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Abstract

In this paper, we investigate the impact of redistribution and polluting commodity taxation
on inequality and pollution in a dynamic setting. We build a two-sector Ramsey model
with a green and a polluting good. Households are heterogeneous, which allows for income
inequality, and have a level of subsistence consumption for the polluting commodity, modeled
by non-homothetic preferences. Increasing the tax rate has a mixed effect depend on the level
of subsistence consumption. A low level allows to tackle both the pollution and inequality
issues. Under a high level of it, pollution increases: if inequality can be reduced through
redistribution, taxation does not allow to solve for environmental degradation. Looking at
the stability properties of the economy, we find that the level of subsistence consumption and
the externality matter. A high subsistence level of polluting consumption leads to instability
or indeterminacy of the steady-state, while the environmental externality plays a stabilizing
role in the economy. This leaves room for taxation and redistribution: increasing the tax rate
and redistributing more towards workers play a key role in the occurrence of indeterminacy
and instability.
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1. Introduction

The 2018 IPCC report emphasises the role of social justice and equity in limiting global warming
to 1.5◦C.1 This importance has been again highlighted in the Glasgow Climate Pact of November
2021. Indeed, high income households are the ones who pollute the most (Chancel, 2021), so
that the climate change and inequalities issues are linked: both are tried to be tackled in order to
(i) preventing temperatures to rise above 1.5◦C and (ii) preventing inequality to rise too much,
which in turn impacts pollution. When it comes to reduce polluting emissions, taxation can be
seen as an efficient tool regarding the internalization of the externality. Environmental taxation
has two benefits: it corrects the inefficiency induced by the externality, and it provides revenue
for the government. This leads to a broad use of environmental taxes in Europe and America
(World Bank, 2020). Yet, environmental tax reforms face some opposition in the society, for
example the Yellow Vests movement in France. Overestimating their losses, people reject the
implementation of a carbon tax even if the tax revenue is directly redistributed towards them
(Douenne & Fabre, 2019). Indeed, environmental taxes are usually considered regressive, as low
income households spend a higher share of their income on polluting goods and hence bear most
of the tax burden (Grainger & Kolstad, 2010). In this case, reducing emissions works against
inequality reduction: this is the so-called equity-efficiency tradeoff. Understanding the distribu-
tional effect of environmental tax reforms is thus key when trying to reduce both emissions and
inequality at the same time, while making environmental taxes socially acceptable. Recycling
the tax revenue can be used to reconcile both goals.
This paper aims at analyzing the impact of environmental taxation and revenue recycling on
pollution and inequality. More precisely, we study whether pollution mitigation and inequality
reduction are compatible in a dynamic setting with two goods, a green and a polluting one.
Inequality comes from the fact that some households are financially constrained and other are
not (Kaplan et al., 2014, Aguiar et al., 2020). Indeed, heterogeneity in discount factors al-
lows to differences in propensity-to-save and hence to recover hand-to-mouth agents who only
receive a labor income (and potentially transfers). We build a two-sector Ramsey model with
heterogeneous households and a subsistence level of consumption for the polluting commodity.
Polluting production impacts households through their utility function. A tax is set on polluting
consumption, and its revenue is given back to households through lump-sum transfers. At the
equilibrium, households spend a constant share of their expenditure on each good, augmented
by the subsistence level of consumption for the polluting commodity. Heterogeneity in discount
factors leads to inequality: the most patient household holds all the capital.
We study the impact of both redistribution and environmental taxation on environmental qual-
ity and inequality. Because of homogeneous preferences, decreasing income inequality through
lump-sum transfers does not have any impact on pollution. Hence redistribution cannot be used
to tackle both inequality and pollution at the same time. Increasing the tax rate has a mixed ef-
fect on pollution. Under a low level of subsistence consumption, polluting emissions are reduced:
when redistributing enough to workers, both the inequality and pollution issues are handled.
Under a high level of subsistence consumption, increasing the tax rate leads to an increase in
polluting emissions: environmental taxation fails to tackle the pollution problem. This comes
from two effects: a negative price effect and a positive redistribution effect. The redistribution

1“Social justice and equity are core aspects of climate-resilient development pathways [...] as they address
challenges and inevitable trade-offs, [...], without making the poor and disadvantaged worse off.”

