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Abstract: Rhabdomyosarcoma (RMS) is an aggressive childhood soft-tissue tumor, with propensity
for local invasion and distant metastasis. Exosomes are secreted vesicles that mediate paracrine
signaling by delivering functional proteins and miRNA to recipient cells. The transmembrane
protein CD147, also known as Basigin or EMMPRIN, is enriched in various tumor cells, as well as
in tumor-derived exosomes, and has been correlated with poor prognosis in several types of cancer,
but has not been previously investigated in RMS. We investigated the effects of CD147 on RMS cell
biology and paracrine signaling, specifically its contribution to invasion and metastatic phenotype.
CD147 downregulation diminishes RMS cell invasion and inhibits anchorage-independent growth
in vitro. While treatment of normal fibroblasts with RMS-derived exosomes results in a significant
increase in proliferation, migration, and invasion, these effects are reversed when using exosomes
from CD147-downregulated RMS cells. In human RMS tissue, CD147 was expressed exclusively
in metastatic tumors. Altogether, our results demonstrate that CD147 contributes to RMS tumor
cell aggressiveness, and is involved in modulating the microenvironment through RMS-secreted
exosomes. Targeted inhibition of CD147 reduces its expression levels within the isolated exosomes
and reduces the capacity of these exosomes to enhance cellular invasive properties.

Keywords: rhabdomyosarcoma; exosomes; CD147; tumorigenesis

1. Introduction

Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma in children and
adolescents; it is considered rare in adults [1]. It consists of rhabdomyoblasts that fail to
complete differentiation into mature skeletal muscle cells but nonetheless express myogenic
transcription factors that control skeletal muscle differentiation [2]. RMS is classified, based
on histology, into several subtypes. The most common are the embryonal (ERMS) and
alveolar (ARMS) subtypes [3]. In pediatric and adolescent patients, ERMS constitutes
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around 60% of RMS and is usually associated with localized disease, favorable sites of onset
and better prognosis, while ARMS is less frequent (20%) but more aggressive due to less
favorable sites of primary onset and enhanced metastasis potential [1,4]. In adults, prog-
nosis seems to be worse for both subtypes, and the prevalence of invasive and metastatic
disease is higher [1]. The driver oncogene in ARMS is the product of a chromosomal
translocation that results most commonly in the fusion oncoprotein PAX3-FOXO1, and less
frequently PAX7-FOXO1 [4–6]. Additional rare fusion genes have been identified as well,
such as FOXO1-FGFR1 and PAX3-NCO1 [7,8], among others [9]. Cases with histologically
defined ARMS that lack this fusion oncoprotein are associated with clinical and molecular
profiles that are indistinguishable from ERMS cases, indicating a more favorable progno-
sis [9,10]. This has allowed a better classification of RMS into fusion-positive (FPRMS) and
fusion-negative (FNRMS) subtypes, which improves prognostication [11–13]. The fusion
oncoprotein has been well documented to act as a transcription factor that modifies gene
expression resulting in enhancement of cell survival, motility and invasion [14].

RMS cells release exosomes that can modulate the tumor microenvironment in such a
way that enhances not only RMS growth but also normal fibroblasts [15]. Exosomes are
extracellular nanovesicles released by normal cells, such as stem cells and immune cells,
and at much higher quantities by abnormal cells, including cancer cells [16–18]. Exosomes
carry miRNA and proteins that can modulate recipient cell function by releasing this cargo
into target cells and modifying intracellular signaling pathways. In cancer, exosomes were
shown to enhance evasion of the immune response, promote recipient cell motility and
create a pre-metastatic niche that allows distant metastasis [18,19]. In RMS, exosomes
derived from both ERMS and ARMS cell lines were found to enhance recipient fibroblast
proliferation, migration and invasion [15]. Furthermore, RMS-derived exosomes were
found to carry nucleic acids and proteins previously implicated in tumor growth and
metastasis such as miR-486 and integrins [20–22]. Proteomic profiling of RMS-derived
exosomes revealed that they commonly express a set of proteins including CD147, which is
enriched in exosomes of both ARMS and ERMS subtypes [20].

