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Vessel behaviour classification from AIS without geographical biases

Raphael Sturgis® 2, Valentin Emiya' and Basile Couetoux' and Pierre Garreau

Abstract— The automatic detection of vessel behaviours from
Automatic Identification System (AIS) data is a challenging
aspect of designing intelligent systems and aiding maritime
situational awareness. The development of such systems remains
limited to some activities like fishing, and by geographical biases
that prevent systems to generalise to other areas than that used
for training.

To contribute to these questions, we investigate how to treat
raw data or engineered features so that they do not convey such
biases at training time and we propose methods for point-wise
behaviour detection in the context of container vessels with four
target behaviours. Several systems are studied, with raw data
or engineered features as inputs, followed by shallow or deep
learning classifiers. While good performances are obtained by
several of them, we observe that a decision tree classifier with
engineered features outperforms an LSTM in areas where no
labelled data is available for training.

I. INTRODUCTION

The Automatic Identification System (AIS) is a real-
time emission system giving position and other static and
dynamic information for every commercial vessel over 500
gross tonnage or transporting passenger. Initially introduced
for collision avoidance, AIS data has been increasingly
used to aid maritime situational awareness in tasks such as
trajectory prediction or autonomous navigation. To perform
these tasks efficiently, the ability to differentiate between
different behaviours is necessary.

Behaviour classification from AIS data has motivated a
number of recent works. Among all possible behaviours of
interest, it has been primarily studied in the context of fishing
activity detection [1], [2], [3], [4], [5], [6]. Behaviours may
be general —e.g., anchor, at port, underway, fishing— or
specific —e.g., trawling, longlining [7]. Behaviour classi-
fication in contexts other than fishing is also challenging.
For instance, behaviour detection for container vessels and
commercial transport vessels in general paves the way for
improved capabilities of autonomous transport, CO5 calcu-
lations, or logistics with routing capabilities. Therefore some
works have been proposed, including discrimination between
static, manoeuvring and cruise to help autonomous vessels
avoid collision and predicting trajectories of other vessels [8],
[9], and anomaly detection for automatic route detection [10].
Existing methods have employed various machine learning
approaches to classify behaviours: hidden Markov model and
biology inspired models [1], conditional random fields [2],
partition-wise gated recurrent units [3], convolutional neural
network (CNN) applied to images generated using AIS
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position data and speed [8], [9], [4], [7], 1D-CNN [5], k-
nearest neighbours, dynamic time warping and multilayer
perceptron [6].

A challenge observed in the literature is that AIS data
is heterogeneous [3], making it difficult for machine learn-
ing approaches. Indeed, AIS contains angular data such as
heading and course over ground (COG) and non-angular
data such as speed over ground (SOG). To get around this
issue, multiple methods apply machine vision algorithms to
images produced by plotting AIS positions [8], [9], [4], [7].
Removing angular data is another option proposed in [10]
where a simple threshold on the speed is used.

Another challenge is the ability of the system to gener-
alise well, and especially to avoid geographical biases. We
introduce this term to refer to situations where a system
performs well only on one geographical area where it has
been trained. In such situations, the system may have learned
geographical elements specific to this area, like the absolute
position or orientation of docks. Many of the aforementioned
works are actually dedicated to one geographical region
[8], [5], [11] or consider multiple locations but train and
test on the same regions without evaluating inter-region
performance [4]. Limitations due to geographical biases
include not only the inability to transfer prediction capacities
to other areas than those used for training, but also the lack of
adaptability to changes of geographical elements over time.
As a consequence, expensive and time-consuming manual
annotation work, as well as repeated learning and validation
tasks are required.

Our objective is to propose efficient systems for point-
wise trajectory classification without geographical biases.
Our systems take a vessel trajectory obtained from AIS
data and produce a label for each individual point on this
trajectory. These labels describe the behaviour of the vessel at
that position, among four options: underway, docked, moored
and drifting. To avoid geographical biases, the systems are
designed to learn the intrinsic factors that characterise a
behaviour rather than geographical elements. This can be
achieved by engineering features such that any sensitive
attribute that could convey geographical biases is removed.
The use of raw AIS data is compared to custom engineered
features. Furthermore, decision tree (DT) classifiers and long
short-term memory (LSTM [12]) networks are compared
when using these possible input settings. The former classi-
fiers are simple, shallow models while the latter are state-
of—the-art methods for point-wise sequence classification,
e.g., in natural language processing [13], [14], [15], as well
as in tasks using AIS data such as trajectory prediction [16]
or Vessel classification and anomaly detection [17].



