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Common bean seeds are an excellent source of protein as well as of

carbohydrates, minerals, vitamins, and bioactive compounds reducing, when

in the diet, the risks of diseases. The presence of bioactive compounds

with antinutritional properties (e.g., phytic acid, lectins, raffinosaccharides,

protease inhibitors) limits, however, the bean’s nutritional value and its wider

use in food preparations. In the last decades, concerted efforts have been,

therefore, made to develop new common bean genotypes with reduced

antinutritional compounds by exploiting the natural genetic variability of

common bean and also applying induced mutagenesis. However, possible

negative, or positive, pleiotropic effects due to these modifications, in

terms of plant performance in response to stresses or in the resulting

technological properties of the developed mutant genotypes, have yet not

been thoroughly investigated. The purpose of the perspective paper is to first

highlight the current advances, which have been already made in mutant bean

characterization. A view will be further provided on future research directions

to specifically explore further advantages and disadvantages of these bean

mutants, their potential use in innovative foods and representing a valuable

genetic reservoir of combinations to assess the true functional role of specific

seed bioactive components directly in the food matrix.
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Introduction

Today’s consumers’ dietary patterns are no longer
sustainable, which has a strong impact on both planetary
and human health. Animal-derived proteins further account
for almost 40% of humanity’s total protein consumption. This
consumption is expected to dramatically increase as a result of
the world population rise (Henchion et al., 2017). Concerns
about the environmental costs of livestock farming and the
effects of consuming such a large amount of meat on human
health (Godfray et al., 2018) are refocusing political, societal and
scientific attention with the aim to search for alternative protein
sources. Pulses are, in this regard, excellent candidates for this
transition. They are both sustainable and healthy food crops
(Foyer and Noctor, 2016; Bessada et al., 2019) and, with FAO
(Food and Agriculture Organization of the United Nations)
assistance, about 100 countries have already developed food-
based dietary guidelines.1 However, very few mention pulses,
as an important source of protein that could greatly reduce
future meat consumption (Rawal and Navarro, 2019). Despite
this obvious benefit, consumption of pulses has precipitously
declined in recent decades, especially in developed countries
(Messina, 2014). Consumers are particularly hesitant to eat
pulses due to their concern that pulses contain antinutrients,
cause flatulence, have long cooking times (Doma et al., 2019).
But also the lack of knowledge of how to prepare pulses as a
meal as well as the perception that pulses are “poor person’s
food” has contributed to this hesitance (Cichy et al., 2019;
Doma et al., 2019). During the COVID-19 pandemic, demand
for pulses interestingly increased (Di Renzo et al., 2020; Lucier
and Parr, 2020; Ruiz-Roso et al., 2020) which very likely
indicates that consumers are indeed aware of the benefits of
pulses as being shelf-stable, economical, and healthy. Offering
improved quality pulses and innovative food preparations
containing legumes can, therefore, be an attractive way to fuel
consumer motivation and ensure that this positive trend of
pulse consumption continues (Didinger and Thompson, 2020).

Pulses and common bean (Phaseolus vulgaris L.) in
particular, play a key role in the traditional diets, in less
developed countries of the world (Murube et al., 2021; Singh
et al., 2021). Common beans are high in protein and low
in fats, sodium and calories (Celmeli et al., 2018; Kibar and
Kibar, 2019). Additionally, the presence of group B vitamins,
the consistent amounts of minerals and trace elements
(Hayat et al., 2014; Kouris-Blazos and Belski, 2016; Celmeli
et al., 2018), the high quantities of starch and fiber, as well
as of specific protein fractions responsible for important
physiological and metabolic effects (Fujiwara et al., 2017)

