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Abstract

Many neoplasms remain unclassified after histopathological examination, which

requires further molecular analysis. To this regard, mesenchymal neoplasms are par-

ticularly challenging due to the combination of their rarity and the large number of

subtypes, and many entities still lack robust diagnostic hallmarks. RNA transcriptomic

profiles have proven to be a reliable basis for the classification of previously unclassi-

fied tumors and notably for mesenchymal neoplasms. Using exome-based RNA cap-

ture sequencing on more than 5000 samples of archival material (formalin-fixed,

paraffin-embedded), the combination of expression profiles analyzes (including sev-

eral clustering methods), fusion genes, and small nucleotide variations has been

developed at the Centre Léon Bérard (CLB) in Lyon for the molecular diagnosis of

challenging neoplasms and the discovery of new entities. The molecular basis of the

technique, the protocol, and the bioinformatics algorithms used are described herein,

as well as its advantages and limitations.
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1 | INTRODUCTION

Unclassified tumors are challenging to handle, often needing a second

opinion by an expert pathology center, resulting in a frequently del-

ayed diagnosis. As an example, mesenchymal tumors including sarco-

mas are prone to these difficulties, owing to the combination of rarity

and diversity, as they represent less than 2% of cancers with more

than 100 subtypes.1,2 Despite continuous advances in their diagnosis,

many tumors remain a diagnostic challenge for pathologists, due to

the current lack of immunohistochemical or molecular markers.

When confronted with a rare neoplasm that cannot be diag-

nosed solely on morphological and immunohistochemical criteria,

pathologists turn to molecular techniques to identify potential

oncogenic alterations that may guide their diagnosis. Several molec-

ular tools can be successfully used to investigate DNA alterations,

including karyotype, fluorescence in situ hybridization (FISH),

array-comparative genomic hybridization (CGH), targeted Sanger

sequencing, and more recently exome sequencing. RNA-based

investigations for molecular diagnosis have expanded upon the

development of reverse transcription techniques and mainly

allowed detection of gene fusion by PCR or targeted RNA sequenc-

ing. At the turn of the millennium, gene expression profiling using

DNA-based arrays gained reputation with the subclassification of

acute leukemias3,4 but was more prone to be used in research than

in routine diagnostic procedures. More recently, with the advent of

massively parallel sequencing (next-generation sequencing [NGS])

either on DNA and RNA, molecular diagnostics gained in precision

and accuracy. Targeted DNA sequencing and whole-exome DNA

sequencing (WES) now allow investigating mutations or variations

as well as copy number alterations and loss of heterozygosity

throughout the coding genome, increasing the power of detection

of oncogenic alterations. Targeted RNA sequencing is now often

used in routine diagnosis for the detection of gene fusion in con-

trast to whole transcriptome sequencing (WTS) or whole exome

RNA sequencing (WERS) that are still not commonly used because

of their higher costs and their demanding bioinformatics analyzes.

WTS comprises different techniques to investigate either all RNAs

or only messengers, depending on the RNA preparation. WERS is

based on a capture of the RNA on a DNA library composed of

(almost) all known gene exons. While WTS is generally used on

good quality RNA samples composed of whole RNA molecules,

WERS is adapted for recovering fragmented RNAs and therefore

well suited for formalin-fixed, paraffin-embedded (FFPE) samples in

which fixation procedures break RNA molecules in small fragments.

Because of this fragmentation and of the formalin-induced chemical

nucleotide modifications, RNA sequencing of FFPE material still

remains scarcely used in routine molecular diagnostics, despite the

demonstration of its utility.5–7 Nonetheless, FFPE specimens and

slides are widely available while fresh frozen (FF) tumor samples are

generally more difficult to obtain, requiring specific costly storage

and dedicated platforms.

From a single experiment and with the use of either WTS or

WERS, most oncogenic genomic alterations can be detected together

with gene expression analyzes, including fusion transcripts, internal-

tandem duplications, small insertions/deletions, exonic small nucleo-

tide variations, and aberrant splicing variants. We present here the

experience of the Centre Léon Bérard on using WERS on FFPE archi-

val material in molecular diagnostic routine. Each transcriptome data

are meticulously annotated and added to a curated database. This

ever-incrementing transcriptome database is used iteratively to refine

diagnoses, compare cases, and identify novel homogeneous groups of

tumors. Rather than presenting a full pipeline or detailed methods, we

describe here the global functional scheme of our FFPE RNA-

sequencing analysis, which we want to be more prone to be dis-

cussed, commented on, and enhanced than to be viewed as set in

stone.