CD147, also known as EMMPRIN or Basigin, is a transmembrane glycoprotein and
member of the immunoglobulin superfamily [23]. Its expression is upregulated in tumor
cells and has been correlated with a poor prognosis in several types of cancer, including
breast cancer [24,25] and melanoma [26]. CD147 is able to induce the production of matrix
metalloproteinases, including MMP-1 and MMP-9, which leads to the remodeling of the
extracellular matrix and enhances motility [23]. CD147 can also promote angiogenesis by
increasing the protein expression levels of MMPs as well as vascular endothelial growth
factor (VEGF) [27,28]. Moreover, CD147 can interact with integrins to regulate the adhesion
with extracellular matrix proteins [29,30]. CD147 also participates in inflammation, nutrient
and drug transporter activity and developmental processes, making it a pleotropic molecule
whose expression is not limited to tumor cells [23–25,27–31]. Interestingly, evidence sug-
gests that CD147-containing extracellular vesicles, including exosomes, can be extracted
from the serum of cancer patients and may serve as a biomarker of disease [31–34]. In this
study, we investigate the role of CD147 in RMS cells, and its potential contribution to the
RMS microenvironment through exosome-mediated signaling.

2. Material and Methods
2.1. Cell Lines and Cell Culture

The human ERMS cell line JR1, and the ARMS cell line Rh41 were generously donated
by Dr. Peter Houghton and St Jude Children’s Research Hospital. BJ (human foreskin
fibroblast) cell line was purchased from ATCC (Manassas, VA, USA). The cells were cultured
in Dulbecco’s modified Eagle’s medium (DMEM) AQ supplemented with 10% fetal bovine
serum (FBS) and 1% penicillin (100 units/mL)—streptomycin (100 µg/mL) antibiotics (all
from Sigma-Aldrich, Dorset, UK). For the ARMS cell lines, the medium was supplemented
with 1% sodium pyruvate and 1% non-essential amino acids (Sigma-Aldrich, Dorset, UK).
Cells were maintained under standard incubation conditions (humidified atmosphere,
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95% air, 5% CO2, 37 ◦C) and passed two times per week by trypsinization using trypsin-
EDTA (Sigma-Aldrich, Dorset, UK).

2.2. Viral Transduction

RMS cell lines were transduced with a lentiviral vector expressing GFP along with
puromycin resistance gene and one of four different shRNA constructs directed against
CD147 (shCD147), or scrambled control (shScr), all purchased from OriGene (Rockville,
MD, USA). Cells were plated at a density of 1 million cells per 6 well plates, and 1 mL of
virus was added with volume completed to a total of 2 mL per well by adding medium.
Polybrene 8 µg /mL (Sigma-Aldrich, Dorset, UK) was added to increase the efficiency
of transduction and the plate was centrifuged at 1250× g for 1 h followed by incubation
overnight at 37 ◦C. The next day, the cells were trypsinized and transferred to 6 cm plates,
followed by addition of 1 mL of virus and 3 mL of medium such that the total volume
equaled 4 mL. After 72 h, 78–86% of cells were GFP positive, as detected by flow cytometry.
Selection was then performed by puromycin treatment at 0.5 µg/mL for JR1 cells, and
1 µg/mL for Rh41 cells. The media was changed and cells were split twice a week for
10 days, after which cells were used for the below assays.

2.3. Exosome Isolation

Exosomes were isolated as previously described [15]. Briefly, exosome-free (exo-free)
medium was prepared by ultracentrifugation of 40% FBS/DMEM at 100,000× g overnight
at 4 ◦C. The resulting supernatant was filtered with 0.22 µm filter (Millipore, Darmstadt,
Germany) and then diluted in a ratio 1/4 to obtain exo-free medium with 10% FBS. JR1 and
Rh41 cells were cultured in exo-free medium for 72 h at 37 ◦C in 5% CO2 in 15 cm plates.
The culture medium was collected and centrifuged 3 times at increasing speeds (300× g for
10 min, 2000× g for 20 min, and 10,000× g for 30 min). The supernatant was collected in
ultracentrifuge tubes, mixed with Exoquick solution (SBI, Mountain View, CA, USA) for
exosome precipitation, and stored overnight at 4 ◦C. The solution was ultracentrifuged at
100,000× g for 70 min at 4 ◦C to remove contaminating elements. The pellet was collected,
washed with 700 µL PBS, then centrifuged at 100,000× g for 70 min. The final pellet was
resuspended in 300µL PBS for exosome use in functional assays, in lysis buffer for protein
extraction, or in Trizol® for RNA extraction.