From our experiments we show that even if an LSTM
outperforms a DT in the same area in which it is trained,
a DT trainable in a few seconds has similar performance to
an LSTM model in some geographical areas, or even out-
performs LSTMs in regions with different data distribution.

This paper is organised as follows. In section II, our
method is introduced. Experiments to validate our approach
are presented in III. Lastly, conclusions on the performances
of our system and further discussions are proposed in sec-
tion IV.

II. DESIGNING SYSTEMS FOR SHIP BEHAVIOUR
DETECTION

The proposed systems result from the application of ma-
chine learning methods to raw or engineered features. A
large effort is dedicated to study engineered features, starting
from raw AIS contents (Section II-A) and using elementary
operations (Section II-B) in order to design appropriate
features (Section II-C). The goal is two-fold: (i) contributing
to the classical question about the performance when using
engineered features vs. learned representations Y from raw
data; and (ii) proposing features with invariant properties
with respect to translations and rotations of the trajectories,
in order to avoid geographical biases and to obtain systems
that can generalise to unseen areas.

A. Raw AIS feature description

Automatic identification system (AIS) is a system that
transmits vessel information at regular time intervals. This
information is shared over high frequency radio waves with
all other vessels and ground operations. The primary usage
of this system is to avoid collisions between vessels. AIS
contains both static and dynamic information about the
vessel. For our purposes we are only focused on dynamic
data, described below in Table I (see [18] for further details).

[ Field [ unit |
Timestamp UTC
MMSI ID
Position degrees for latitude and longitude

Speed over ground (SOG)
Course over ground (COG)
Heading

Rate of turn (ROT)

TABLE I: AIS data content

knots

degrees from north
degrees from north
degrees per second

Hence a typical AIS trajectory is a time series composed
with multivariate heterogeneous data. It includes angular
data, which should be handled carefully when used as inputs
for machine learning models.

B. Elementary operations on features

We introduce elementary operations that will be subse-
quently applied to design engineered features from raw AIS
data. The elementary operations are the rate of change and
the first two statistical moments defined locally over a time
window.

We consider each feature as a univariate time series with
sampling period 7.

For a regular real-valued time series f(¢) such as the SOG,
the rate of change between f(¢) and f(¢ + 7) is simply
defined as:
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In order to track local statistical moments in time series,
we use a sliding window with radius r centred in f(t). The
mean f (t) and variance o7 (¢) are defined as:
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Angular features are more delicate to handle: the rate of
change and statistical moments introduced previously cannot
be computed straightforwardly from angular data like COG,
heading, ROT, latitude and longitude. We adopt variants of
these operations that are suitable for angular data [19]. In
order to avoid discontinuity issues around 27, the rate of
change for angular data is computed by applying eq. (1) to
the unwrapped version of any angular feature 6 (¢).

For statistical moments, unwrapping is not appropriate.
For any angular feature 6 (t), we adapt the definition of the
mean direction and circular variance of angular data [19]
to the case of a sliding window with radius . Based on
the distribution of @ (t) on the unit circle zg (t) = e,
one can compute the empirical mean over a sliding window

Zo (1) = ﬁ _Z 29 (t + n7). The mean direction and the

n=-—r
circular variance are defined as

0 (t) = angle (% (t)) )
op (t) =1— |20 (t)| 3)

where angle (z) denotes the argument of a complex number
z € C. Note that while the samples zg (¢) lie on the unit
circle, their mean Zy (¢) is located inside the unit circle:
its modulus is close to 1 (resp. 0) when the samples are
concentrated around a given direction (resp. spread over the
circle).

Last, in order to characterise the spread of a ship trajectory
in space, we also define the position variance over a sliding
window as

P ) = 5 D R e+ nm) 5 (1)

where the Haversine function i computes the great circle
distance between two positions, p (¢) is the position at a time
t given as a pair (latitude, longitude) and p (¢) is the mean
direction for the latitude and the longitude at time ¢ computed
using eq. (2).