2 | OVERVIEW OF THE WORKFLOW

We describe our methods of extraction, quantification, and qualifica-

tion of RNAs, sequencing, preanalytical quality assessment, methods

to detect gene fusions and variations, methods to establish expression

data and to validate their quality, clustering analyzes, application of

transcriptomic signatures and the utility of a multidisciplinary board
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F IGURE 1 Overview of the workflow, with the generation of
multiple layers of transcriptomic data and their integration with
histopathological and clinical data during a multidisciplinary board for
iterative annotation of the database
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for the correct annotation of the diagnoses in the database (Figure 1).

To date, this approach has been applied in our department to more

than 5000 cases, consisting in a majority of cases for which patholo-

gists remained with a doubt about the diagnosis after histopathology

reviews, and a minority of control cases with typical morphologies/

biomarkers to anchor clustering analyzes.

2.1 | Selection and sampling

Experienced pathologists select the most suitable FFPE block and

identify a morphologically well-representative tumor area, with the

highest ratio of tumor cells. Whenever possible, the pathologist

attempts to exclude areas containing inflammatory infiltrate and any

normal tissue to minimize the foreign transcriptomic background. A

proportion of nontumoral cells up to 50% has a relatively low impact

on the precision of biomarker detection, such as fusion transcripts

and mutations. Maximizing this proportion is, however, mandatory to

establish a specific expression dataset. The expression profile of a

homogeneous tumor will be easier to classify according to the refer-

ence cohort. The selected areas of interest are then macrodissected

by scraping directly the FFPE sample, or scraping 8 μm-thick

unstained slides with a scalpel blade. It is worth noting that compared

to frozen material, working on FFPE blocks allows to better target

areas of interest that will be globally richer in tumor cells, following

which expression profiles of the entire cohort will be more discrimina-

tive as a classifier.

2.2 | Methods of extraction and sequencing

For most samples, total RNAs are extracted from FFPE sections

using the FormaPure RNA kit (Beckman Coulter, Brea, CA, USA),

and the Ambion DNase I (Life Technologies, CA, USA) is used to

remove DNA. A minority of samples are extracted using alterna-

tive methods (Qiagen RNeasy Micro kit, Hilden, Germany or

Promega Maxwell 16 LEV RNA FFPE Purification kit, Madison, WI,

USA). RNA quantification is assessed using NanoDrop (Thermo

Fisher Scientific, Waltham, MA, USA) measurement and RNA qual-

ity using the DV200 value (the proportion of the RNA fragments

larger than 200 nt) is assessed by a TapeStation with Hs RNA

ScreenTape (Agilent, Santa Clara, CA, USA). Samples with suffi-

cient RNA quantity (>0.5 μg) and quality (DV200 > 30%) are con-

sidered qualified for sequencing. A 100 ng of total RNA is used to

prepare each individual library with TruSeq RNA Exome (Illumina,

San Diego, USA). The 12–32 libraries are pooled at a concentra-

tion of 4 nM each together with 1% PhiX. Sequencing is per-

formed (paired end, 2 � 75 cycles) using either NextSeq 500/550

High Output kit on a NextSeq 500 machine or NovaSeq 6000

SP/S1 Reagent Kit on a NovaSeq 6000 machine (Illumina). The

exact same method can also be used for frozen material, resulting

in comparable transcriptomic data.

2.3 | Methods of bioinformatic analyzes

2.3.1 | Preanalytical: Assessment of the RNAseq
quality

RNAseq quality is important for the interpretation of subsequent bio-

informatic analyzes. First, samples that did not reach 10 million reads,

as assessed using the fastQC tool, are discarded from further expres-

sion data analyzes, such as clustering. Then, after generating the BAM

files by STAR,8 using the MarkDuplicates tool from the GATK Picard

suite, we also discard samples that did not reach 10 million uniquely

mapped reads.