1 https://www.fao.org/nutrition/%20nutrition-education/food-
dietary-guidelines/en/

is a significant additional value of common beans. Finally,
numerous bioactive compounds in beans, such as polyphenols,
flavonoids, anthocyanins and carotenoids, have been related
to prevention and/or regulation of chronic diseases when
beans are consumed on a regular basis (Golam Masum Akond
et al., 2011; Messina, 2014; Kibar and Kibar, 2019; Mullins and
Arjmandi, 2021). However, the presence of different so-called
antinutritional factors (ANFs), which are non-nutrients or
bioactive compounds greatly limit the nutritional value of
common bean seeds (Campos-Vega et al., 2011; Carbas et al.,
2020). Common bean ANFs include: phytate among the
major constrain to mineral cation bioavailability; polyphenols,
interfering with nutrient absorption; lectins, raffinose family
oligosaccharides and saponins, causing gastrointestinal
discomfort with lectins resulting toxic if beans are not properly
cooked; bioactive peptides and enzyme inhibitors interfering
with protein digestibility and bioavailability, respectively
(Wiesinger et al., 2022).

Aim of our Perspective paper is to first highlight the
advances that have been so far made to lower, or eliminate,
these ANFs from common bean seeds. As these compounds
have also specific functions in the plant by, for example,
protecting against biotic and abiotic stresses, we will highlight
such aspects which should, in our view, not be underestimated
in any bean breeding program. We will then discuss how
the population target and the specific food formulations will
benefit from the use of ANF-changed beans and how these
beans can be used as an alternative to animal proteins and
possibly partly replacing in the longer-term these proteins.
Finally, we will also present our view on future research
directions to specifically explore additional advantages and
disadvantages of common bean mutant lines low in ANFs
and discussing the possible potential uses of these lines in
innovative foods.

Use of common bean

Common beans are traditionally used in the preparation of
soups, salads and are sometimes also combined with cereals.
Few examples are further available concerning the application
of common bean in alternative food preparations. The use of
beans in the preparation of ready-to-eat bakery food products,
meat-type derived products (Mecha et al., 2021) as well as
in some country traditional recipes normally prepared with
other ingredients (e.g., pasta for Italy) could, however, promote
worldwide the increment of bean protein consumption. This
can happen by not only considering the beans’ nutritional
but also its functional properties, such as solubility, water/oil
holding capacity, viscosity, and mainly the excellent emulsifying
properties of bean proteins (Foschia et al., 2017; Rahmati et al.,
2018).
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Improvement for antinutritional
factors content

Although a number of bean products have been already
developed (Giuberti et al., 2015; Pérez-Ramírez et al., 2018;
Mecha et al., 2021), by-products, such as bean flour, will
likely contain ANFs requiring an appropriate processing
technology to eliminate them (Rudraraju et al., 2021). A further
major obstacle to directly use common bean flour without
any processing is the presence of lectins. Lectins, which
are encoded by a small multigene family (APA locus;
Arcelin/Phytohemagglutinin/alpha-Amylase inhibitor), consist
of true lectins (PHA-E and PHA-L) and also proteins, α-amylase
inhibitor (αAI) and arcelins (Arc), which are structurally
similar but with different properties (Lioi et al., 2003). α-AI
is traditionally considered as an antinutrient limiting starch
assimilation in livestock feeding. Inhibitor activity is, however,
exploited for the production of starch blockers to control body
weight gain (Peddio et al., 2022). In contrast, arcelins are only
present in some wild bean genotypes and may confer seed
resistance against the attack by phytophagous insects (Zaugg
et al., 2013). All APA proteins are further highly resistant to
enzymatic proteolysis (Marquez and Lajolo, 1981; Jivotovskaya
et al., 1996). Heat treatment improves, however, their hydrolysis,
but a residual activity causing reduced protein digestibility
and toxicity can also sometimes be detected after cooking
(Bender and Reaidi, 1982; Petry et al., 2016; Sparvoli et al.,
2016).

