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Abstract: Male infertility is a major public health issue that can be induced by a host of lifestyle risk
factors such as environment, nutrition, smoking, stress, and endocrine disruptors. Regarding the
human population exposed to uranium, it is necessary to explore these effects on male reproduction
in multigenerational studies. The sensitivity of mass spectrometry (MS)-based methods has already
proved to be extremely useful in metabolite identification in rats exposed to low doses of uranium, but
also in human sperm. We applied this method to rat sperm over three generations (F0, F1 and F2) with
multigenerational uranium exposure. Our results show a significant content of uranium in generation
F0, and a reduction in the pregnancy rate only in generation F1. Based on principal component
analysis (PCA), we observed discriminant profiles between generations. The partial least squares
discriminant analysis (PLS-DA) of the 48 annotated variables confirmed that parental exposure of
generation F0 (during both the preconceptional and prenatal periods) can have metabolic effects on
spermatozoa for the next two generations. Metabolomics applied to epididymal spermatozoa is a
novel approach to detecting the multigenerational effects of uranium in an experimental model, but
could be also recommended to identify potential biomarkers evaluating the impact of uranium on
sperm in exposed infertile men.

Keywords: uranium; multigenerational; low-dose; chronic exposure; sperm; metabolomic

1. Introduction

Infertility is a major public health issue, affecting 8–12% of couples worldwide and
associated with males in more than half of all cases [1]. In addition, in 30–40% of infer-
tility cases, semen analyses and physical examinations fail to identify the etiology of the
dysfunction. These infertility cases are then classified as idiopathic [2]. However, the
impact of entropic pollution on ecosystems and human health, especially fertility, is a major
concern for scientists and the public, as different pollutants have already been associated
with secondary reproductive effects, e.g., endocrine disruptors [3], air pollution [4–6] and
noise [7]. Thus, the effects of environmental exposure to radionuclides such as uranium on
reproduction have become a growing societal concern [8–10].

Our literature review identified many experimental studies focusing on different
species and demonstrating a range of biological effects for uranium exposure on male
or female reproductive functions and fertility [11–17]. The International Commission on
Radiological Protection (ICRP) recently highlighted the need to develop studies to better
understand the effects of ionizing radiation over several generations [18]. In addition, the
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World Health Organization (WHO) supports all studies which could increase knowledge of
the effects of environmental pollutants and radiation on the different developmental stages
of human life, as well as the multigenerational and intergenerational effects of exposure to
such pollutants [19,20].

WHO promotes the development of new tools to increase the sensitivity of diagnoses
and improve fertility treatments [21,22]. Proteomics and metabolomics can be used in the
field of andrology to help overcome the limitations of standard semen analyses (pH, volume,
concentration, motility, morphology, etc.) [23–26]. In fact, metabolomics are also considered
to be more closely related to the actual phenotype than either transcriptomics or proteomics,
as they can be used to directly monitor biochemical activity [27,28]. Metabolomics have
already demonstrated their ability to identify the mechanisms involved in male infertility
by monitoring the metabolomes of human and rodent sperm [29,30]. Mass spectrometry-
based methods have already proved to be extremely useful in identifying metabolites in
human sperm in case of fertility problems or in asthenozoospermic patients [24,31]. To
the best of our knowledge, there are no published reports on the application of MS-based
methods to rat sperm with the exception of a few proteome-based studies [32,33].

To better understand the effects of uranium exposure, metabolomics have already been
used with various biofluids (blood, urine, cerebrospinal fluid and have demonstrated their
ability to detect the effects of low concentrations on rat species [34,35]. Some metabolomic
signatures associated with uranium exposure have been demonstrated and used to establish
some metabolite fingerprints in human and animals, such as tryptophan and nicotinamide
pathways [34,36,37]. The objective of the present experiment is to use a previously pub-
lished multigenerational study to highlight various biological effects and the metabolomic
effects of uranium exposure on rat sperm. Spermatozoa are produced during spermato-
genesis in an extremely differentiated cell with very marked genetic, cellular, functional
and chromatin changes compared to other cells. This cell delivers the paternal genome to
the oocyte and plays profound roles in fertility, embryo development and heredity [38].
The spermatozoa mature while transiting through the epididymis as they acquire different
membrane and cellular functionalities [39]. In our study, we focused on rat spermatozoa
derived from the epididymis.

First, we aimed to detect the metabolomic signature associated with uranium exposure
in rat epididymal sperm for each generation. Then, we identified the metabolites in each
generation and, finally, proposed some new markers with biological functions which could
affect the metabolic quality of rat sperm.