2.3.2 | Detection of gene fusion

A variety of fusion detection tools have been described,9 all of them

having their own specificities, but no fusion detection tool has yet

been shown to be universal, fully accurate and without some

degree of false negative and positive detections. We have made

the assumption that a highly sensitive fusion detection pipeline

was more important than a specific one to explore the genome of

unclassified neoplasm in our diagnostic procedures, as fusions can

be subsequently validated by other techniques such as FISH.

Therefore, we have chosen to simultaneously use five orthogonal

fusion gene discovery tools: STAR-Fusion,10 FusionMap,11

EricScript,12 FusionCatcher,13 and Arriba.14 As a first layer of

stratification, fusions predicted in-frame by at least two detection

tools are prioritized. But considering the importance of having a

high sensitivity for any known fusion gene, the second layer of

stratification is the confrontation of the results of each tool with a

list of published fusion genes.15 Fusion genes from this list, even if

detected by a single tool, are therefore further taken into account.

Faced with undescribed gene fusions, high expression levels of

the gene partners suggest a driver aberration and can help stratifi-

cation, especially when the same fusion is encountered in several

neoplasms with common clinicopathological features and/or simi-

lar expression profiles. When there is a doubt, gene fusion can be

further confirmed by a second technique. Gene fusions that are

not in-frame can also be biologically relevant: specifically, a frame-

shift fusion is a common mechanism that inactivates tumor sup-

pressor genes by truncation,16 while no-frame fusion genes

(meaning that the phase could not be determined generally

because of a breakpoint outside of exons boundaries) can induce

overexpression of proto-oncogenes by promoter swapping17 (see

Supplementary Figure S1 for an example of UPS6 fusion gene

leading to its overexpression). The presence of numerous fusion

transcripts located at the same chromosomal locus, easily visual-

ized on a circos plot, suggests a probable chromothripsis mecha-

nism. Such observations encourage the search for an associated

amplification by correlating with expression data of the fusion

genes.

384 MACAGNO ET AL.

 10982264, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gcc.23026 by A

ix-M
arseille U

niversité, W
iley O

nline L
ibrary on [03/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2.3.3 | SNV detection

The detection of small nucleotide variations (SNV) may be challenging

in archival samples, as formalin fixation damages DNA, not only by

fragmenting it but also by inducing its oxidation, leading to C > T sub-

stitution. This modification then leads to transition (C > T or G > A) in

the sequenced reads and may account for quite a number of false pos-

itive SNVs detection. To analyze SNVs from FFPE WERS, we follow

RNAseq short variant discovery best practices (SNP + Indels) pro-

posed by the Genome analysis toolkit18 prior functional annotation

using the ANNOVAR tool.19

To discriminate potential oncogenic variations within the thou-

sands of SNVs detected per sample, the following filters are applied:

(1) synonymous SNV; (2) SNVs with an allele frequency greater than

0.01 in the 1000 Genome Project, NHLBI-ESP 6500 exomes, and in

the databases of the Exome Aggregation Consortium; (3) SNVs out-

side exonic regions or splicing sites; (4) SNVs not annotated as delete-

rious by at least one of the various mutation score assessment tools;

(5) SNVs with a calculated alternative allele ratio less than 0.2 or with

less than two supporting reads were discarded. SNVs are subse-

quently prioritized by their number of supporting reads, by their anno-

tation as pathogenic or probably pathogenic in the CLINVAR

database, by their annotation in the Cosmic database, and finally if

they are present in a known tumor suppressor gene or oncogene,

even if the SNV was not annotated by the previous databases. Apply-

ing these filters and focusing on a list of 247 Genes of Interest (GoI)

with diagnostic, theranostic, and prognostic values reduced the num-

ber of SNV to a few dozens per sample (Supplementary Table S1).

Any variation detected in genes that are not included on the current

list of GoIs is accessible in the event of a new clinical indication.