Bean breeding lines devoid of active PHA (“lectin null”,
lec−) were obtained by introgression of an APA locus carrying
an inactive PHA, the so called “pinto lectin,” and an active
αAI (Confalonieri et al., 1992). Improved protein digestibility
and a protein digestibility corrected amino acid score of lec−

mutant bean lines has been found after feeding rats with raw
and cooked beans derived from lec− genotypes (Bollini et al.,
1999). In addition, the availability of the lec− common bean
flour has opened new possibilities for the direct use of an
innovative flour in baked product preparations avoiding any
previous flour processing (Sparvoli et al., 2016, 2021). Snacks
obtained with common bean flour from these genotypes are also
more protein rich than snacks from traditional flour (Sparvoli
et al., 2016, 2021). However, baking not fully inactivates
α-AI that very likely contributes to lowering the predicted
biscuit glycemic index (Sparvoli et al., 2016, 2021). Therefore,
genetic elimination of lectins, while keeping an active α-AI,
has, in our view, a great potential to promote the use of
common beans also in food preparations in which it is not
traditionally used.

Furthermore, the isolation of a low phytic acid (lpa1) mutant
with up to 90% less phytic acid (PA), a strong mineral cation
chelator, has been another important step in improving the
nutritional quality of common beans (Campion et al., 2009,
2013; Petry et al., 2013). A bean line combining the lec− and

the lpa1 traits has been meanwhile obtained (Sparvoli et al.,
2016). In our view, consumers will be highly interested in such
innovative food formulations containing the lec− lpa1 flour trait.
Future applications in drinks, fermented products, or spreading
creams are among the targets. The presence of an active α-AI
might very likely further contribute to even more healthy new
bean-based products.

Protein quality improvement

Protein quality of foods is assessed based on
protein digestibility, bioavailability of amino acids, and
amounts/proportions of essential amino acids (Gilani et al.,
2012; Vaz Patto et al., 2015). Protein quality in common beans,
like in other pulses, is suboptimal with a low content of sulfur
amino acids (Pandurangan et al., 2015; Nosworthy et al.,
2017). Therefore, common beans are often combined with
cereals to provide a balanced protein source. Improvement
of protein quality of common beans therefore represents,
in our view, an important future task. In order to improve
protein quality different approaches have been so far applied,
including dehulling, soaking, boiling, roasting, autoclaving,
micronization, microwave cooking, extrusion cooking,
fermentation, as well as germination (Alonso et al., 2000;
Mubarak, 2005; Khattab and Arntfield, 2009; Maphosa and
Jideani, 2017; Shi et al., 2018). These methods improve protein
digestibility by the inactivation of protease inhibitors, or lectins,
or by protein denaturation thereby enhancing accessibility
of susceptible sites to proteolysis (Linsberger-Martin et al.,
2013; Drulyte and Orlien, 2019). In addition, screening for
more digestible phaseolin (the most abundant common bean
storage protein) isoforms has been also previously proposed as
an alternative approach to improve protein quality (Montoya
et al., 2008a,b,c, 2009). Although ultrafiltration does not
inactivate ANFs, the technique is, however, able to remove and
separate ANFs into different fractions (Avilés-Gaxiola et al.,
2018). Considering, the feasibility from the technological and
economic points of view, the soaking coupled to the heating
of beans is an efficient way to increase protein digestibility
and also desirable sensory properties (Khattab and Arntfield,
2009; Ferreira et al., 2014; Drulyte and Orlien, 2019). However,
highly intensive processing deteriorates the nutritional quality
of protein foods. This will reduce the essential amino acids
bioavailability, inducing protein-protein interactions and cause
amino acid racemization (Sá et al., 2022). In addition, it causes
the loss of the potential gut protective effects of the inhibitors; in
fact, undigested protein ends up in the colon and is fermented
by gut microbiota and has a beneficial effect on human health
(Kårlund et al., 2021).