2. Results
2.1. Effects on Fertility

The pregnancy rate in generation F1 was reduced to 30% in the natural uranium (NU)
exposed group in comparison with 70% success in the control group (p < 0.05) (Figure 1A).
No difference was observed between the successive generations in terms of the number of
pups per litter and male/female ratio (Figure 1B,C).

2.2. Uranium Quantification in Epididymis

Epididymides were significantly contaminated in generation F0 in the group exposed
to uranium compared with the CTRL group (p < 0.05) (Figure 2). In this reproductive organ
in the former group, the uranium content was 1.14 ± 0.23 g of uranium per gram of tissue.
No significant uranium content was detected in generations F1 and F2.
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Figure 1. Effects of exposure to uranium on fertility: (A) pregnancy rate, (B) number of pups per
litter and (C) sex ratio, were evaluated. Significant effects are defined as p < 0.05; n = 17–20 per group.
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Figure 2. Quantification of uranium in the epididymis for each generation. Significant effects are
defined as p < 0.05; n = 7–10 per group.

2.3. Differences in the NU-Exposed Group in Each Generation

Data observed from spermatozoa extracts were analyzed using different PLS-DA
models. The first model was calculated using the matrix containing control and NU-
exposed samples from three generations using generation as a dummy matrix. It showed
a significant difference between generations (CV-ANOVA; p = 2.19 × 10−27; R2Y = 96.3;
Q2Y = 88.5) (Figure 3).

Furthermore, NU exposure was evaluated independently in three generations. PLS-
DA models were created with no or with different ways of selecting variables to find a
model which was able to differentiate between exposed and non-exposed individuals
(Figure 4). A PLS-DA for generation F0 containing 48 putatively-identified metabolites did
not clearly differentiate between exposed and non-exposed individuals.

Only a selection of 10 metabolites based on VIP > 1.1 clearly separated the two groups
of individuals (CV-ANOVA; p = 0.048; R2Y(cum) = 61.9%; Q2(cum) = 37.3%) (Figure 4a).
Slightly clearer separation was observed in generation F1, where 13 metabolites selected
based on their VIP > 1.2) created a PLS-DA model that could be validated (CV-ANOVA;
p = 0.0047, R2Y(cum) = 80.3%; Q2(cum) = 55.1%) (Figure 4b). Regarding generation F2, a
PLS-DA model could only be validated after selecting variables according to coefficients,
after selecting seven metabolites as significant (Figure 4c). A validated model (CV-ANOVA;
p = 0.0043; R2Y(cum) = 53.9%; Q2(cum) = 49.4%) clearly separated NU-exposed from
non-exposed individuals.
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Figure 3. (a) PLS-DA model calculated using spermatozoa samples (control and NU-exposed)
collected from all generations. The PLS-DA showed significant separation between the metabolomic
profiles of each generation (CV-ANOVA; p = 2.19 × 10−27; R2Y = 96.3; Q2Y = 88.5) (b) Hierarchical
clustering shows more similarity between generations F0 and F2 than between F0 and F1.
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2.4. Identification of Metabolites Common between Generations F0, F1 and F2

None of the selected variables was common to the three generations, indicating
high multi-generational dimorphism related to NU exposure (Figure 5). However, three
metabolites were common to generations F0 and F1: spermidine, Trans-4-hydroxy-L-Proline
and 0-acetyl-carnitine hydrochloride. Generations F0 and F2, and generations F1 and F2,
shared one common metabolite each, i.e., taurocholic acid and arginine, respectively.
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Figure 5. Number (percentage) and name of the most discriminant metabolites identified in sperma-
tozoa samples from each generation used in PLS-DA models.

2.5. Main Metabolites and Related Pathways in Each Generation

The main metabolic pathways impacted by uranium exposure were analyzed based
on the most discriminant metabolites in each generational group. Such analyses showed
that some of these pathways could be affected over several generations (Table 1).
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Table 1. Main related pathways identified from the most discriminant metabolites in each generation.