2



effect depends on subsistence consumption, the redistirbution rate and the expenditure share
on polluting consumption. The higher these parameters the stronger this effect, such that it
dominates the negative price effect after some threshold. Hence, the redistribution rate and the
subsistence level of consumption matter when it comes to reduce both inequalities and pollution
using taxation. They also matter when it comes to the welfare effect of environmental taxation.
A low subsistence of polluting consumption and an intermediate rdistribution rate allow to in-
crease welfare for both workers and capitalists, while at the same time reducing pollution. A
high subsistence level increases welfare of each type if and only if the environmental externality
does not widely impact households. If the externality has a huge impact on utility, increase the
tax rate has a negative impact both on pollution and welfare. Finally, we study the dynamics
of the model under a local analysis. Focusing on the neighborhood of the steady state, we show
that the level of subsistence consumption and the externality matter in the stability properties
of our model: a high level of subsistence consumption favors indeterminacy and instability, while
an important externality brings back some stability. The environmental fiscal policy also has a
role to play: a higher tax rate and greater redistribution towards workers promote indeterminacy
and instability. Therefore, polluting commodity taxation and redistribution must be handled
carefully when taking into account a subsistence level of polluting consumption, both for the
effectiveness of the environmental tax reform and the stability of the steady state.
Our paper is linked to three strands of the literature. First, a huge part of the environmental
literature analyzes the link between redistribution and pollution. Empirically, mixed or no effects
are found, as for example in Lin & Li (2011). Berthe and Elie (2015) gather this literature and
explain the differences in models (both theoretically and empirically) leading to this ambiguous
effect. From a more macroeconomic point of view, Oueslati (2015) shows that in a two-sector en-
dogeneous growth model, lump-sum transfers have no impact on aggregate variables, and hence
on pollution. Rausch & Schwartz (2016) find that heterogeneity and non-homotheticity of pref-
erences matter when it comes to the impact of redistribution on aggregate variables. Along the
literature, we find that there is no effect of redistribution on pollution.
A second strand of interest studies the link between environmental taxation and inequality.
Scalera (1996) and Hofkes (2001) look at the long-term effect of environmental taxation of en-
dogeneous growth models. Part of this literature focuses on taxation and revenue recycling,
showing the importance of the recycling scheme when it comes to make environmental taxes
progressive. Klenert & Mattauch (2016) analyze the importance of subsistence consumption in
the distributional effect of environmental tax reforms. Klenert et al. (2018) show the importance
of lump-sum transfers in order to reduce inequality. Our paper analyzes both the impact of
taxation and redistribution on pollution and inequality. Like part of the literature on redistribu-
tion and pollution we find that homogeneous preferences leads to no impact of redistribution on
pollution. Alike the literature on taxation finding a positive relationship between higher taxation
and lower pollution (Bovenberg and de Mooij, 1997, Bosquet, 2000), we find that introducing a
subsistence level of polluting consumption mitigates this result: under a high level of subsistence
consumption, the environmental tax backfires and polluting emissions rise.
Finally, our paper is linked to the literature concerned by the stability properties of models with
an environmental component. Antoci et al. (2005) show that, in a growth model with two
goods, consumption choices can lead to indeterminacy. E. Koskela and M. Puhakka (2006) show
the possibility of two-period bifurcations in an OLG model with Stone-Geary preferences. Itaya
(2008) analyzes the impact of environmental taxation on long-run growth in a model with a
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representative agent and an environmental externality. He finds that the impact of taxation on
growth depends on the indeterminacy of the balanced growth path. To the best of our knowl-
edge, our paper is the first analyzing the stability properties of a Ramsey economy with both
externalities and non-homothetic preferences. We find that non-homothetic preferences can lead
to instability and indeterminacy, while the externality brings back stability. In each case, the
fiscal policy plays a key role in the occurrence of instability and indeterminacy. Increasing the
tax rate promotes instability while redistirbuting more towards workers promotes the occurrence
of endogeneous cycles.
The rest of the paper is organized as follows. In Section 2, we present our framework. Sections 3
and 4 state and analyze the equilibrium and the steady state of the economy. Section 5 studies
the impact of a change in taxation and in redistribution of the tax revenue. In Section 6, we
analyze the local stability properties of our economy. Section 7 provides concluding remarks. All
proofs are relegated to the Appendix.

2. The Model

We consider a infinite-horizon two-sector model with an environmental externality. There are
three types of agents: households, firms and a government. Households are infinitely-lived and
heterogeneous in their discount factors. Firms produce either a clean good, or a polluting good
that exerts an externality on households’ utilities. Government’s intervention, through taxation
and redistribution, aims at reducing environmental damages as well as income and consumption
inequalities.

2.1. Firms

There are 2 sectors (j = p, g) in the economy, each composed of a representative firm: the clean
sector produces Ygt and the polluting sector produces Ypt at every period t. Each sector uses
capital Kjt and labor Njt to produce output according to a Cobb-Douglas production function:

Yjt = AjK
η
jtN

1−η
jt (1)

with Aj a productivity parameter. We assume Ag 6= Ap.

In the polluting sector, output is a consumption good cpt only, while the clean sector produces a
good that is consumed, denoted cgt, and invested trough capital Kt. The capital good includes
immaterial and non-polluting inputs used in the production process, such as R&D investment
and human capital.

Each firm j (j = p, g) seeks to maximize its profit:

πjt = pjtYjt − rtKjt − wtNjt

with pgt = pt, ppt = 1, rt the rental rate of capital and wt the wage rate.
Assuming that capital and labor are perfectly mobile across sectors, first-order conditions for
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profit maximization give:

rt = ηptAgK
η−1
gt N1−η

gt = ηApK
η−1
pt N1−η

pt (2)

wt = (1− η)ptAgK
η
gtN

−η
gt = (1− η)ApK

η
ptN

−η
pt (3)

2.2. Pollution

We consider pollution as a flow due to production in the polluting sector. One can think for
example of gases emitted during the production process such as sulfur dioxide and carbon monox-
ide, which have a short lifetime and hence can be considered as flow pollutants (Liu & Liptak,
2000).
Environmental quality is given by:

Et =
1

γYpt
(4)

with γ the emission factor.