2.3.4 | Expression profiles

Several tools to extract expression values from RNA sequencing have

been reported, most of them using prior alignment on a reference

genome. Recently, two highly similar methods that do not depend on

prior alignment were described, namely Kallisto20 and Salmon.21 Both

methods are based on a quick and efficient pseudo-alignment method

with a significant gain in speed and computing resources. In our proce-

dure, expression profiles are extracted from fastq files using the Kallisto

tool with the Encode GRCh38 genome annotation. Transcripts from

the same gene are summed, and gene expression values are aggregated

to all other samples in a single expression matrix. We then apply a log2

transformation of the matrix values +1 and then a quantile normaliza-

tion between samples using the limma package in the R environment.22

2.3.5 | Assessment of the RNAseq expression data
quality

The quality of each tumor expression profile should be assessed prior

to its use in clustering analyzes. Using the whole normalized

expression matrix, a principal component analysis (PCA) is performed

to look for unusual profiles. Due to the large collection and variety of

tumor types in our dataset, a sample standing as an outlier in the PCA

is considered to have abnormal features and is not considered further

in the clustering analyzes. Most often, when resubmitted after a sec-

ond RNA-sequencing starting with a new RNA extraction, expression

profiles of these PCA outlier samples fall back within normal distribu-

tion, indicating a technical problem rather than a different tumor biol-

ogy. Although this method performs well for homogeneous or large

cohorts (i.e., composed of a single spectrum of tumor entities or large

enough to contain various tumor entities), its application is not

advised for smaller cohorts in which an outlier may represent a tumor

demonstrating a different biology rather than a true technical artifact.

2.3.6 | Clustering analyzes

Unsupervised hierarchical clustering analyzes are methods commonly

used to investigate the relationship between samples and rely mainly

on correlations between expression profiles. It is well known that

depending on the samples and genes selected for these analyzes, the

resulting clusters may be quite different. To alleviate this problem, we

have chosen to perform a consensus clustering, summing 3000 differ-

ent clusters (1500 using Pearson and 1500 using Spearman correla-

tions) in which 20% of the samples and 20% of the genes are

randomly ignored of the analyzes at each iteration. This method, while

demanding large computing resources and processing time, yields

robust results (Figure 2A–C). We also perform t-distributed stochastic

neighbor embedding (tSNE) analyzes (Figure 2D–F). Both hierarchical

clustering and tSNE analyzes are performed on the whole cohort or

on the cohort specific to each type of disease (mesenchymal,

melanocytic, mesothelial, epithelial, and hematological neoplasms).

2.3.7 | Expression of tumor suppressor genes,
oncogenes, and biomarkers

Similarly to immunohistochemistry, relevant biomarkers can be

assessed by gene expression, including relevant mutations of key

oncogenes, tumor suppressor genes, and kinase-encoding genes, all of

which can be detected on a transcriptomic level with diagnostic, prog-

nostic, and theranostic implications.

The expression levels of 162 cancer-associated biomarkers

(Supplementary Table S2) are measured and systematically reviewed

to aid the diagnostic procedure. For each tumor investigated, the

expression of these 162 genes is compared with their respective dis-

tribution among all samples, normalized by their median (Figure 3). An

intertumoral score is calculated depending on whether their expres-

sion values are considered as outliers (over or underexpressed), above

or below standard deviation, or within normal deviation. Furthermore,

genes are also ranked according to the values of the 31 345 other

genes evaluated within the same sample (intratumor comparison). To

help uncover potential new biomarkers, the expression value of any

MACAGNO ET AL. 385
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new GoI can be quickly explored in all samples stratified by tumor

subtypes by biologists/pathologists using a simple R script.

The expression level of a fusion gene might also be empirically

evaluated by counting the number of supporting reads divided by the

number of million mapped reads. Of importance, this expression value

could be compared only between samples presenting the exact same

fusion point as the number of supporting reads might strongly differ

depending on the mappability of the fusion point sequence.

2.3.8 | Gene signatures

From the expression profiles, several transcriptional signatures are

analyzed, reflecting either tumor cell behaviors or the microenviron-

ment composition. Single-sample gene set enrichment analysis

(ssGSEA)23,24 is performed on height hallmarks of cancer gene signa-

tures from the Broad Institute Molecular Signature Database25

(MSigDB): apoptosis, angiogenesis, epithelial mesenchymal transition,

glycolysis, G2/M checkpoint, hypoxia, inflammatory response, and

oxidative phosphorylation (Figure 4A). Similarly, ssGSEA scores are

also calculated for each of the LM22 immune gene signatures26 and

the CINSARC signature.27 The cell cycle G2/M transition score, com-

pared to the reference cohort, is of particular diagnostic importance

for borderline lesions without a clear benign versus malignant status.