Generations

Metabolisms F0 F1 F2

Purines
Adenine

2′-O-Methylinosine
Hypoxanthine

Glycocorticoïdes Cortisone

Carnitines
Lysine

o-acetyl-l-carnitine hydrochloride o-acetyl-l-carnitine hydrochloride
Butyryl-l-carnitine

Polyamines

L-Methionine
Spermidine Spermidine

Spermine
Arginine Arginine

Bile acids
Taurocholic acid Taurocholic acid

Glycocholic acid
Chenodeoxycholic acid

Proline
Trans-4-hydroxy-L-proline Trans-4-hydroxy-L-proline

Proline

Tryptophan Tryptophan
Anthranilate

Nicotinate-
nicotinamide Nicotinamide

Ceramides
PI-Cer(d20:0/18:0)

4-hydroxysphing-8(Z)-
enine-16:0,
ceramide

Phospholipids PS(17:1(9Z)/0:0)

Prostacyclin 6-ketoprostaglandin F1 alfa

Microbiotic origin,
glucid metabolism Hippurate

Unknow origin L-beta-homothreonine

3. Discussion

Infertility is a major health issue worldwide, and the impact of environmental expo-
sure to uranium on male fertility needs to be studied in more detail. Various biological
effects have already been demonstrated for the male and female reproductive functions
and fertility [8,9]. The impact of uranium on human infertility is a major concern. Skuhn
et al. showed more significant measurable uranium concentrations in the seminal fluid
than in the blood of Lebanese male partners in heterosexual couples [40]. They highlighted
that significant associations of seminal uranium levels were observed with progressive
sperm motility and viability below control levels, and normal morphology. More recent
findings revealed semen uranium concentrations in Gulf War Veterans exposed to depleted
uranium, and urinary uranium concentrations in women associated with exposure dur-
ing pregnancy and decreased gestational age and increased risk of preterm birth [41,42].
Our recent experimental research into male fertility highlighted that lifelong exposure
to uranium, as a chemical endocrine disruptor, induces subtle testicular and hormonal
defects [11]. After multigenerational exposure, we showed that uranium can induce mor-
phological sperm defects and changes in the DNA methylation level [13]. In this paper,
we also showed that after the same multigenerational exposure to uranium, significant
uranium content was observed in generation F0, with a reduction in the pregnancy rate
only detected in generation F1, but without any effects on number of pups per litter and
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male/female ratio. Together, these results suggest that uranium affects reproductive func-
tions in subsequent generations.

Regarding the risk of heritable effects of such exposure, recent studies have shown
differences in global DNA methylation levels in the gonads of exposed individuals at
different developmental stages, but also in other organs such as the kidneys [12,43]. These
result show, on the one hand, that chronic exposure to low doses of NU can modify the
DNA methylation profile of kidney cells (main toxicological target of uranium), but also
that uranium could have a genetic effect on the gonads of adult males, even if they are
only exposed during the embryonic and fetal periods of generation F0 and the germinal
period for the animals in generation F1. Together, these epigenetic effects attest to an early
effect occurring during the prenatal development periods and the de novo programming
phase of germline and somatic cells. They could also affect the metabolism and physiology
of certain organs, including the reproductive organs, and the metabolism of spermatozoa
later in life [44–46].

It would therefore be worthwhile to expand these results by analyzing the spermogram
of the animals in order to identify possible fertility defects, and to analyze the metabolic
imprints which may reflect the phenotype of a living organism at a given moment in time.
Thanks to its extreme sensitivity and large observational scale, metabolomic analysis can
be used to identify subtle-to-significant metabolic modifications that can lead to acute later
physiological disorders and health effects [47]. In this field, metabolomics have already
been used to study the effects of low-dose incorporated uranium at the systemic and re-
nal levels by analyzing urinary and plasma profiles and renal tissue from contaminated
rats [37,48]. More generally, as suggesting by Engel, 2019, using epididymal sperma-
tozoa for metabolomics studies is highly recommended for the purposes of identifying
potential biomarkers and developing diagnosis tests for detecting the main failings of the
experimental model and potentially infertile men [49]. In fact, the metabolomic analysis of
epididymal spermatozoa could be used to highlight discriminating profiles in contaminated
individuals [26].

Based on the PCA analysis of the annotated matrices from the sperm samples from
the three generations in general, initial observations yielded different profiles for each
generation without any detectable effect that was attributable to uranium. It is interesting
to note that sperm metabolism was not constant, and that intergenerational fluctuation
was much greater than that found for uranium effects, confirming the low-dose range of
this study (as previously shown with aging in urine [48]). At this dose level, the effect of
uranium seemed to be weak (Figure 4). If we consider each generation individually, the
PLS discriminant analysis of the 48 annotated variables from the data row matrix could
be used to obtain predictive models for the 10 metabolites identified from generation F0,
13 in generation F1 and 7 in generation F2 (Table 1). Despite the weak effect of the uranium
exposure, when focusing on the variance specifically linked to treatments based on the
selected variables, and the most sensitive variables to uranium exposure in each generation
(PLS-DA analyses, Table 1), the effect of uranium was not negligible, i.e., it represents 37%,
58%, and 49% of this “sub” metabolome variation in generations F0, F1 and F2, respectively.