2.4. Protein Extraction and Analysis

Proteins were extracted from transduced cells using RIPA 1X lysis buffer (20 mM
Tris-HCl pH 7.5; 150 mM NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% NP-40, 1% sodium
deoxycholate, 2.5 mM sodium pyrophosphate, 1 mM β-glycerophosphate, 1 mM Na3VO4,
1 µg/mL leupeptin). For protein extraction from exosomes, CHAPS lysis buffer (30 mM
Tris–Cl, pH 7.5; 150 mM NaCl; and 1% CHAPS) mixed with 25X protease inhibitor (Roche,
Basel, Switzerland) was used. The mixture was sonicated for 15 min, centrifuged for 10 min
at 13,000× g at 4 ◦C, then the supernatant containing the proteins was collected. Proteins
were quantified using a Bradford assay and the absorbance was read at 595 nm on an
ELISA plate reader. The concentration of the proteins was determined with respect to
known protein standard concentrations of Bovine Serum Albumin (BSA) (Sigma-Aldrich,
Dorset, UK). Western blotting was performed using 12% acrylamide gel. Using equal
amounts of proteins (25 µg for all exosome lanes, and 40 µg for all cell lysate lanes), loading
buffer (Tris-HCl 0.25 M, pH 6.8; SDS 4%; Glycerol 20%; bromophenol blue and 5% β-
mercaptoethanol) was added to each sample. Migration was allowed to take place at 90 V
for the stacking gel, then at 120 V for the resolving gel. Transfer to nitrocellulose membrane
(Santa Cruz Biotechnology, Heidelberg, Germany) was done in TGS1X-10% methanol
transfer buffer for 90 min at 350 mA. The membrane was blocked to prevent non-specific
binding by using 3% BSA-TBS1X-0.001% Tween (Tris (hydroxymethyl); NaCl; KCl and
Tween 20; pH = 7.5). The membrane was incubated with specific primary antibody diluted
in 3% BSA-TBS1X-0.001% Tween either for 2 h at room temperature or overnight at 4 ◦C,
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then washed 3 times by TBS1X-0.001% Tween for 5 min before adding the corresponding
horseradish peroxidase (HRP)-conjugated mouse anti-rabbit secondary antibody (Santa
Cruz Biotechnology, Heidelberg, Germany) diluted in 3% BSA-TBS1X-0.001% Tween for 1 h.
The membrane was developed using ChemiDoc (Bio-Rad Laboratories, Hercules, CA, USA)
after adding Clarity Western ECL reagent (Bio-Rad, Hercules, CA, USA) as a substrate.
Bands were quantified using ImageJ® software (Version 1.53e, NIH, Bethesda, MD, USA).
The primary antibodies used were: anti-CD147, anti-GAPDH, anti-Calnexin, anti-caspase
3, anti-Bcl2, and anti-VEGF (all from Santa Cruz Biotechnology, Heidelberg, Germany),
anti-TSG101 (Abcam, Cambridge, UK), anti-phospho-ERK and anti-ERK (Cell Signaling
Technology, Danvers, MA, USA).

2.5. Reverse Transcription Real-Time Polymerase Chain Reaction (RTq-PCR)

Total RNA was extracted using Trizol® reagent (Life Technologies, Carlsbad, CA, USA)
according to the manufacturer’s instructions and treated with DNase I (Qiagen, Hilden,
Germany). cDNA was synthesized using a RevertAid first-strand cDNA synthesis kit
(ThermoScientific, Vilnius, Lithuania). Real-time PCR was done with the iQ SYBR green
supermix kit in a CFX96 system (Bio-Rad Laboratories, Hercules, CA, USA). Amplification
was performed using the following primers: GAPDH sense, AGCCAAAAGGGTCAT-
CATCT; antisense, GGGGCCATCCACAGTCTTCT; CD147 primer pair: sense, GGCTGT-
GAGTCGTCAGAACAC; antisense, ACCTGCTCTCTCGGAGCCGTTCA. PCR conditions
included denaturation at 95 ◦C for 15 min, 40 cycles of 95 ◦C for 15 s, 72 ◦C for 1 min, and
then annealing at 55 ◦C. GAPDH was used as an endogenous control. Experiments were
done in triplicate using a CFX96 real-time PCR detection system (Bio-Rad Laboratories,
Hercules, CA, USA), and data analysis was performed using the ∆∆CT method.