This score can be used as a surrogate marker to determine whether

the lesion is indolent or highly proliferating, in addition to mitotic

activity and Ki-67 labeling index. Furthermore, the LM22 signature

can be used to basically identify or confirm the presence of a strong

inflammatory infiltrate, which is likely to lead to a deviation of the

global expression profile (Figure 4B).

F IGURE 2 Examples of hierarchical clustering (A–C) and t-distributed stochastic neighbor embedding (tSNE) (D–F) analyses. (A) and (D) show
4020 samples of different types of tumors (mesenchymal neoplasms and sarcomas in red, melanocytic neoplasms in green, mesotheliomas in
dark blue, epithelial tumors and carcinomas in purple, and hematologic proliferations in cyan). (B) and (E) are as (A) and (D), but each color now
represents one of the 260 cancer subtypes. Hierarchical clustering and tSNE analyzes focusing on mesenchymal neoplasms and sarcomas
(1894 samples, 153 molecular subtypes)

386 MACAGNO ET AL.
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2.4 | Clinicopathological-molecular integration:
The board

Many molecular alterations are not specific, and their systematic

integration with clinical, radiological, and histopathological data is

recommended. This integration aims to achieve a definitive diagnosis

and is performed during board meetings with referring pathologists,

oncologists, molecular biologists, but also scientists and

bioinformaticians strongly involved in translational research. During

these sessions, clustering data, gene fusions, mutations, and trans-

criptomic signatures (notably proliferation score) are reviewed, inte-

grated, confronted with the latest bibliography, and compared to

similar cases (similar being either having the same expression profile

or the same clinicopathological features) to refine diagnoses or dis-

cover new entities. If needed, ancillary techniques such

as immunohistochemistry, FISH, WES, aCGH, and high-coverage

targeted gene sequencing can be requested to complete the molecu-

lar characterization of a novel alteration or reveal alterations that

RNA sequencing could have missed. The systematic annotation of

the transcriptomic data for each sample, with an integrated, consen-

sus and expert diagnosis, improves the accuracy of the database for

cluster analysis over time. Some lesions lack a definitive diagnosis

even after the board discussion, but database expansion can help

identify incomplete diagnoses afterward (cold case solving). The sen-

sitivity of this approach parallels the exhaustivity of the neoplastic

transcriptomic profiles in the database: as more cases are added,

robust transcriptomic clusters can emerge and help redefine previ-

ously unclassified cases over time.

2.5 | Multicenter generation of data and
centralization of bioinformatics analyzes

The generation of transcriptomic data can be technically performed

by different centers and subsequently analyzed by the same bioinfor-

matics pipelines, independently of the type of source material (FFPE

and FF), but requiring only the use of the same library prep kit (the

same set of capture probes in our case) to ensure the production of

comparable expression profiles for clustering analyzes. Remote data

analysis was performed successfully between the Bergonié Institute

(Bordeaux, France) and the Centre Léon Bérard (Lyon, France). Once

analyzed, the cases followed the same workflow and were discussed

using videoconferencing for proper annotation of a common data-

base. These multicentric management of transcriptomic data make it

possible to give even more strength to clustering analyzes, especially

for extremely rare entities.
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F IGURE 3 Boxplots representing the distribution (through all the samples present at the time of the analysis) of the expression of
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2.6 | Impact on the discovery of new entities