2.3. Households

The economy is composed of two types of infinitely-lived households (i = {1, 2}). For simplifi-
cation purposes, we assume there is one household of each type. This allows to acknowledge for
income inequality as well as financial constraint of part of the population which only receives and
spend her labor income. At every period t, each household consumes a clean good cgit at price pt
and a polluting good cpit which is the numeraire and taxed at a rate τ . There exists a subsistence
consumption level c0 of the polluting good, so that households cannot consume zero of it. This
can be seen for instance as the minimum level of energy a household needs to consume in order
to live in a decent manner. Consumption can be summarized by a basket of good Cit purchased
at price Pit. Bundle price is household specific as it depends on individual bundle consumption.
Households also derive some utility from environmental quality Et. Finally, they can invest ait+1

in the capital good (so that a1t + a2t = Kt), supply ni = 1
2 of labor at the wage rate wt, and

receive a lump-sum transfer Tit from the government.
Intertemporal utility writes

∞∑
t=0

βtiE
µ
t

((cpit − c0)αc1−α
git )1−σ

1− σ
, (5)

with σ ∈ (0, 1) the inverse of the elasticity of intertemporal substitution in consumption, (cpit −
c0)αc1−α

git = Cit and α ∈ (0, 1) the share of consumption devoted to the polluting good. Pollution
is taken as given by households, such that it only plays the role of an externality in the utility
function. βi is the discount factor of household i.
We consider that:

Assumption 1 β1 > β2,

i.e. household 1 is more patient then household 2. This assumption accounts for the relationship
between inequality and time discounting (Epper et al., 2020).
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The budget constraint at time t writes

cpit(1 + τ) + cgitpt + pt(ait+1 − (1− δ)ait) =
wt
2

+ rtait + Tit.

Households maximize their discounted lifetime utility with respect to their budget and borrowing
constraints ait+1 ≥ 0.
The first-order conditions for a solution to the households’ problem are:

cgitpt = (1− α)PitCit (6)

(cpit − c0)(1 + τ) = αPitCit (7)

C−σit
Pit

Eµt pt ≥ βi
C−σit+1

Pit+1
Eµt+1(pt+1(1− δ) + rt+1) (8)

Pit =
(1 + τ)αp1−α

t

(1− α)1−ααα
+

(1 + τ)c0

Cit
(9)

with (8) holding at equality when ait > 0. Because households consume a positive minimal
amount of the polluting good, the aggregate price depends on individual consumption and hence
on households’ types.
Equations (6) and (7) allow to rewrite the budget constraint of household i as:

PitCit + pt(ait+1 − (1− δ)ait) =
wt
2

+ rtait + Tit (10)

Equations (6) and (7) are standard optimality conditions for Cobb-Douglas utility functions:
agents spend a constant share of their consumption expenditure in each good, augmented by the
subsistence consumption level for the polluting commodity. Equation (8) states that households
either smooth consumption using their savings or are prevented from borrowing and hence are
financially constrained.

2.4. The Government

The government levies a tax on the polluting good. The tax revenue is used to reduce income
inequality: a share ε is redistributed to household 1 and the rest to household 2. The government
faces a balanced budget rule:

Tt = T1t + T2t = τ(cp1t + cp2t) = τcpt, (11)

with T1t = εTt and T2t = (1− ε)Tt the transfers given to households 1 and 2 respectively.

3. Equilibrium

Because household 1 is more patient than household 2, we prove in the next section that at
the steady state, the most patient household holds all the capital and smoothes consumption
according to a binding Euler equation. On the contrary, the impatient household does not
smooth consumption and holds no asset, so that a1t = Kt > 0 = a2t. We focus on equilibria
around the steady-state, i.e in which this result holds.
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Using equations (2)-(3) and market clearing conditions, we obtain:

Kt =
Kpt

Npt
=
Kgt

Ngt
(12)

Kt = Kpt +Kgt (13)

Npt +Ngt = 1 (14)

pt ≡ p =
Ap
Ag

(15)

(16)

Plugging (12) and (15) in (2)-(3) yields:

rt = ηApK
η−1
t (17)

wt = (1− η)ApK
η
t (18)

Substituting (17)-(18) into (8) and (10), and using the market clearing condition on the capital
market for each household gives:

C−σ1t

P1t
Eµt = β1

C−σ1t+1

P1t+1
Eµt+1

(
1− δ +

rt+1

p

)
(19)

P1tC1t =
(

(1+η)
2 + αετ

1+τ(1−α)

)
ApK

η
t − (1 + αετ

1+τ(1−α))p(Kt+1 − (1− δ)Kt) + 2ετ(1+τ)
1+τ(1−α)c0 (20)

C−σ2t

P2t
Eµt > β2

C−σ2t+1

P2t+1
Eµt+1

(
1− δ +

rt+1

p

)
(21)

P2tC2t =
(1− η)(1 + τ)

2(1 + τ(1− α(1− ε)))
ApK

η
t + (1− ε)τ

(
αP1tC1t + 2c0(1 + τ)

(1 + τ(1− α(1− ε))

)
(22)

As we focus on an equilibrium around the steady-state, we use equations (20) and (22) evaluated
at the steady-state and look for the conditions under which we have C1t > 0 and C2t > 0:

Assumption 2 c0 ≤ c01 whenever 1
2τ + 1−α

2 ≥ ε and by c0 ≤ c02 whenever ε ≥ 1+α
2 −

1
2τ .

Values can be found in Appendix A.2.

Households’ income partly depends on the redistribution rate ε. When very few of the tax rev-
enue is given back towards one household, the budget constraint gets tighter. In this case, a too
high subsistence level of consumption for the polluting good would make the constraint impos-
sible to hold: the minimal level of consumption would be too high compared to the disposable
income.