C. Proposed engineered features

Using the elementary operations defined in Section II-
B, we design features that may facilitate the discrimination
between ship behaviours. We also pay attention to produce



features that are invariant to translations and rotations of
the trajectories in order to avoid geographical biases. This
is achieved by first removing from the feature selection
any sensitive attribute than may convey geographical biases,
namely position, COG and heading, which directly encode
the absolute positions or orientations of specific instances of
geographical elements like docks; we then derive engineered
features, possibly from the previous sensitive features, by
applying the above operations, ensuring that the obtained
quantities are not prone to inducing geographical biases.

The retained features are:

e so0g is an obvious choice for behaviour detection as it
correlates heavily with some behaviours; for instance,
docked ships must have speed of 0 and vessels under-
way cannot.

e drift is defined as the absolute difference
|heading (t) — COG (t)| between the heading
and COG [20] and is illustrated in Figure 1. It may
give information on the type of manoeuvre a ship is
performing.

e A,og, as a change in speed, reports acceleration of a
vessel.

o Acog and Apeqding give some insight into the rate of
turn of a vessel for a manoeuvre.

e Ocog and Opeqading Mmay indicate whether, e.g., a ship is
moving erratically or not.

* OA,,, and oA, ., 4:,, Might give insights into behaviours
where the rate of turn of the vessel changes.

e Opos, as the spread of the vessel position, may contribute
to characterise some behaviours.

e 0504 indicates if the vessel speed is changing a lot.

A north

heading (direction of ship)

COG (direction of travel)

Fig. 1: Graphical representation of dre ft

III. EXPERIMENTS

A. Data
dataset underway | docked | moored | drifting
Western Mediterranean 51.6% 36.0% 7.1% 5.3%
Baltic 52.3% 42.4% 5.0% 0.4%
Suez 77.9% 15.8% 6.2% 0%

TABLE II: Label proportions

Three datasets have been developed for this study, includ-
ing one for training, validation and testing purposes, and two

other ones for testing only. All three datasets use AIS data
manually labelled with four target behaviours: underway,
docked, moored and drifting. These behaviours can be de-
termined visually by a human: an example of the behaviours
docked, moored and drifting can be seen in Figure 3. The
western Mediterranean dataset, used for training, validation
and testing, is built using AIS data from 334 individual
container ships in the western Mediterranean. The data is
shown visually in Figure 2a. This dataset contains 194, 443
AIS records from 1 March 2020 to 6 March 2020. The
trajectories from the dataset are split into 3 subsets. Firstly a
training dataset containing 60% of trajectories. A validation
dataset we used for evaluating different configurations during
a parameter selection phase containing 20% of trajectories.
The last subset is a test set, containing the remaining 20%
of trajectories, used exclusively for getting final performance
metrics. The second dataset is data from 100 container ships
in the Baltic Sea as seen in Figure 2b. This data contains
records from 10 October 2021 to 31 October 2021 and has
172,431 AIS records. The last dataset is trajectories from
12 container ships near the Suez Canal from 23 March 2021
to 30 March 2021 during the 2021 Suez Canal obstruction,
as seen in Figure 2c. It contains 2178 records. This last
dataset has much fewer data points than the other ones
because during this crisis, ships would turn off AIS. The
proportions of the labels are presented inTable II. We can
see slight differences in proportion of behaviours between
the Western Mediterranean and Baltic datasets, but starker
differences with the Suez dataset.

All the datasets are composed of raw AIS data points that
need some prepossessing to be useful. The first treatment
applied to the data is to remove points with missing features
and aberrant speeds. Then, trajectories are built from the data
by isolating each ship by its identifier (vessel MMSI) and
separating this trace into multiple trajectories. One vessel
trace might not be usable as one trajectory as it could be
split and have holes of multiple hours or day with no data.
Traces are cut into multiple trajectories if the time between 2
position reports is less than a threshold time ~, set to v = 1h.

Once trajectories have been calculated, we have multiple
trajectories per vessel but with non-uniform sampling, which
is not appropriate for further learning on time series. Tra-
jectories are thus interpolated in order to have a uniform
sampling period equal to 7 = 5min. We use cubic interpo-
lation on all raw features. After interpolation of the raw data,
the selected features are computed. The characteristics of the
three datasets after the prepossessing steps are summarized
inTable III.