This integrative management of transcriptomic data allowed the first

description and refinement of several neoplastic entities in the field of

mesenchymal, melanocytic, mesothelial, and rare tumors, using almost

exclusively archived FFPE material: alternative rearrangement of PDGFD

in dermatofibrosarcoma protuberans,28 endometrial stromal sarcoma in

general,6 sarcoma with CIC::NUTM1 rearrangement,29 perivascular myoid

neoplasm with SRF fusion,30 well-differentiated rhabdomyosarcomas with

SRF fusion,31 heterogeneity of rhabdomyosarcomas,32 undifferentiated

round cell sarcoma with CRTC1::SS18 fusion,5 superficial pleomorphic

tumors with PRDM10 fusion,33 giant cell tumor with NCOR2 fusion,34

acral fibrochondromyxoid tumor with THBS1 fusion,35 unclassified scle-

rosing malignant melanomas with AKAP9::BRAF gene fusion,36 cutaneous

melanocytoma with CRTC::TRIM11 fusion,37,38 melanocytic myxoid spin-

dle cell tumor with ALK rearrangement (MMySTAR),39 melanocytoma

with concomitant mutation of IDH1 and NRAS,40 CYSLTR2-mutant cuta-

neous melanocytic neoplasms,41 agminated melanocytic Spitz nevi aris-

ing in a giant congenital hyperpigmented macule with three-way

complex rearrangement of TRPM1::PUM1::LCK,42 agminated Spitz nevi

with GOPC::ROS1 mosaicism,43 primary melanoma of the lung with

FNBP1::BRAF fusion,44 melanocytic tumors with either RASGRF145 or

RASGRF2 fusion,46 melanocytic Spitz neoplasms with MAP3K8 fusion,47

melanocytic spitz tumors in general,43,48–50 clear cell tumor with

melanocytic differentiation and MITF::CREM51 and ACTIN::MITF fusion,52

and solid papillary mesothelial tumor.53

3 | ADVANTAGES AND LIMITATIONS

3.1 | RNA-sequencing for diagnosis

Whole transcriptome and whole exome RNA sequencing are

extremely powerful diagnostic techniques, as they allow exploring

gene expression and comparing expression profiles. Several publica-

tions now describe RNA sequencing to improve the diagnosis of can-

cer in general,54 glioma,55 glioblastoma,56 renal cell carcinoma,57

breast carcinoma,58–62 ovarian serous carcinoma,63 lung idiopathic

pulmonary fibrosis,64 hematological malignancies,65 and sarcoma66

among others. WTS and WERS combine expression profiles and high-

throughput detection of molecular biomarkers, including the detection

of variations or small insertion/deletions. However, these techniques

may have difficulties in identifying certain particular alterations, such as

truncating mutations, as they may lead to mRNA decay. Although pro-

moter swapping could be detected by aberrant expression of a gene,

detection of such an event might remain challenging. Similarly, the use

of alternative transcription initiation sites, as in the ALK gene,67 may be

missed unless transcript isoforms are also investigated.

3.2 | Clustering

Clustering of the transcriptomic profiles shows great performance and

hints to diagnoses even when a specific molecular hallmark is lacking,
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but depends on the exhaustivity and correct annotation of reference

cases. If enough cases are present, clustering approaches are sufficient

to identify tumors with similar expression profiles, similar oncogenic

alterations and/or similar phenotypes. This is clearly demonstrated for

CIC::DUX4 sarcomas, PLAG1-rearranged tumors, and BCOR-ITD tumors,

all aggregating in robust and specific clusters and for which fusion detec-

tion tools sometimes miss detection of genomic rearrangements. For

example, more than a third of the cases of lipoblastoma and fibrous

lipoblastoma lacked detectable PLAG1 fusion (RNA-seq and FISH), but

their diagnosis was supported by the combination of lipoblastoma mor-

phology, close clustering with PLAG1-rearranged lipoblastomas, and high

levels of PLAG1 expression. Similarly, a quarter of the sporadic cases of

malignant peripheral nerve sheath tumor (MPNST) in our cohort, tested

due to pathological ambiguity with melanoma or to rule out rhabdomyo-

sarcoma, lacked specific fusion, but their close clustering with other

MPNSTs favored their diagnosis. In this aspect, clustering analysis has

higher sensitivity than fusion detection alone. Similarly, it may be able to

separate tumors with similar fusion genes as demonstrated for the

YWHAE::NUTM2B fusion gene that could be identified in two distinct

groups corresponding to high- and low-grade endometrial stromal sar-

coma.6 The same approach was successfully used when the histopatho-

logical differential diagnosis on microbiopsy was difficult to distinguish

between clear cell sarcoma and angiomatoid fibrous histiocytoma, due

to a common EWSR1::ATF1 fusion.