The results therefore confirm that parental exposure during both the preconceptional
and prenatal periods can have metabolic effects on the spermatozoa for the next two
generations. The observation of the 3 discriminant metabolomic profiles reveals that each
generational effect differed from the others with only 12% overlap between the first and
second generations and 4% between both the second and third generations, and between
the third and first generations. No characteristics seemed to be common to all three
generations (Figure 6).
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Figure 6. Multigenerational uranium exposure protocol. Three generations of male and female rats
(F0, F1 and F2) (n = 20) were monitored. Generation F0 was exposed over 9 months from birth
through drinking water with natural uranium (NU). Control animals drank uncontaminated mineral
water. Generation F1 was contaminated in utero and through their mothers’ milk (F0) until weaning.
After generation F1 was weaned, contamination was stopped, and all groups of rats were provided
with uncontaminated mineral drinking water ad libitum. Generation F2 was only exposed to uranium
from parental (F1) germ cells.

In order to search for predictive indicators of reproductive function impairment,
the observation of the main impacted metabolites and associated metabolisms showed
effects on purine and steroids metabolisms. Among these, the metabolism of purines are
involved in cellular translation processes and sperm motility for generation F1 [50,51].
Glucocorticoids involved in steroidogenesis [52], but also in sugar metabolism, immune
function and inflammatory processes, appears as a discriminant metabolite in this first
generation [53].

Other metabolism such as energy metabolism could be impacted in generations F0,
F1 and F2, in which level of carnitines, implied in the transport of fatty acids to the
mitochondria, are found to be affected by uranium [54,55]. They also play an antioxidant
role in the lipoperoxidation of membrane phospholipids, which helps to regulate oxidative
stress and influence male fertility (apoptosis, sperm parameters and function) [56,57].

Uranium also seems to have an effect on polyamine metabolism, involving different
metabolites such as spermidine (F0) and L-methionine (F1), spermine and finally arginine
(F1, F2) [58]. Polyamines are involved in many processes which are essential for cell growth,
DNA double helix stabilization and cationic transporters [59–63]. For example, arginine is
known to be involved in the anti-inflammatory process, but also, in the sperm motility [64].

Bile acids are also part of the discriminant metabolites found in sperm for generations
F0, F1 and F2. They are also involved in energy metabolism, steroidogenesis and in
testicular defects reducing fertility [65,66]. For each of the three generations, proline also
plays an important role in fertility because it protects spermatozoa from free radical damage
by stabilizing the membrane structure, reduces lipid peroxidation and improves sperm
motility [67,68].

In addition, tryptophan and the nicotinate-nicotinamide pathways, associated with
NAD+ production, are already known to be impacted by exposure to uranium in the
kidneys [37,69]. They are involved in the redox system, and in the inflammatory processes
of the organism. The deregulation of these pathway in sperm shows that it is not specific
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to kidney. Finally, other discriminant metabolites as ceramides, and specifically lysophos-
phatidyl serine are involved in inflammatory processes and in sperm motility [70,71].

In conclusion, based on our metabolomic results, we demonstrated that metabolomics
applied to epididymal spermatozoa offers a novel approach to detecting the multigenera-
tional metabolomic profiles induced by uranium in an experimental model. For the first
time, dysregulation of tryptophan and nicotinamide pathways is also detected in sperm,
and new markers specific to sperm metabolome exposed to uranium are highlighted, as
spermine and cholic acid. In our multigenerational uranium exposure model and regarding
the pregnancy rate observed in generation F1, these metabolomic results suggested some
specific pathway affected in sperm for F1 generation. More particularly, in this in utero
exposed generation, which is especially sensitive, we detected discriminant metabolites
involved in sperm motility, energy metabolism, steroidogenesis, cell growth and DNA
molecule stabilization. To complete these new findings and our recent results showing
sperm morphological defect [13], future testicular studies on steroidogenesis, spermato-
genesis and sperm motility could improve our understanding of how uranium could
affect fertility.