2.6. Cell Viability, Colony Formation, and Scratch Assays

For the MTT cell viability assay, 15,000 cells were seeded onto 96-well plates and
cultured as above. The following day, medium was replaced by exo-free medium with
exosomes. Control cells were incubated in exo-free medium. MTT cell viability assay
(Roche Life Sciences, Penzberg, Germany) was performed according to the manufacturer’s
instructions. Results were computed as the mean percent absorbance of exosome-treated
condition relative to control.

For colony formation assay, cells transduced with shCD147 or shScr control were
plated at a density of 15,000 cells/plate onto 6-well plates coated with 1.5 mL of 0.8% agar.
Cells were mixed with 1 mL complete medium containing 0.48% agar and added as a top
layer. 1 mL complete medium was added to each well every 2 days to prevent drying, and
incubated at 21% O2, 5% CO2. After 10 days, colonies were photographed and counted. To
quantify the size of the colonies, the area of each individual colony (in pixels) was measured
by ImageJ® software (Version 1.53m, NIH, Bethesda, MD, USA).

For in vitro scratch assay, cells were seeded in a 24-well plate and incubated at 37 ◦C
until they reached 80–90% confluence. A scratch/wound was created vertically at the center
of the well using a 200 µL pipette tip, and the dead cells were washed with phosphate-
buffered saline (PBS). Serum-free DMEM was added. Images were taken in randomly
selected fields at 0, 8, and 24 h using an inverted light microscope at 10× magnification. To
obtain the same field during the image acquisition, markings were used as reference points
close to the scratch. For each image, distance between one side of scratch and the other
(width) was measured in µm at indicated time using ImageJ® software (Version 1.53m,
NIH, Bethesda, MD, USA).

2.7. Cell Proliferation, Transwell Migration, and Transwell Invasion Assays

Human BJ fibroblasts were seeded onto a 24-well plate with 50,000 cells per well in
1 mL medium and incubated at 37 ◦C for 4 h. The medium was aspirated, and exosomes
were added in 1 mL exo-free medium and incubated for 72 h. Then, cells were washed
with PBS, trypsinized collected, and counted using a hemocytometer. For the transwell
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migration assay, D Falcon™ Cell Culture Inserts with 8µm pore size were used, and the
same inserts coated with 10% growth factor-reduced matrigel were used for the invasion
assay (BD Biosciences, Bedford, MA, USA). Human BJ fibroblasts were seeded onto the
top chamber (50,000 cells per insert) in 300 µL exo-free medium and 500 µL of serum-free
medium was added into the bottom chamber in a 24-well plate. Exosomes were added
4 h later onto the top chamber. Control cells were incubated in exo-free medium. The
inserts were fixed after 24 or 72 h, stained with hematoxylin and eosin, mounted, cover
slipped, air-dried and photographed, and the migrating/invading cells counted using
ImageJ software.

2.8. Uptake of CFSE-Labeled RMS-Derived Exosomes by Fibroblasts

Exosomes from each condition were fluorescently labeled by a 20 µM concentration of
carboxyfluoresceine diacetate succinimidyl-ester (CFSE) dye by incubating for 30 min at
room temperature and in darkness. To stop labelling, approximately 5-fold volume of cell
culture medium was added to the solution and ultracentrifuged at 100,000× g for 70 min
at 4 ◦C to eliminate the unincorporated dye. The pellet was resuspended in filtered PBS,
and exosomes were quantified as protein concentration by means of a Bradford assay. BJ
fibroblast cells were seeded at a density of 50,000 cells/well in a 24-well plate 24 h prior
to exosome addition with normal growth medium at 37 ◦C in a 5% CO2 incubator. The
next day, cells were treated with equal amounts (2 µg) of CFSE-labeled exosomes of each
condition, in exo-free medium, incubated for 24 h, washed twice with PBS, then stained
with Hoechst dye (20 µM). Pictures were taken on a Microscope Zeiss Axio (Carl-Zeiss,
Dresden, Germany) at 20× magnification. Fluorescence intensity was measured by ImageJ®

software, using the pixel count tool, to quantify the amount of exosomes taken up by
adherent cells.