It is very important to note that clustering does not resolve all

diagnostic conundrums, notably for some unclassified sarcomas,

undifferentiated pleomorphic sarcomas, sarcomas with complex geno-

mics, and dedifferentiated (sarcomatoid) carcinomas. In contrast,

transcriptomic profiles and clustering are useful in suggesting the

diagnosis of undifferentiated melanoma and mesothelioma. The major

flaw in clustering analyzes is the strong dependence on the cell con-

tent of the sample and its microenvironment. In fact, the presence of

cells with specific expression signatures, such as inflammatory cells or

highly differentiated normal cells from certain organs, could pro-

foundly impact the correlations involved in the cluster algorithms,

resulting in “organ clusters.” Therefore, the pathologist is of utmost

importance in selecting sample areas that contain as many tumor

cells as possible and as few normal surrounding cells as possible.

Alternatively, genes from specific cellular compartments could be

omitted from the clustering analyzes. As an example, we found

some cutaneous sarcomas that clustered together with melanomas

because of the presence of some epidermal tissue. Mining different

databases such as GTEX or msigDB, we identify a set of genes

highly expressed in normal skin, which, when removed from the

clustering analyses, often lead to a relocalization of these tumors

into the sarcoma subgroup.

3.3 | The caveats of FFPE

Because formalin fixation in archival material is prone to artifacts and

because of the reputation of uncertainty regarding the quality of

FFPE-derived RNA due to their degradation, RNA-seq techniques

were initially based on nucleic acids extracted from FF samples. Pre-,

per- and postfixation conditions impact molecular techniques and

should be carefully controlled.68 Unfortunately, before awareness of

the dramatic impact of preanalytical conditions on the performance of

sequencing techniques, samples were embedded and stored under

varying conditions without specific care. Formalin fixation and paraffin

embedding induce a systematic chemical change in RNAs, including

fragmentation, crosslinking, and loss of poly-A tails, which limits the

effectiveness of oligo-dT primers for reverse transcription.68 Several

studies have reported the negative impact of archiving time on the

RNA quality of FFPE samples over a long period.69,70 A negative

impact on sequencing success rates has been reported for surgical

samples storage at 4�C and fixation without slicing,71 highlighting the

need for proper processing even before fixation.

Despite these disadvantages and when analytical and preanalytical

conditions were optimized, many studies have reported a high correla-

tion of gene expression between FFPE and FF samples,54,57,59,72–82

although the RNA extracted from the FFPE samples was most often

degraded and continued to degrade with age. Some studies have also

investigated different extraction techniques or sequencing methods to

optimize the workflow for archival materials.83,84 Our experience is

consistent with these results and demonstrates that FFPE samples can

be used for RNA sequencing with sufficient reliability for diagnosis

when sample handling conditions were carefully controlled.

Beyond the advantage of being widely available, FFPE samples

can be stored at room temperature and easily transported, thus

requiring significantly less storage resources and logistics compared

to FF samples, with a significant impact on the costs. More impor-

tantly, most FFPE samples have been morphologically evaluated by a

pathologist prior to sequencing, which is not always the case for

fresh frozen samples, although performing such a control is of

utmost importance for any molecular analyzes, especially for cluster-

ing approaches. We believe that systematic pathological review of

samples prior to analysis and its correlation with transcriptomic data

afterward are two fundamental steps of the whole process. As stated

earlier, unless generated via the same library used for FFPE, the

expression profiles generated from FF cannot be mixed with FFPE

profiles for clustering analyses. In this context, we believe that

precious FF should be prioritized for research purposes, and harmo-

nization of preanalytical procedures regarding RNA sequencing

from FFPE should be encouraged to ensure comparability of the

expression profiles and decentralized analysis.

Compared to DNA-based approaches, RNA-seq has a lower sen-

sitivity considering the lower number of reads compared to massively

parallel sequencing on DNA, since the latter is less prone to high

degradation. In this context, canonical mutations involving key onco-

genes and kinase encoding genes can be overlooked as a consequence

of quality parameters (filtering and duplicate), while other inactivating

alterations inducing dramatically reduced expression of tumor

suppressor gene mRNA cannot be detected at all. The systematic

discussion during the multidisciplinary board can hint at the need for a

second look at the sequences or performing an orthogonal approach

to reveal cryptic biomarkers.
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3.4 | Alternative techniques and perspectives

Sometimes, high (as for MDM2) or low (as for CDKN2A) gene expres-

sion levels are suggestive of a gene amplification or deletion, but their

detections by RNA-seq are highly dependent on the fraction of tumor

cells in the sample. When WERS is not able to identify a probable

oncogenic event or is not informative enough to classify a given sam-

ple, other techniques such as WES or CGH could then be used to

identify unseen mutations or copy number variations (CNVs).