4. Materials and Methods
4.1. Experimental Procedure and Sample Collection

Outbred Sprague–Dawley, 12-week-old and 16-day pregnant, female rats (parents’
generation) were obtained from Charles River Laboratories (L’Arbresle, France). They
were housed individually and maintained in a 12 h light/12 h dark cycle (regular cycle) at
21 ◦C and 50% humidity, with ad libitum access to a standard rodent pellet diet and water
until birth. All experimental procedures were approved by the Animal Care Committee of
the Institute of Radioprotection and Nuclear Safety (IRSN, Fontenay-aux-Roses, France)
and complied with French regulations on animal experimentation (French Ministry of
Agriculture Act No. 87-848, 19 October 1987, modified 20 May 2001).

The multigenerational study design is already described in [12,43] (Figure 6). In
summary, the present protocol includes three generations (F0, F1 and F2) of male and female
rats (n = 20). Exposure to Natural Uranium (NU) started from birth and continued up to
the age of 9 months in generation F0 (offspring of the parents’ generation). Generation F0
was mostly exposed to NU through lactation (human offspring absorbs approximately 5%
of the mother’s daily uranium dose) and contaminated drinking water. All control groups
of rats received uncontaminated drinking water ad libitum. F1 rats were contaminated in
utero and through lactation until weaning [72]. After weaning, they drank uncontaminated
mineral water. The last generation, F2, only received mineral water. Generation F2 was
only exposed to uranium from parental (F1) germ cells.

NU (Mc Arthur) was obtained from CERCA (Pierrelatte, France) in the form of uranyl
nitrate hexahydrate (UO2 (NO3)2 6H2O) was prepared to obtain a final uranium concentra-
tion in the drinking solution was 40 mg L−1 of mineral water obtained from Evian®(Evian-
les-Bains, France), which resulted in a daily uranium intake dose of 1 mg/rat/day) [73].
The specific activity of the NU was 2.42 10+4Bq g−1, and the isotopic compositions were
238U~99.307%, 235U~0.688%, and 234U~0.005%. This NU concentration was three times
higher than the highest uranium concentration, i.e., 12.4 mg L−1 naturally found in
Finnish wells [74], half of the WHO 2011 drinking-water guideline for uranium, defined as
0.030 mg L−1 [75], and not nephrotoxic [76].

In each generation, 9-month-old rats were deeply anesthetized by inhaling 5% isoflu-
rane (Abbot France, Rungis, France) and euthanized by an intracardiac puncture.

The epididymis (n = 8–10 per group/per generation) was deep-frozen in liquid nitrogen
and stored at−80 ◦C for metabolomic analysis. Other epididymis samples (n = 7–10 per group)
were weighed and stored at –20 ◦C to determine uranium content.
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4.2. Uranium Content

Epididymis was prepared by adding 8 mL of ultrapure 69% nitric acid (ARISTAR,
VWR, France) and 2 mL of hydrogen peroxide 30% and mineralizing them in a 1000 W
microwave (Ethos Touch, Milestone Microwave Laboratory Systems, Italy) with a 20-min.
temperature increase to 180 ◦C and then a steady phase of 10 min. at 180 ◦C. The uranium
content of mineralized samples was determined with an inductively coupled plasma mass
spectrometer (ICP-MS Xseries 2, ThermoElectron, France) using bismuth (1 mg L−1) as
the internal standard. The ICP-MS detection limit for uranium is 1 ng·L−1. Values were
expressed as ng U per g of tissue.

4.3. Metabolomic Study
4.3.1. Sample Preparation

After thawing at room temperature, the whole epididymis was homogenized in
medium M199 (Sigma-Aldrich, St. Louise, MO, USA). Ten cycles of a manual Potter–
Elvehjem homogenizer were used for each sample to isolate epididymal spermatozoa. The
cells were counted on the Malassez counting chamber to determine the sperm concentration
and the purity of the sample. The concentration of epididymal cells was less than 8%.
Each sample was normalized to obtain a concentration of 1.3 × 10−7 sperm in 250 µL of
medium M199.

Experiments were performed on eight replicates (F0) and ten replicates (F1 and F2).
Sperm samples were vortex mixed to homogenize. Then, 500 µL of 80% cold (−80 ◦C)
methanol was added to 100 µL of sample and agitated slowly before a one-hour incubation
period at−80 ◦C. After one-minute of vortex mixing, samples were centrifuged for 15 min at
4 ◦C and 11,000 RPM and 450 µL of supernatant was evaporated under the gentle nitrogen
steam and suspended in 100 µL water/acetonitrile/formic acid, 90/10/0.1, (v/v/v). Then,
20 µL of each sample was collected to obtain a pooled sample for use as a quality control.
The mixture used to dissolve dry extracts was also used as blank sample.