Dataset Number of points | Number of trajectories
Western Mediterranean 193712 2017
Baltic 171982 1582
Suez 2173 248

TABLE III: Label proportions



(a) Western Mediterranean dataset

(b) Baltic dataset

(c) Suez dataset

Fig. 2: Illustration of the three datasets

(a) Docked (green)

(b) Moored (magenta)

(c) Drifting (yellow)

Fig. 3: Example of behaviours patterns from the western Mediterranean dataset (red dots are underway)

B. System description

1) Decision Tree classifiers: DTs are simple models that
work by classifying individual points without considering the
time series aspect of the data. Nonetheless they are much
faster to learn than more complex methods such as LSTMs.
DTs trees need to be optimised for the specific data we use.
To do so a grid search optimisation was performed on 3
criteria: the splitting criterion (Gini or entropy), splitter (best
or random) and the max depth of the decision tree (1, 2, 5,
10). These parameters have been tuned by finding the model
with the best performance on the validation set.

2) LSTM networks: LSTMs are more complex than DTs,
but also more expressive. They also natively exploit the
sequences aspect of the data.

a) Normalisation: Empirical experiments not reported
here have shown that normalisation of the data is necessary
for our LSTM model, providing from 6% to 40% of accuracy
improvements. Nonetheless normalisation is not straightfor-
ward since the data is heterogeneous and thus depends on the
feature. Regular scalar values A,og, Ocogs Oheadings O Do
O Apeading> Opos» Tsog are normalised by the standardisation
method. SOG values are scaled by the inverse of their third
quartile since they are non-negative. Angles are normalized
using their maximum possible value: Drift, Acog, Aneading
and longitude have been divided by 180 deg and latitude
by 90 deg.

b) Training process: The LSTM networks proposed
here are composed of n bi-LSTM layers, with m units for
each layer. In order to find the best LSTM architecture for
our problem a grid search was performed for values of n
between 1 and 6 and for m € {5, 10, 20, 50, 100}. For each
combination 5 runs were performed. The average fl score
on the 5 runs for each architecture is calculated and the
architecture with the best f1 score on the validation set
is selected. LSTMs were trained on a maximum of 100
epochs, the validation set was used for early stopping with a

patience of 10 epochs. The batch size was set to 1. The Adam
optimizer was chosen and the categorical cross entropy loss
is used.

3) Time window radius selection: Some operations pre-
sented in II-C have a time window radius parameter . The
wider the time window the wider the time period our models
have access in order to make a decision, the smoother the
changes will be for our statistical features, but we might lose
in specificity.

To study the impact of the selection of r and find the
best parameters, a DT classifier with » between 2 and 80
and an LSTM for values between 1 and 15 were trained,
for both using the proposed engineered features as inputs.
In order to conserve as much exploitable data as possible,
the time window will ignore the out of bound values and
just compute means and standard deviations on smaller time
windows. In extreme cases, the time window will completely
consume the whole trajectory, resulting in a single value for
the trajectories.

For each time window 5 LSTMs are trained for each
architecture. For all these LSTMs the accuracy on the
validation set is recorded. The architecture with the best
average accuracy is then selected and the 5 models with this
architecture are tested on the test set, the accuracy and f1
score where recorded and showed on Figure 4b.

Since the training process for DT is deterministic we
only train one model with each combination of parameters.
The model with the best performance on validation set is
evaluated on the test set. Both fl score and accuracy are
presented in Figure 4a. In the case of the DT, performances
on both metrics increase for small sizes, but then decrease
for values greater than 11. This shows that the size of the
window has an impact on performance, and also that the
optimal value seems to be » = 11 for DT classifiers. On the
other hand, for the LSTM network, the maximum is observed
at a value of r = 9. Nonetheless no trend can be seen from



the data and all variations are within the standard deviation.

—— accuracy
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0.915

N

0.905

score

0.900 +
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0 10 20 30 40 50 60 70 80
r
(a) DT
= accuracy
0.9525 - fl
0.9500 A
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r

(b) LSTM (shaded area: standard deviation)

Fig. 4: Accuracy and f1 score on the test set as a function of
the radius of the time window used in engineered features.

C. System performances

Our final experiment’s objective is to compare the classifi-
cation performance of the proposed DT and LSTM systems
on the three datasets. Two main questions underlie this
experiment: (i) which benefits can we expect from a DT on
engineered features vs. an LSTM on raw data? And (ii) can
we eventually achieve learning with no geographical biases
so that classification can be successful in other areas?