At equilibrium, Et = 1
γcpt

. Using this and substituting (17) in equations (19)-(20) gives the
dynamic equations of the model:

Kt+1 =

(
1+η

2 + αετ
(1+τ(1−α))

)
ApK

η
t + 2ετ(1+τ)

1+τ(1−α)c0 − P1tC1t

p
(

1 + αετ
(1+τ(1−α))

) + (1− δ)Kt (23)

Cσ1t+1 = β1

Cσ1t

(
P+

(1+τ)c0
C1t

)
P+

(1+τ)c0
C1t+1

(
αPC1t+(1+τ)c0+

α(1−η)
2

ApK
η
t +2(1+τ)c0

αPC1t+1+(1+τ)c0+
α(1−η)

2
ApK

η
t+1+2(1+τ)c0

)µ (
1− δ + ηAgK

η−1
t+1

)
(24)
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Definition 1 Under Assumptions 1-2, an equilibrium of the economy is a sequence (Kt, C1t)

such that equations (23)-(24) are satisfied, given K0 ≥ 0.2

Equations (6), (7), (20), (22) and market clearing conditions allow to recover aggregate consump-
tion for both goods:

cpt =
∑
i

cpit =
α

1 + τ(1− α)
(ApK

η
t − p(Kt+1 − (1− δ)Kt)) +

2(1 + τ)

1 + τ(1− α)
c0 (25)

cgt =
∑
i

cgit =
(1− α)(1 + τ)

p(1 + τ(1− α))
(ApK

η
t − p(Kt+1 − (1− δ)Kt) + 2τc0) (26)

4. Steady State

In this section, we show the existence of a unique steady-state in which the most patient house-
hold holds a positive amount of capital, while the impatient one does not save at all.

The Euler equation for agent i writes 1 ≥ βi(1− δ + r
p), holding with equality if ai > 0. Recall

that β1 > β2, so that β1(1 − δ + r
p) > β2(1 − δ + r

p) . Thus, we have a∗1 = K∗ > 0 = a∗2.
Having the most patient agent holding all the capital and the least patient consuming all her
disposable income is a standard result in the literature (Becker, 1980, Becker & Foias, 1987,
Sorger, 1994), supported by empirical evidence (Krussell & Smith, 1998, Kaplan et al., 2014,
Carroll et al., 2017). Rewriting the left hand-side of the inequality gives r∗

p = 1−β1
β1

+ δ. As we

found that p is a constant, we have p =
Ap
Ag

and P ∗i = (1+τ)αp∗(1−α)

αα(1−α)1−α + (1 + τ) c0C∗i
. Using (17)-(18),

capital-labor ratios remain constant, with K∗ =
K∗p
N∗p

=
K∗g
N∗g

=

(
ηAg

1
β1
−(1−δ)

) 1
1−η

, and the wage rate

writes w∗ = (1− η)Ap

(
ηAg

1
β1
−(1−δ)

) η
1−η

.

Writing (6)-(7) at the steady state gives individual consumptions. Equations (20) and (22)-(26)
allow to recover overall consumption for each household, as well as aggregate consumption in
both sectors:

P ∗1C
∗
1 = K∗p

(
r∗/p

η

(
1 + η

2
+

αετ

1 + τ(1− α)

)
− δ

(
1 +

αετ

1 + τ(1− α)

))
+

2ετ(1 + τ)

1 + τ(1− α)
c0 (27)

P ∗2C
∗
2 = K∗p

[(
r∗/p

η
− δ
)

α(1− ε)τ
1 + τ(1− α)

+
r∗/p

η

1− η
2

]
+

2(1− ε)τ(1 + τ)

1 + τ(1− α)
c0 (28)

c∗p =
α

1 + τ(1− α)
K∗p

(
r∗/p

η
− δ
)

+
2(1 + τ)

1 + τ(1− α)
c0 (29)

c∗g =
(1− α)(1 + τ)

(1 + τ(1− α))
K∗
(
r∗/p

η
− δ
)

+
2τ(1 + τ)(1− α)

p(1 + τ(1− α))
c0 (30)

Finally, market clearing conditions give Y ∗p = c∗p and Y ∗g = c∗g+δK
∗, and pollution writes E = 1

γc∗p
.

2At the equilibrium, optimality conditions, market-clearing conditions and the government’s budget constraint
hold. All variables are given by the sequence (Kt, C1t).
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Proposition 1 Under Assumptions 1 -2, there exists a unique steady state in the economy
(K∗, C∗1 ) solution to (23)-(24), characterised by equations (27)-(30) ans defined by parameters of
the model. At the steady state, household 2 is constrained and household 1 holds all the capital.

From now on, we refer to household 1 as the capitalist and household 2 to as the worker.

5. Public Policy

The government has two tools: lump-sum transfers and commodity taxation. This part aims at
analyzing the impact of both on pollution and inequalities. More precisely, we study whether
one fiscal tool can reduce both pollution and inequality, and how does this depend on the other
tool.

5.1. Taxation

There are two effects at play when increasing the tax rate in our model: a price effect and a redis-
tribution effect. By increasing the consumer price for the polluting commodity, purchasing power
of both households is lowered so that for the same income, they consume less. Increasing the con-
sumer price also leads to a substitution between the two goods: agents increase their consumption
in the clean good as its relative price decreases. Increasing the tax rate increases the government
revenue, and hence the amount received through lump-sum transfers. Everything else equal, this
rise in disposable income allows for a higher level of consumption: this is the redistribution effect.

Effect on consumption and environmental quality

We first investigate the effect of an increase in τ on aggregate consumptions, c∗p and c∗g.

Proposition 2 Under Assumptions 1-2, an increase in commodity taxation always leads to an
increase in clean consumption. Polluting consumption decreases when c0 < c0 and increases for

c0 > c0, with c0 =
(1−α)K∗p

(
r∗/p
η
−δ
)

2 .