A promising novel strategy to increase the content of
sulfur amino acids in common bean seeds is also modifying
protein fractions by decreasing particularly those fractions with
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a low content of limiting amino acids. Progressive deficiency
in major seed proteins, phaseolin and lectins (phsl− and lec−

traits), results in a significant increase in sulfur amino acid
concentration, with cysteine concentration elevated by up to
70% and the methionine concentration by 10–20% (Taylor
et al., 2008). These characteristics were further maintained when
in a breeding program with a cultivated cultivar germplasm
lines were generated using these deficient genotypes (Viscarra-
Torrico et al., 2021). Breeding lines carrying the phsl− and lec−

traits have been also recently investigated by Giuberti et al.
(2019) for particularly increasing the zinc and iron content in
beans. Seeds of twelve phytohemagglutinin-E-free bean lines
carrying the mutations low phytic acid, phytohemagglutinin
L-free, α-amylase inhibitors-free, phaseolin-free, and reduced
amount of condensed tannins were introgressed and differently
combined in seven genetic groups and analyzed for their
nutrient composition. The study provided first evidence
that the association of these genetic traits might indeed
help in increasing iron and zinc seed content in bean
biofortification.

Characterization of low phytic acid
bean genotypes

Characterization of common beans low in PA (lpa genotype)
has recently attracted much attention. Specifically, stress-
tolerance of lpa beans has become an interesting research
focus (Punjabi et al., 2018; Raboy, 2020; Losa et al., 2022).
Lowering the phytate content in plants can potentially cause
phenotypic changes as well as a loss of the antioxidative
function of PA during abiotic stress conditions. This important
aspect should, in our view, not be overlooked when developing
any new lpa bean lines (Colombo et al., 2022). In plant
vacuoles, PA chelates excess iron, preventing harmful Fenton-
type reactions (Doria et al., 2009). During this reaction, ferrous
and/or ferric cations catalytically decompose hydrogen peroxide
(H2O2) generating phytotoxic reactive oxygen radicals (ROS)
(Das et al., 2015; Kunert and Foyer, 2022). Stable H2O2 can
diffuse across cell membranes and vacuoles act as a H2O2 sink,
with the uptake facilitated by tonoplast aquaporins (Smirnoff
and Arnaud, 2019). However, more convincing evidence is,
in our view, still needed to confirm this antioxidative role of
PA, particularly under abiotic stress conditions. Findings so
far supporting this role includes lowered drought sensitivity
in high phytate containing bean lines (Hummel et al., 2018)
and low-phytate (lpa) maize mutants having increased drought
sensitivity (Badone et al., 2012). Additionally, maize mutants
defective in the ZmMRP4 (Zea mays Multidrug Resistance
Protein 4) gene, coding for a PA transporter (Nagy et al.,
2009), had a lower germination capacity coupled with higher
levels of free radicals in the embryos (Shi et al., 2007; Doria
et al., 2009). In contrast, higher drought tolerance in lpa

mutants have also been reported (Nagy et al., 2009; Chiozzotto
et al., 2018). A possible change in antioxidant transport into
the vacuole in these mutants might be, in our view, an
interesting future research target. In addition, osipk1 (Oryza
sativa inositol polyphosphate kinase 1) rice lines, mutated
in the IPK1 (inositol polyphosphate kinase 1) gene involved
in the PA biosynthetic pathway had improved tolerance to
both salt and drought stress while agronomic traits and seed
viability were unaffected (Jiang et al., 2021). Studies in fish
have also shown sensitivity of proteases to PA (Khan and
Ghosh, 2013). We are currently also investigating if a low
PA content activates proteolytic vacuolar processing enzymes
involved in H2O2 degradation and programmed cell death
(Hatsugai et al., 2015; Vorster et al., 2019; Yamada et al.,
2020). Also, since findings of the antioxidative function is
still unclear, we also think that testing in the future a larger
number of these mutant genotypes is an urgent requirement to
provide a better understanding of the response of lpa genotypes
to stress conditions and the potential advantages from these
genotypes, even if associated with moderate yield reductions
(Raboy, 2020).