2.9. Immunohistochemical Staining of Human Tumor Samples

All human studies were approved by the Institutional Review Board (IRB) at the
American University of Beirut Medical Center (AUBMC). A total of 46 archived formalin-
fixed paraffin-embedded rhabdomyosarcoma tumor samples were identified for patients
younger than 30 years of age, collected at the AUBMC over the period 2002–2018. Of those,
28 samples had enough material for sectioning and immunostaining, and were therefore
included in the study. In addition, 5 samples were identified for patients younger than
30 years of age diagnosed between the period 2016–2020 at the Institut National de Patholo-
gie in Beirut, Lebanon, bringing the total to 33 eligible samples. Clinical characteristics were
linked to the tumor samples, with 26 being localized and 7 metastatic. Paraffin-embedded
tumors were sectioned at 4 µm. Antigen retrieval was performed in a steamer using citrate
antigen retrieval buffer (pH 6.0). Staining was performed using anti-CD147 (Santa Cruz
Biotechnology, Heidelberg, Germany), using an ABC Elite Kit (Vector Labs, Burlingame,
CA, USA) according to the manufacturer’s protocol for detection by biotinylated secondary
antibody and streptavidin conjugated to horseradish peroxidase followed by DAB sub-
strate (DAKO, Glostrup, Denmark). Tissues were viewed under a light microscope at
40× magnification. Intensity of CD147 expression was scored as negative (0), weak (1),
moderate (2), and high (3), by an experienced pathologist, while blinded to patient clinical
characteristics or metastatic stage. Positive tumors were then given a second score based
on percent of positive cells, with tumors that had >75% of cells positive receiving a score of
4, 50–75% a score of 3, 25–50% a score of 2, and <25% a score of 1. The product of the first
and second scores constituted the CD147 positivity score.

2.10. Statistical Analysis and Imaging

All in vitro experiments were performed in biological and technical triplicate unless
mentioned otherwise. Comparisons between experimental groups were performed using
Mann–Whitney U test, except for categorical variables (positive versus negative staining
of human tumor samples), where Fisher’s exact test was used. For all tests, a p-value of
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less than or equal to 0.05 was considered statistically significant. A box plot was created
using Microsoft Excel ®(version 2019) where each box represents the interquartile range
(25th to 75th percentiles), the central horizontal line represents the median value, and the
whiskers represent the range. All data is presented as mean± standard deviation. Digital
photomicrographs were obtained using a Zeiss Axio Observer Z1 microscope. Composite
images were constructed using Adobe Photoshop CS6 ®software (Version 13.0 ×64, Adobe
Systems, San Jose, CA, USA).

3. Results
3.1. CD147 Is Expressed in RMS Cells, and Its Knockdown Diminishes RMS Cell Invasive
Properties

Using the RMS cell lines JR1 and Rh41, derived from an ERMS and an ARMS tumor,
respectively [35,36], and using four different shRNA targeting CD147 (shCD147), and scram-
bled construct (shScr) as negative control, we found that the two constructs shRNA-11 (sh11)
and shRNA-12 (sh12) exhibited the highest knockdown of CD147 by both protein expression
(Figure 1A,B, with quantitation in Figure 1C,D), and RTq-PCR (Figure 1E,F), and there-
fore these two shRNA constructs were subsequently used throughout the remainder of
this study.
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Figure 1. Transduction of JR1 and Rh41 cells with lentiviral vector expressing shRNA-CD147 downreg-
ulates its expression in cells. (A,B) Western blot for the indicated proteins in JR1 (A) and Rh41 (B) cells
transduced with four different shRNAs targeting CD147; shScr is used as a control. Band intensity ratios
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relative to loading control GAPDH are shown, normalized to the control conditions. (C,D) Quan-
titation of the band intensity ratios as in (A,B), with means computed across three western blot
experiments. (E,F) Bar charts representing CD147 RNA levels normalized to GAPDH in both JR1
(E) and Rh41 (F) cells. Bars represent standard deviation between triplicates. Asterisks (*) denote a
statistically significant difference (p-value ≤ 0.05).

To investigate the effect of CD147 knockdown on RMS cell migration, we performed an
in vitro scratch assay [37]. Knockdown of CD147 in JR1 and Rh41 cells significantly decreased
migration compared with cells transduced with shambled construct (Figure 2A–D). To inves-
tigate effects on invasion, we performed anchorage-independent growth assays by culturing
transduced cells in soft agar. After one week, the colony numbers of CD147 knockdown cells
were significantly lower than the numbers of control transduced cells (Figure 2E–F). In addition
to a lower number of colonies, the size of the individual colonies was also significantly smaller
in JR1 cells (Figure 2G), while for Rh41 cells the size difference tended to be smaller, reaching
statistical significance with one of the shRNA constructs (Figure 2H).