The increase in clean consumption comes from the substitution effect, as an increase in taxation
makes the clean good relatively cheaper than the polluting one. The mixed effect on polluting
consumption comes from the price and redistribution effects. The former is negative, while the
latter is positive. A low subsistence level of consumption pushes the redistribution effect down so
that the price effect dominates. The reverse occurs when subsistence consumption is high, hence
the rise in emissions. This effect of the polluting tax is similar to what has been found by Bosi &
Desmarchelier (2018) when looking at capital taxation under an environmental Kuznets curve.
When it comes to mitigate pollution, subsistence consumption is hence of high importance as it
shapes the efficiency of environmental taxation.

Regarding individual behaviors, equation (6) at the steady-state gives:

dc∗gi
dτ

=
(1− α)

p

d(P ∗i C
∗
i )

dτ
> 0
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for any household i. Clean consumption does not increase only at the aggregate level, but also
at the individual one, which corresponds again to the susbstitution effect of the tax.

Results for individual polluting consumption are summed up in the following proposition:

Proposition 3 Let ε∗ = 1
2

(
1 + η

1−β1
β1

r∗
p
−ηδ

)
. Under Assumptions 1-2, following an increase in τ ,

we obtain:

• For 0 ≤ c0 < c0:

- When ε < ε∗, c∗p1 decreases and c∗p2 decreases for α < α2 and increases for α > α2;

- When ε > ε∗, c∗p2 decreases and c∗p1 decreases for α < α1 and increases for α > α1

• For c0 > c0:

- When ε < ε∗, c∗p2 increases and c∗p1 decreases for α < α1 and increases for α > α1;

- When ε > ε∗, c∗p1 increases and c∗p2 decreases for α < α2 and increases for α > α2.

From Proposition 3, three variables are key when analyzing which effect dominates the other: the
redistribution rate, the size of subsistence consumption and the spending share on the polluting
commodity. These three variables play a role on the redistribution effect, as the tax revenue
depends on both c0 and α, and by definition on ε. When at least two variables out of three are
high enough for household i, the redistribution effect dominates the price effect. The reverse
occurs when at least two are low.
When the government redistributes few of the tax revenue towards household i and that c0 is
low, no matter α the size of the redistribution effect is very low: the price effect dominates
and polluting consumption decreases. On the opposite, when a high share of the tax revenue
is redistributed and c0 is high, the redistribution effect overrules the price effect, leading to an
increase in polluting consumption for that household.
When c0 is low (resp. high) and a high (resp. low) share of the tax revenue is redistributed
towards household i, then which effect dominates the other depends on the size of α. When α is
low, the redistribution effect is pushed down by c0 and α, so that the price effect dominates. In
contrast, a high α pushes the redistribution effect up as a lot of the tax revenue is given to the
household, hence it dominates the price effect.

Looking at inequality, we get the following proposition:

Proposition 4 Under Assumptions 1-2, ∂(P ∗2 C
∗
2 )

∂τ >
∂(P ∗1 C

∗
1 )

∂τ whenever ε < 1
2 .

Recall that P ∗i C
∗
i is equal to disposable income net of capital holdings. Increasing the tax rate

decreases inequality if and only if the government redistributes a higher share towards the worker.
Hence, having a low level of subsistence consumption and redistributing more towards the worker
allows to reconcile the tradeoff between pollution mitigation and inequality reduction. A tradeoff
occurs when c0 is high and ε is low, or when c0 is low and ε is high: in these cases, the government
is able either to reduce inequality, or to reduce pollution but cannot tackle both at the same time.
When subsistence consumption is high and ε is high, increasing polluting commodity taxation
leads to a deadend for both inequality and pollution reduction.
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Effect on welfare

Changing the commodity tax rate affects individual welfare through consumption and environ-
mental quality:

dU∗i
dτ

= µ
dE∗

dτ
E∗µ−1C

∗1−σ
i

1− σ
+
dCi
dτ

C∗−σi E∗µ (31)

The environmental effect on utility depends on the value taken by c0: a low subsistence level of
consumption contributes positively to environmental quality when increasing the tax rate. The
consumption effect depends on both the positive impact on green consumption and the mixed
effect on polluting consumption. If polluting consumption decreases, the consumption effect
depends on whether the increase in clean consumption offsets the decrease in polluting consump-
tion. As for the impact on polluting consumption, this is determined by the sizes of α, c0 and
ε. Whenever the environmental and consumption effects go in the same direction, the impact
on individual utilities is straightforward. Otherwise, the overall impact on utilities depends on
which effects outweighs the other. This is settled by the size of µ.

Proposition 5 Under Assumptions 1-2, there exist ε1, µ∗1(τ, ε) and µ∗1(τ, ε) such that increasing
the tax rate on the polluting commodity:

• For c0 < c0:

– Increases welfare for the capitalist when ε > ε1 and α > α̂ or ε < ε1 and µ > µ∗1(τ, ε);

– Increases welfare for the worker when ε < 1+α
2 or ε > 1+α

2 and µ > µ∗2(τ, ε).

• For c0 > c0:

– Increases welfare for the capitalist when ε > ε1 and µ < µ∗1(τ, ε);

– Increases welfare for the worker when ε < 1+α
2 and µ < µ∗2(τ, ε).

When c0 < c0 and no matter the size of µ, there always exists a way to play on ε so that
increasing commodity taxation is welfare increasing for at least the worker. When c0 > c0, the
size of µ matters: if it is high enough, then increasing the tax rate is welfare decreasing for both
households, no matter how much does the government redistribute of the tax revenue to each of
them, because the (negative) environmental effect dominates the consumption effect. When the
envionmental externality does not matter much for both households, increasing the tax rate can
be welfare beneficial for at least one household, depending on the redistribution rate.