4.3.2. Ultra-High-Performance Liquid Chromatography-High Resolution Mass Spectrometry

High performance liquid chromatography coupled with high-resolution mass spec-
trometry was used for sample analysis. Chromatographic separation was carried out using
a Dionex UltiMate 3000 (Thermo Fisher Scientific). First, 5 µL of each sample was injected
into a reverse phase Hypersil Gold C18 (100 mm × 2.1 mm × 1.9 µm) (Thermo Scientific,
France) column kept at 40 ◦C. The flow rate was maintained at 400 µL/mL, and 0.1% formic
acid solutions in water and acetonitrile were used in mobile phases A and B respectively.
A first minute at 0% of B in the isocratic elution was followed by ten minutes on a linear
gradient to 100% B, which was then maintained in isocratic mode for two minutes. Initial
conditions were recreated in one minute following two minutes of column equilibration.

High resolution mass spectrometry analysis was performed using the Q-Exactive Plus
hybrid mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) with a Heated
Electrospray Ionization (H-ESI II) probe working in positive and negative ionization modes.
Ionization conditions were as follows: spray voltage, ±3500 V, transfer capillary temper-
ature, 320 ◦C, sheath and auxiliary gas flow rates, 30 and 8 arbitrary units respectively
and gas temperature 310 ◦C. Ion transfer was maintained keeping S-lens RF at 55 V. Mass
spectra were acquired in the 80–1000 m/z range, with maximal injection time 250 ms
and resolving power set to 35,000 FWHM (Full Width Half Maximum) for the theoretical
m/z 200. Instrument setup was controlled using Thermo Xcalibur 3.0.63 software and the
mass spectrometer was controlled using the Tune Q Exactive Plus 2.5 application.

Samples were analyzed in one analytical batch. First, the blank samples were analyzed
with five replicates, followed by ten pool samples used to equilibrize the analytical system.
Samples were then analyzed in a random order interspaced by one pool sample every five
samples. At the end of the analytical batch, a pool sample was tested using High Collision
Dissociation (HCD) and a Data-Dependent Analysis to obtain the MS/MS spectra and
elucidate the structure of the many metabolites.
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4.3.3. Data Pre-Processing

The ProteoWizard application was used to convert raw spectra into separated posi-
tive/negative mzXML files. Only positive ionization spectra were processed. The XCMS
library under the R environment was used to extract data using the following parameters:
peak detection method—centWave; peak width—2 to 15 s; S/N threshold—3; noise —10000;
m/z tolerance between two consecutive scans—5 ppm. The prefilter for the peaks detected
was set to four consecutive scans with intensities higher than 100,000. The peaks of samples
were aligned and grouped using Obiwarp and density methods, respectively.

Extracted data matrices were then filtered to eliminate the analytical background
and correct for analytical drift. Analytical batch drift was corrected using the Van der
Kloet algorithm. Blank samples were used to filter data from instrumental noise, and pool
samples to filter signals that varied by more than 30%. The final matrix contained 555 ions
and was used for the untargeted metabolomic analysis.

4.4. Statistical Analysis
4.4.1. Uranium Content, Fertility Parameters

Uranium concentration results are expressed as mean ± standard deviation (SD).
Kruskal-Wallis One-way ANOVA was performed, and Dunn’s Method was used for all
pairwise multiple comparisons. The Fisher exact test was used to compare pregnancy
rate, number of pups per litter and the male/female ratio. Differences were considered
statistically significant when p < 0.05 (Sigmaplot Stat software, SPSS, Paris, France).

4.4.2. LC-MS Data Analysis

Multivariate statistical analyses were performed using SIMCA-P 14.0 software (Umet-
rics, Sartorius, France) and partial least squares discriminant analysis (PLS-DA) models
were obtained after transforming log 10 [1 + 104] data and Pareto normalization. Model
were validated by CV-ANOVA and permutation tests.

4.4.3. Variable Selection and Metabolite Identification

Discriminant metabolites were selected according to their variable importance in pro-
jection (VIP) score SIMCA P algorithm. Normal probability plot (NNP) distribution was
used to determine the appropriate threshold for significance. Variables were putatively-
identified using the laboratory data base, Metlin and MZedDB database browsers (Aberys-
twyth University, Aberystwyth, UK) freely available online [77], according to chemical
formulas generated from mass measurements (error < 5 ppm). Full MS and MS/MS spectra
were compared for standard chemical samples, biological samples, and spectral databases
(mainly laboratory data base, HMDB, Metlin, and MassBank) to identify metabolites.
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