To determine the effect of CD147 downregulation on growth and survival pathways
in RMS cells, we evaluated the expression levels of proteins that have been previously
demonstrated to be impacted by CD147 in other cell types [38,39]. As shown in Figure 3,
there was a significant reduction in pro-Caspase 3 and BCL2 upon downregulation of
CD147 by one of the two utilized shRNA in JR1 cells, but only a downward trend by
the second shRNA, precluding a definitive conclusion but suggesting an effect on anti-
apoptotic pathways, while there was no discernible effect in Rh41 cells. Similarly, ERK
phosphorylation tended to increase in response to CD147 knockdown in JR1 cells, but
reached statistical significance for only one of the two utilized shRNA constructs, while
there was no effect seen in Rh41 cells. VEGF levels were not reproducibly altered in either
cell line (Figure 3B). Thus, the interrogated pathways do not seem to explain the effect of
CD147 on enhancing RMS cell proliferation, migration or invasion.
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Figure 2. CD147 knockdown affects RMS cell phenotype. (A,B) Representative images of scratch
assay performed on JR1 (A) and Rh41 (B) transduced cells. (C,D) Bar charts represent scratch
width (%) of RMS-sh11 and sh12 relative to the control (sh-Scr). (E,F) Representative images of
JR1 (E) and Rh41 (F) transduced colonies in soft agar. Bar charts represent the number of colonies
of RMS-sh11 and sh12 relative to the control. Bars represent standard deviation between triplicates.
(G,H) Representative box plot analysis of the range of sizes of colonies in the different depicted
conditions. Asterisks (*) denote a statistically significant difference (p-value ≤ 0.05).
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3.2. Knockdown of CD147 Modulates the Effect of RMS-Derived Exosomes on Recipient Fibroblasts

Since CD147 is secreted in RMS-derived exosomes, we sought to examine the effect of
CD147 downregulation on paracrine signaling of RMS cells. Examination of the protein
content in exosomes derived from sh11- and sh12-transduced JR1 and Rh41 cells showed that
CD147 within exosomes decreased upon its suppression in the parent cells (Figure 4A,B).
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Figure 4. CD147 downregulation reduces exosome-mediated BJ fibroblast proliferation, migration
and invasion. (A,B) Western blot for the indicated proteins in cells and exosomes derived from
JR1 (A) and Rh41 (B) cells transduced with shRNA-11 or -12; shRNA-scr was used as negative control.
(C,D) Bar charts representing the ratio of viable BJ fibroblasts after treatment with exosomes isolated
from the indicated transduced JR1 (C) or Rh41 (D) cells relative to the control (EF). (E,F) Bar charts
showing the ratio of BJ-migrated cells after treatment with exosomes isolated from transduced
JR1 (E) or Rh41 (F) cells relative to the EF control condition. (G,H) Bar charts representing the
ratio of invading BJ fibroblasts after treatment with exosomes isolated from transduced JR1 (G)
or Rh41 (H) cells relative to the EF control condition. Bars represent standard deviation among
triplicates. Asterisks (*) denote a statistically significant difference (p-value ≤ 0.05). NS denotes
non-significant difference (p-value > 0.05).

As expected, treatment of normal human BJ fibroblasts with either the control (scram-
bled shRNA transduced) JR1- or Rh41-derived exosomes resulted in a significant increase
in fibroblast proliferation compared to exosome-free control-treated cells (Figure 4C,D).
This increase was abolished upon treatment with exosomes derived instead from cells
with CD147 knockdown (Figure 4C,D). Similarly, while there was a significant increase
in fibroblast migration when cells were treated with either JR1- or Rh41-derived control
exosomes (Figure 4E,F), this was again abolished when fibroblasts were treated with ex-
osomes derived from CD147 knockdown cells (Figure 4E,F). The same effects were seen
when investigating fibroblast invasion through matrigel when treated with JR1-derived
exosomes (Figure 4G), whereas for cells treated with Rh41-derived exosomes, the number
of invasive cells tended to be lower but did not reach statistical significance (Figure 4H).