5.2. Redistribution

Effect on consumption and emissions

The effect of redistribution through a change in the redistribution rate ε is straightforward. From
equations (29)-(30), redistribution has no impact on aggregate consumptions c∗p and c∗g. Capital
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is given by the modified golden rule, so that redistribution has no impact on it either.

The only impact of ε is hence on individual variables, i.e on individual consumption. As con-
sumption of both goods are functions of overall consumption, the only thing we have to look at is
the impact of a change in redistribution on C∗1 and C∗2 respectively. From (27)-(28), giving more
of the tax revenue to the worker has a positive effect on her consumption, while it is negative
for the capitalist. This is a pure revenue effect: increasing redistribution towards the worker
raises her disposable income, and hence her consumption in both goods proportionally, while it
reduces the capitalist’s consumption. Yet, both trends perfectly compensate each other so that
aggregate consumption, and more broadly all aggregate variables, do not change, environmental
damages included. Hence, it is possible for the government to reduce income and consumption
inequalities by increasing redistribution towards the worker, while not harming environmental
quality. Rausch & Schwartz (2016) show that when preferences are homothetic and identical,
aggregate behaviors are similar to a single-agent behavior. Thus, changing the redistribution
pattern has no impact on aggregate consumption as it is similar to giving back everything to a
single agent. Heterogeneous preferences should allow for an aggregate impact of redistribution.
Having househoulds consuming different shares of the polluting commodity, the impact on ag-
gregate polluting consumption would depend on which household spends a higher share on this
good, as redistribution effects on both households would not offset each other. Changing the
redistribution rate hence would have an impact on pollution.

Effect on welfare

Knowing that changing the redistribution rate does not affect pollution, the impact on welfare
is only done through consumption. More precisely:

dU∗i
dε

=
dCi
dε

C∗−σi E∗µ (32)

Redistributing more to the worker decrease bundle consumption for the capitalist and increase
for the worker due to the revenue effect. Hence, decreasing income inequality through a lower ε
decreases welfare for the capitalist and increases welfare for the worker.

Putting taxation and redistribution altogether, there always exists a way to reduce both pollution
and inequality by playing on redistribution when the government taxes the polluting commodity
and redistributes the tax revenue through lump-sum transfers. This assumes that the minimal
amount of polluting good consumed is relatively low. Yet, this policy mix cannot be welfare
improving for both households. Having a welfare improving environmental tax reform would
mean that either pollution, inequalities or both increase. Subisstence consumption and the
size of the externality are hence of high importance when it comes to the welfare impact of
environmental tax reforms. Subsistence consumption also shapes the impact on pollution, and
so the efficiency of the environmental policy.

6. Local Stability

The level of subsistence consumption and the externality play an important role in the long-run
impact of environmental fiscal policies. Characterizing the stability properties near the steady-
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state of (23)-(24) allows us to analyze the effect of these two parameters in the shorter run,
as well as the role played by the fiscal policy. For that, we look at the log-linearized system
evaluated at the steady-state: [

˜Kt+1

˜Ct+1

]
=

[
Ω1 Ω2

Ω3 Ω4

][
K̃t

C̃t

]

with

Ω1 =

1+η
2 + αετ

1+τ(1−α)(
1 + αετ

1+τ(1−α)

) ( 1

β1
+ (1− δ)

)
+ 1− δ (33)

Ω2 = − PC∗1

K∗p
(

1 + αετ
1+τ(1−α)

) (34)

Ω3 =
µα (1−η)

2 r∗K∗ (Ω1 − 1)− β1K
∗f ′′(K∗)Ω1

(1 + τ)c0C
∗−1
1 − σ − µαC∗1P

(35)

Ω4 = 1 +
β1C

∗
1f
′′(K∗)P − µα (1−η)

2 PC∗1r
∗

p
(

1 + αετ
1+τ(1−α)

) (
(1 + τ)c0C

∗−1
1 − σ − µαC∗1P

) . (36)

We explore the role of the externality µ and subsistence consumption c0 on the stability properties
of the economy. We first analyze the role of subsistence consumption by setting µ = 0, and then
relax this assumption. Following Grandmont et al. (1998) and their geometrical method, we use
the trace and the determinant to study the stability properties of the system, given by:

Tr = Ω1 + Ω4 (37)

D = Ω1 −
µα (1−η)

2 PC∗1r
∗

p
(

1 + αετ
1+τ(1−α)

) (
(1 + τ)c0C

∗−1
1 − σ − µαPC∗1

) (38)

A

B C

0 Tr

D

1

1

saddlesaddle

source

source

sink

Figure 1: Geometrical method

To do so, we use the characteristic polynomial Pol(λ) = λ2 − λTr + D evaluated at λ = −1, 0

and 1 (see Figure 1). Along (AB), Pol(−1) = 0 (one eigenvalue is equal to -1) and along (AC),
Pol(1) = 0 (one eigenvalue is equal to 1). On [BC], the two eigenvalues are complex conjugates
with modulus one. The equilibrium is a sink (locally indeterminate) inside the triangle ABC,
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meaning that stochastif fluctuations occur around the steady-state. It is a saddle on the right
side of both (AB) and (AC) or on the left side of them, and it is a source otherwise, i.e the
equilibrium is not stable. A Flip bifurcation occurs when (TR,D) crosses (AB), leading to two-
periods fluctuations. A Hopf bifurcation happens when crossing [BC], giving rise to endogeneous
fluctuations.

