-
lip Manyà, Djamal Habet, and Kun He. Combining clause
learning and branch and bound for MaxSAT. In Proceed-
ings of CP 2021, LIPIcs, pages 38:1–38:18, 2021.

[Martins et al., 2014] Ruben Martins, Vasco M. Manquinho,
and Inês Lynce. Open-WBO: A modular MaxSAT solver.
In Proceedings of SAT 2014, volume 8561 of LNCS, pages
438–445. Springer, 2014.

[Piotrów, 2020] Marek Piotrów. UWrMaxSat: an efficient
solver in MaxSAT evaluation 2020. MaxSAT Evaluation
2020, page 34, 2020.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Sister Conferences Best Papers Track

5303

	Introduction
	MaxCDCL: A BnB Algorithm Using CDCL for MaxSAT
	General Structure of MaxCDCL
	Combining Lookahead and Clause Learning
	A Probing Strategy for Lookahead

	Experimental Evaluation
	MaxCDCL Components
	Comparison with Top 5 Solvers in MSE2020
	Combining MaxCDCL with Existing Solvers

	Conclusion