To achieve these objective we consider 4 different configu-
rations for LSTM networks. The first input configuration, we
consider only the sog, this configuration as no geographical
biases but is limited in information. In the second config-
uration, we considered the sog and the raw position of a
vessel, which can induce geographical biases. For the third
configuration, we consider the same features, but we apply
random translations of longitude and latitude values. This
treatment is applied to trajectories in the train set only, the

model is used to predict behaviour of trajectories that haven’t
been treated. Translation is performed in order to limit
learning of geographical biases. For the last configuration, we
consider the 11 engineered features proposed in section II-C.
Each of these configurations used normalized data.

The best model architectures for each configurations are
summarized in Table IV.

configuration n m r
sog 3 | 100 | n/a
sog&position 4 | 100 | n/a
sog&shifted position 4 | 100 | n/a
engineered 2 10 9

TABLE IV: Best LSTM architecture per configuration

The best model is selected and then tested on the test
set and on the other two datasets. We test on the Baltic
and Suez dataset in order to measure the performances
in areas not seen during training. We applied the same
methodology for DTs, but did not consider the third con-
figuration. Indeed, since the DT model only classifies single
vectors, it cannot exploit the shifted trajectory; it would be
completely equivalent to only using sog, which has been
verified experimentally. The configuration with a DT trained
only with SOG will be used a baseline.

The results are summarized in Table V.

model, configuration Mediterranean | Baltic Suez
DT sog 0.849 0.936 | 0.379
DT sog&pos 0.888 0.440 | 0.644
DT engineered 0.913 0.966 | 0.942
LSTM sog 0.923 0.960 | 0.570
LSTM sog&pos 0.934 0.959 | 0.664
LSTM sogé&shifted pos 0.921 0.954 | 0.507
LSTM engineered 0.947 0.970 | 0.789

TABLE V: Fl-score on the three test sets for all the models
and input configurations (bold shape denotes best perfor-
mance for each dataset).

Results confirm that a shallow classifier like the DT model
performs best with engineered features, while a deep clas-
sifier like the LSTM networks can reach high performance
on raw or engineered data. This also validates the relevance
of the proposed engineered features. Indeed, LSTMs or DT
trained with these features shows better performances on all
datasets than models trained with other features.

Performances on the Mediterranean test set is the better
with LSTMs than DTs. Nonetheless, on the Baltic dataset,
DTs with engineered features perform on part with the LSTM
models with a good capacity to generalize to areas with
similar behaviours distributions. On the Suez dataset we
can see that the DT with engineered features outperforms
all other models. This suggests that this model is best for
generalizing to any area.

Finally, we detail the performance of the two models using
engineered features by reporting the accuracy per class (one
versus all) in Table VI. Both models perform similarly to
each other for vessels underway and docked, nonetheless, on
the other 2 behaviours the DT is better by more than 10%.



For areas with potentially more of these two behaviors, such
as congested ports, DTs seem to be a better choice.

Model, configuration | Underway | Docked | Moored | Drifting
DT engineered 0.955 0.968 0.931 0.760
LSTM engineered 0.980 0.977 0.882 0.653

TABLE VI: Performances per label on Baltic dataset

IV. CONCLUSIONS

In this paper, several systems for behaviour classification
from AIS data have been designed and studied, resulting
in good classification performance for container vessels on
a four-behaviour detection task. Experiments suggest that
a deep LSTM network applied to raw AIS data generally
perform on part with other proposed solutions when testing
on data from the same area. Nonetheless, this model may
learn some geographical biases and would require data
augmentation at training time in a more diverse way than
with the proposed random position shifts. When an area has
no available labels for training, the best solution appears to be
a decision trained on the custom engineered features. This
model performs similarly to LSTM in areas similar to the
training set and significantly better in areas with different
data distributions than the training set. This is promising to
improve maritime situational awareness on a global scale
using limited training data.

The engineered features presented here improve perfor-
mance in the case of decision tree for multiple reasons.
Firstly, they remove biases from the local geography of
the training set. They also give access to a higher level of
abstraction than the raw features. Also, the use of a time
window of appropriate length allows for a single data point
to have access to some characteristics from the trajectory.
This last point also gives us clues as to why the LSTMs do
not perform well with these features, as LSTMs are already
able to perform high level abstraction from the data and also
consider natively the sequence aspect of the data.

We have shown that our LSTM do not perform well on
moored behaviours. This can have many causes, but one
certainly is the relative rarity of this behaviour in our training
dataset. The loss function we chose for this could be changed
for a function that takes into account better the relative
distribution of labels. Other classification methods could be
explored, in the same vein as LSTMs, transformer networks
could be explored, potentially with other loss functions.
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