Assumption 3 ε ≤ 1
2τ + 1−α

2 .

This ensures the existence of the upper-bound c01 on c0, as stated in Assumption 2.

6.1. Local dynamics when c0 > 0 and µ = 0

When the externality is not taken into account, the trace and the determinant simplify to:

Tr = 1 + Ω1 −
β1f

′′(K∗)C∗1P(
1 + αετ

1+τ(1−α

) (
σ − (1 + τ)c0C

∗−1
1

) (39)

D = Ω1 (40)

where C∗1 is a function of c0. Making values of c0 vary between 0 and c01, we analyze the stability
properties by looking at how do the trace and the determinant, that are functions of c0, move
on the plane described in Figure 1. Starting at c0 = 0, the point (Tr(0), D(0)) lies on the right
side of (AC). If η > η, (Tr(0), D(0)) lies above C. It lies under it otherwise. As the determinant
does not depend on subsistence consumption, increasing c0 leads to draw a horizontal line going
right on the (Tr,D) plan. At cF0 , the horizontal line crosses (AB), leading to a source or a sink
depending on the level of capital intensity. The point (Tr(c01), D(C01)) lies on (AC).
When accounting for subsistence consumption but not for the externality, some instability can
emerge depending on the level of c0 and η. As long as c0 < cF0 , saddle-path stability is ensured.
When c0 > cF0 (τ, ε), local unstability arises when η > η, and indeterminacy occurs whenever
η < η. We deduce that:

Proposition 6 Under Assumptions 1 -3, a steady-state with no environmental externality and
a positive level of subsistence consumption has the following stability properties:

• when c0 < cF0 (τ, ε), the steady-state is a saddle;

• when c0 > cF0 (τ, ε), the steady-state is a source for η > η and a sink otherwise.

A flip bifurcation occurs at c0 = cF0 , and a Hopf birfurcation arises when c0 > cF0 and η crosses
the value η.
Values of cF0 and η are in Appendix A.7.

As both cF0 and η depend on τ and ε, there is a role to play for both taxation and redistribution
in maintaining the stability and determinacy of the equilibrium. To analyze this role, we need
the following lemma:

Lemma 1 Under Assumptions 1-3 and µ = 0, we have ∂cF0
∂ε > 0. The sign of ∂cF0

∂τ is negative
whenever redistributing almost all the tax revenue towards any household. η decreases with ε and
τ .
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Figure 2: Local dynamics with µ = 0

Increasing the tax rate promotes instability whenever the government redistributes almost all the
tax revenue towards the worker, as noth _̧0F and η decrease with the tax rate. In the same vein,
increasing the share of the tax revenue redistributed towards the worker promotes endogeneous
stochastic flutucations, as cF0 decreases and η increases.

To give economic intuition for cycles, recall that the dynamics are driven by equations (19) and
(20). Equation (20) can be rewritten as U ′(C1t)

P1t
= β1

U ′(C1t+1)
P1t+1

(1 − δ + rt+1

p ). Anticipating a

higher Ct+1 leads to a higher U ′(C1t+1)
P1t+1

when c0 is high. To maintain equality, rt+1 must decrease,
which is equal to an increase in capital holdings Kt+1. As capital and labor incomes are positive
functions of capital, they increase at t+ 1, so that next period consumption increases. Expecta-
tions are then self-fulfilling and there are oscillations because a higher investment in capital Kt+1

also implies a lower current consumption C1t. Indeterminacy and cycles are here possible only
because subsistence consumption establishes interactions between prices and quantities3. With-
out a sufficiently high subsistence level of consumption, the aggregate price does not depend on
consumption, and U ′(C1t+1)

P1t+1
always decreases when anticipating a higher consumption level.

Whenever subsistence consumption is low enough, i.e below c0, increasing the tax rate and
redistributing more towards the worker has a positive long-run impact by reducing both inequality
and pollution. Yet, opposite forces are playing in the shorter run: redistribution promotes
indeterminacy and endogeneous cycles, while increasing polluting commodity taxation has a
mixed effect depending on how much is redistributed towards the worker. A high subsistence
consumption leads the fiscal policy to have a mixed effect both on the short- and long-run:
increasing the tax rate increases pollution and does not necessarily favors stability or determinacy.
Redistributing more towards the worker decreases inequality but promotes the emergence of
cycles.

6.2. Local dynamics when c0 > 0 and µ > 0

In this case, the trace and the determinant are given by (37)-(38). We depart from the case
in which there is subsistence consumption but no externality, and analyze what happens when
we increase the value of µ. Doing so, the point (Tr,D) draws a half line of slope S(c0) =

3See Chen et al. (2015) for a similar result with consumption externalities.
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1−η
2

r∗
p

(σ−(1+τ)c0C
∗−1
1 )

1−η
2

r∗
p

(σ−(1+τ)c0C
∗−1
1 )+PC∗1 f

′′(K∗)K∗
. The origin lies on (Tr(c0), D(c0)) for µ = 0, which belongs

to the horizontal line of the previous case. As c0 moves from 0 to +∞, the origin (Tr(c0), D(c0))

moves right to the limit point (Tr(+∞), D(+∞)) that lies on (AC). At the same time, S(c0)

decreases (resp. increases) when it is downward (resp. upward) sloping. Whenever c0 < cF0 , the
whole half line lies in the saddle region, (below (AB) and above (AC) when c0 > c∗0, below (AC)
and above (AB) otherwise): local indeterminacy and instability are impossible to get, no matter
the size of µ. When c0 > cF0 , one lies above (AB) and above (AC), such that for µ = 0, the
steady-state is a sink for η < η and a source when η > η. An increase in µ makes the half line
drew by (Tr,D) moving downward on the left.