Improvements in our techniques and algorithms could involve the

implementation of specific transcriptomic signatures to predict recur-

rence and/or metastatic risk, response to chemotherapy and immuno-

therapy to guide therapeutic decisions. Furthermore, the exponential

data generated by WERS could benefit from deep learning algorithms to

merge and annotate transcriptomes with CNV (aCGH or WES), methyla-

tion profiling, radiological images, histological whole slide images, and

clinical data in order to find relevant patterns or correlations.

Array-based DNA methylation profiling has been proven to be a

powerful tool for the diagnosis of sarcoma and has been successfully

applied to show proximity85 or to discriminate between histologically

overlapping neoplasms,85–87 with a diagnostic prediction for 55% of

cases in a recent validation study.88 This method also provides useful

information on CNV. Automatically combining and integrating differ-

ent levels of omics data, such as the methylome, genome, and trans-

criptome, could reveal new nosological entities.

The future development of the molecular diagnostic routine could

involve the use of single-cell RNA or DNA sequencing. This technique

could have real potential to precise the diagnosis of unclassified pleomor-

phic tumors or tumors with complex genomic alterations. Indeed, investi-

gation of the gene expression of each cell of such a tumor fragment could

allow the detection of subclones carrying specific alterations that may be

of prime importance for the development (and/or evolution) of the tumor.

One step further is the association of this single cell knowledge with infor-

mation on cell localization. In the last decade, spatial transcriptomics,

which allows the spatial distribution of mRNA molecules in histological

sections to be defined, as well as their subcellular localization, has been

developed. A wide range of methods have been described to reveal the

cellular and spatial organization of the transcriptome of neoplastic cells in

relation to the surrounding or infiltrating microenvironment, some of

which can be performed in FFPE. Such techniques include, among others,

in situ sequencing, cyclic-ouroboros smFISH (osmFISH), multiplexed error-

robust fluorescence in situ hybridization, single-molecule FISH, spatially

resolved transcript amplicon readout mapping (STARmap), sequential

FISH, and Visium, Slide-seq, Expansion sequencing (ExSeq), and High Defi-

nition Spatial transcriptomics.89–95 These methods are not yet suitable for

the diagnostic routine, but the constant development of more specialized

techniques could already be used if not for their cost.

Although RNA sequencing represents the closest reflection of RNA

expression, it does not reflect either actual protein expression or cellular

localization. The probable ultimate analysis to be performed, somehow

mimicking histopathological morphology investigation, would be to

explore the entire protein content of cells, tumoral or from their environ-

ment. With the development of ever-sensitive mass spectrometry

techniques, quantitative proteomic approaches at the scale of a single cell

are being developed96 and enable one to foresee a future where it may

be possible to access the cellular localization of at least thousands of

expressed proteins. Similarly, the continuous development of highly multi-

plexed immunofluorescence techniques, which already allow the investiga-

tion of several tens of proteins at the same time, might provide a

wonderful diagnostic tool to investigate the subcellular and cellular locali-

zation of all important biomarkers in a single experiment.

Finally, with the increasing amount of acquired data, either from

RNA sequencing, DNA sequencing, methylation profiling, and proteo-

mics, there is a tremendous need for novel bioinformatics integrative

tools. Current developments include deep learning approaches to align

transcriptomic and spatial data93 to further improve spatial resolution

and sensitivity. Therefore, the future of molecular pathology will more

than ever depend on the expertise of bioinformaticians to reduce the

enormous amount of raw acquired data to essential information, all-

owing for rapid interpretation by pathologists and biologists.

4 | CONCLUSION

Gene expression profiling can be successfully applied to archival

material to diagnose challenging unclassified neoplasms, discover new

entities, pinpoint aggressiveness, and refine the tumor microenviron-

ment. Involvement of a multidisciplinary board with molecular biolo-

gists, physicians, scientists, bioinformaticians, and pathologists is a

sine qua non condition for the correct integration and annotation of

all generated datasets. Future directions are represented by spatial

transcriptomics, in which morphological and molecular correlation will

play a pivotal role.
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