We considered whether CD147 knockdown affected the efficiency of exosome uptake
by recipient fibroblasts, as one mechanism for a decreased paracrine effect could be through
decreased uptake of exosomes. Indeed, when staining exosomes with the CFSE fluorescence
marker and treating recipient fibroblasts with equal amounts of exosomes, we found that
uptake of exosomes was decreased by around 50% when they were derived from CD147
knockdown RMS cells (Figure 5A,B).
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Figure 5. Uptake of fluorescently labeled RMS-derived exosomes by BJ fibroblasts. (A) Immunofluo-
rescence microscope images showing the uptake of CFSE-labeled JR1- and Rh41-derived exosomes
by BJ fibroblasts treated by the indicated exosomes. White arrows show examples of the green fluo-
rescent exosomes taken up by the adherent cells. (B) Bar charts representing the relative fluorescence
normalized to the control treatment (exosomes from RMS cells transduced with scrambled shRNA).
All settings of image processing were kept constant, and fluorescence intensities were calculated
using ImageJ® software. Bars represent standard deviation among triplicates. Asterisks (*) denote a
statistically significant difference (p-value ≤ 0.05).

3.3. Expression of CD147 in RMS Tumors Correlates with the Metastatic Stage

To explore whether CD147 expression correlates with the aggressiveness of RMS
tumors, we analyzed the expression of CD147 by immunohistochemistry in 33 human
RMS tumor tissues (26 non-metastatic and 7 metastatic). Intensity of CD147 expression
was scored as negative (0), weak (1), moderate (2), or high (3), as shown in Figure 6A.
Results are shown in Figure 6B, stratified by metastatic group. Interestingly, while four
of the seven metastatic tumors scored positive, none of the 26 localized tumors expressed
CD147. Notably, immunoreactivity against CD147 was observed predominantly in the
cytoplasm and/or stroma of tumor tissue with some membranous staining, unlike the
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typically observed membranous stain in normal cells (Figure 6A). CD147 positivity showed
a statistically significant association with metastatic stage, whether by intensity score
(Figure 6C, left panel), positivity score (computed as a composite of intensity and extent
of positive cells within the tissue) (Figure 6C, right panel), or by simple designation as
positive or negative stain (Figure 6D).
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Figure 6. CD147 expression in RMS human tumors. (A) Representative images of RMS tissues
showing the different intensities used to score CD147; negative (0), weak (1), moderate (2), and strong
(3) at 40× magnification. Upper stomach tissue was used as a positive control. (B) Table showing the
intensity of CD147 expression according to the different stages of RMS clinical tumors. Numbers in
parenthesis denote the approximate percentage of total cells staining positive in each respective sam-
ple. (C) Left panel: box plot representing the range of IHC CD147 intensity score between metastatic
and localized RMS tissues (total of 33 tissues); right panel: box plot representing the range of IHC
CD147 positivity score between metastatic and localized RMS tissues (total of 33 tissues). (D) Number
of tumors staining either negative (gray columns) or positive (black columns), by localized versus
metastatic stage. Asterisks (*) denote a statistically significant difference (p-value ≤ 0.05).

4. Discussion

Aggressive disease and distant metastasis are current challenges that hinder treatment
strategies in rhabdomyosarcoma patients where overall survival outcomes remain unsatis-
factory [40]. This highlights the need for identifying novel therapeutic targets for effective
treatment, especially of locally invasive and metastatic disease.
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CD147, a member of the immunoglobulin superfamily [27], is highly expressed on
the surface of various types of cancer cells, including esophageal cancer, where it has
been associated with worse survival outcomes and poor prognosis [41]; bladder cancer,
where it correlates with cancer cell proliferation [42]; and breast cancer, where CD147
expression is an indication of increased invasive capacities, presence of metastasis and
disease recurrence [43]. We identified CD147 to be expressed in RMS-derived exosomes
across a panel of cell lines, which suggested that it may have a role in RMS paracrine
signaling, potentially contributing to the known invasiveness and metastatic propensity
of this tumor. Exosomes rich in CD147 have been identified in epithelial cancers such as
ovarian and colorectal cancer, and found to be associated with higher stages of disease [34],
and may promote angiogenesis in endothelial cells [44].

Our work shows that CD147 expression in RMS cancer cells contributes to cellular
invasive and migration abilities, and its knockdown was also able to reduce the formation
of clones in vitro, suggesting a role in promoting cancer cell stemness. This is consistent
with the effect of CD147 knockdown in epithelial cancer types, where it was shown to
reduce migration and clonogenic growth [45,46].