Low phytic acid bean genotypes
and pleiotropic effects

An increased iron bioavailability of common bean lpa1
mutants has been successfully demonstrated in an in vivo
study with human volunteers (Petry et al., 2013). Besides
PA, polyphenols are, however, also a major constrain to iron
bioavailability (Petry et al., 2010; Tako et al., 2014; Hart et al.,
2017; Wiesinger et al., 2019), although not all polyphenols
inhibit iron absorption (Hart et al., 2020). While supplying a diet
with lpa1 beans is, indeed, beneficial to iron absorption, lpa1
beans also cause adverse gastrointestinal symptoms due to its
hard-to-cook (HTC) phenotype concomitant with an increased
thermal stability of lectins (Petry et al., 2016). The strength of
the HTC defect in lpa1 seeds depends, however, on how strong
the effect the lpa1 mutation has on the thermal stability of seed
lectins and is further only problematic in genetic backgrounds
harboring the PHA-L lectin alone, which is not very common.
So far no significant effect on lectin thermal stability was found
when the lpa1 mutation is in a genetic background harboring
both PHA-L and PHA-E, which is in most of bean genotypes
or in a PHA-E background alone (Cominelli et al., 2020). These
recent results are, indeed, important already helping to select
superior traits in a breeding program aimed to nutritionally
improve common beans. More recently, additional common
bean lpa mutants, but less effective in PA reduction than
lpa1, have been also isolated (Cominelli et al., 2018). They are
currently tested for their cooking and nutritional properties
in order to develop more useful biofortified beans devoid of
negative traits. In our view, these isolated lpa bean crops have
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the great potential to benefit populations at risk of iron and zinc
deficiency particularly evident in less developed countries. In
contrast, bean crops with higher amounts of phytate will have
health benefits in societies where more bioavailable forms of iron
are present in the diet and with cancer and obesity a major health
risk (Blair, 2013).

Furthermore, lpa1 beans have also a lower zinc retention
during boiling of soaked beans. This strongly suggests that zinc
from the cotyledon possibly interacts with PA and prevents
excessive zinc losses in the soaking and cooking water. In lpa
beans, zinc might not interact much with the limited amounts
of PA remaining which causes larger zinc losses in the soaking
and cooking water (Hummel et al., 2020). In our view, deeper
exploration of possible unexpected pleiotropic effects of the lpa
mutation is urgently required by evaluating different types of lpa
mutants and also to evaluate if effects are directly related to a PA
decrease, or more related to the regulatory roles of components
involved in PA biosynthetic pathway can play (Sparvoli and
Cominelli, 2015; Freed et al., 2020).

What next

For a transition from animal to plant proteins, more genetic
resources are, in our view, urgently required by testing, for
example, more mutant lines low in AFNs, including field
testing. In this regard, identifying more mutants low in PA
by possibly also exploring alternative ways to obtain such
mutants should be among the targets. For example, mutations
in genes belonging to the group 3 of the plant sulfate transporter
family can also cause the lpa genotype (Sacchi and Nocito,
2019). Due to their beneficial effects at low concentrations,
there is also a general agreement that ANFs in diets should
not be reduced to zero levels. Highly important will be to
establish threshold levels of each ANF that can be safely
included in diets for specific population groups Geraldo et al.
(2022). In healthy people eating a balanced diet, any PA
effects on the iron, zinc, and manganese status is generally
minimal not causing any nutrient deficiencies. However, the
antioxidative role should thereby not be ignored. PA exhibits
not only anti-cancer properties but also positively impacts
cholesterol and blood sugar levels (Onomi et al., 2004; Nissar
et al., 2017). Finally, we think that to work out a strategy
with a genetic approach combining each single specific and
nutritionally relevant trait may will be of outmost importance
allowing to overcome many of the limiting factors commonly
met when using common bean. Potentially it would mean, in
our view, to develop common bean lines with the following
characteristics: biofortified (lpa, white seed coat–wsc-), with
increased protein quality (phsl−, lec−), not toxic (lec−), with
potential hypoglycemic effects (αAI). Such material would be
a valuable genetic reservoir of combinations to assess the true

functional role of specific seed bioactive components directly in
the food matrix.
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