In our investigation, we could not demonstrate a reproducibly significant decrease in
Bcl2 and pro-caspase-3 upon CD147 suppression, nor a reproducibly significant change in
ERK phosphorylation, though the trends correlated with prior reports. Kulyar et al. had
previously shown that chondrocytes exhibit enhanced survival when CD147 expression is
elevated, which was in part associated with an upregulation of Bcl2 and downregulation of
caspase-3 in their system [47]. In hepatoma cells, CD147 was also shown to protect cells
from apoptosis by upregulating Bcl2 levels and promoting ERK signaling [48]. Also, our
work showed that in RMS cell lines, there was no significant change in VEGF expression
upon CD147 downregulation, unlike results observed in other cell lines, such as lung ade-
nocarcinoma where CD147 can upregulate VEGF at both the mRNA and protein levels [28].
CD147 inhibition has also been associated with a decrease in VEGF in breast cancer [49],
melanoma [50] and acute myeloid leukemia [51]. Further experiments are therefore needed
to identify the specific downstream effectors of CD147 in RMS cells, preferably through
an unbiased evaluation of downstream signaling pathways through RNA-sequencing and
proteomic profiling.

The crosstalk between tumor and neighboring cells, such as fibroblasts and endothelial
cells, plays a crucial role in the development and progression of tumors [52,53]. In this
regard, CD147 expressed on cancer cells has been proven to stimulate the adjacent stro-
mal cells to produce several MMPs altering the stromal microenvironment by modifying
extracellular matrix composition which aids in tumor growth and invasion. CD147 is
released from cancer cells into the tumor microenvironment either in a soluble form or asso-
ciated to extracellular vesicles [54,55]. Previous studies have shown that shRNA-mediated
knockdown of CD147 in malignant melanoma cells, followed by treatment of fibroblasts
with the corresponding microvesicles and exosomes, decreased MMPs’ enzymatic activity
in recipient fibroblasts, suggesting that extravesicular CD147 downregulation is associ-
ated with decreased extracellular matrix remodeling and metastasis [56]. In our study,
we provide evidence that exosomes shed by RMS cells stimulated invasive properties of
normal human fibroblasts, and that this is at least partially mediated by CD147 and its
downstream signaling. As such, CD147 may promote tumor invasiveness by acting either
directly or indirectly on neighboring stromal cells, promoting pathways that enhance cell
growth and motility. At least some of these effects are mediated through improving the
efficiency of RMS-derived exosome uptake by recipient cells, though the exact mechanism
by which exosome uptake is enhanced remains unclear. This is especially relevant given
that we found that CD147 was exclusively expressed (by immunohistochemical staining)
in primary RMS tumor samples of patients with metastatic disease. Interestingly, CD147
staining was observed mainly in the tumor stroma, which supports its role in the tumor
microenvironment and the tumor/stroma cells’ crosstalk. In other types of cancer CD147
is also correlated with disease stage, such as in gastric cancer, where its expression is
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elevated compared to adjacent normal tissues and is associated with the metastasis and
TNM stages [57]. In pulmonary adenocarcinoma, CD147 expression also correlates with
lymph node metastasis and can act as a prognostic biomarker of the advanced stage [58].

In our study, we used two representative RMS cell lines, one of ERMS (and fusion gene
negative) and one of ARMS (and fusion gene positive) histology. The reproducibility of
the findings across the two histologically distinct RMS cell lines, as well as the compelling
data from the primary human tumor samples, suggest that CD147 is indeed a modulator of
invasive properties in RMS. Based on our findings in the primary human tumor samples,
and since the RMS cell lines were initially derived from metastatic tumors [36], we expect
that CD147 expression is likely to be relevant primarily to metastatic tumors. However,
verification will require evaluation of CD147 expression and the effect of its down- or
upregulation, in a panel of primary cultures from metastatic versus localized RMS tumors,
availability of which is currently limited by the relative rarity of the disease [59].

In conclusion, we have shown that CD147 enhances RMS tumor cell survival and
growth and that RMS-derived exosomes harbor CD147 and stimulate fibroblast cell prolif-
eration and invasion, which supports the hypothesis that paracrine signaling modulated
by CD147 plays a role in tumor progression and metastasis. Further studies will focus
on identifying the specific downstream effects of CD147 in both RMS cells as well as the
RMS tumor microenvironment, for its potential investigation as a therapeutic target for
aggressive and/or metastatic disease.
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