When η > η, the half line crosses (AB) and/or [BC] when µ increases, depending on the value
taken by c0. More precisely, the steady-state will be a source for any µ < µH(τ, ε), and a sink for
any µ ∈ (µH(τ, ε), µF (τ, ε)). A Hopf bifurcation arises when µ = µH(τ, ε). For any µ > µF (τ, ε),
the steady-state lies back in the saddle region, with a Flip bifurcation occuring at µ = µF (τ, ε).
In the case µH(τ, ε) = µF (τ, ε), the steady state is a source for µ below this level, and a saddle
otherwise. When η < η, the half line crosses (AB) when µ = µF (τ, ε): a Flip bifurcation occurs.
The steady state is hence a sink for any µ < µF (τ, ε) and a saddle otherwise. Results are summed
up in the following proposition:

Proposition 7 Under Assumptions 1-3 and µ > 0, there exists µH for η > η and µF , such that
the steady state is:

• a source for c0 > cF0 and µ < µH ;

• a sink for c0 > cF0 and µ ∈ (µH , µF );

• a saddle otherwise.

A Hopf bifurcation occurs when µ crosses µH , and a Flip bifurcation arises for µ = µF .

Saddle-path stability is ensured by a sufficiently important externality (µ > µF ) and a relatively
low subsistence level of consumption. When the externality is relatively weak and the subsistence
level of consumption relatively high, the steady state can lose its stability through the occurrence
of cycles of period two. The fiscal policy has a role to play on stability propeties of the economy,
given by the following lemma:

Lemma 2 Under Assumptions 1 -3 and µ > 0:

• µH(τ, ε) and µF (τ, ε) increase when redistributing more towards the worker;

• ∂µH(τ,ε)
∂τ > 0 and ∂µF (τ,ε)

∂τ > 0 when ε < ε1.

The fiscal policy plays again a key role in the occurrence of instability and indeterminacy. Not
only does it increase the interval for c0 under which the steady state is unstable or indeterminate,
it also increases the interval for µ under which the steady state is unstable or a sink as long as
redistribution is high enough. Even if introducing the externality brings back some stability,
using the fiscal tools to fight polluting emissions and inequality harms stability properties of the
economy.
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A level of subsistence consumption below c0 leads to a positive impact of the fiscal environmental
policy in the long-run, as increasing the tax rate reduces pollution and redistributing moretowards
the worker decreases inequality. Yet, the fiscal policy promotes instability and indeterminacy in
the shorter-run. A higher subsistence level of polluting consumption leads to a deterioration of
environmental quality when increasing the tax rate, and both fiscal tools promote again instability
and indeterminacy in the short-run. Even if introducing the environmental externality brings
back some stability, the fiscal policy lowers that role, getting the economy closer to the case in
which it is not taken into account.

A

B C

0 Tr

D

1

1
µH

µF

µF = µH

Figure 3: Local dynamics with η > η

A

B C

0 Tr

D

1

1

µF (τ, ε)

Figure 4: Local dynamics with η < η

17



7. Concluding Remarks

In this paper, we investigate the impact of environmental commodity taxation and redistribution
on pollution and income inequality. For that, we build a two-sector Ramsey model with hetero-
geneous households, an environmental externality and a subsistence level of consumption for the
polluting good.
After characterizing the intertemporal equilibrium, we show that there exists a unique steady-
state in which the most patient household holds all the capital. We then discuss the impact of
taxation and redistribution on pollution and inequality. We find that redistribution only im-
pacts inequality. Focusing on taxation, increasing the tax rate does not reduce pollution when
the level of susbistence consumption is too high. Coupling both instruments, there is room to
tackle both issues when the susbistence level of polluting consumption is relatively low. On the
contrary, there is at best a tradeoff between inequality reduction and pollution mitigation when
subsistence consumption is high. At worst, an environmental fiscal reform leads to a dead-end
for inequality reduction and pollution mitigation.
Analyzing the local dynamics, we show that the level of subsistence consumption can lead to
indeterminacy. Increasing polluting commodity taxation and redistributing more towards the
worker decreases the threshold above which the steady state becomes unstable or indeterminate.
The environmental externality has a stabilizing role in the economy, as taking it into accounting
brings back stability. In this case, the environmental fiscal policy again plays a key role in the
occurrence of indeterminacy. Hence, policy makers must carefully handle environmental taxation
and redistribution to avoid instability and indeterminacy, and must take into account subsistence
consumption when implementing an efficient and inequality reductive environmental tax reform.
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A. Appendix

A.1. Household’s Problem

The household’s problem writes:

max
ait+1,cpit,cgit

∞∑
t=0

βtiUi(cpit, cgit, Et)

subject to cpit(1 + τ) + cgitpt + pt(ait+1 − (1− δ)ait) = wtni + rtait + Tit

ait+1 ≥ 0

Using the following Lagrangian to solve the optimization problem:

L =
∑
t

βti

[
Eµt

(cαpitc
1−α
git )1−σ

1− σ
+ λBCit (wtni + rtait + Tit − cpit(1 + τ)− cgitpt − pt(ait+1 − (1− δ)ait)) + λFCit ait

]

Optimality conditions:

1− α
cgit

C1−σ
it Eµt = λBCit pt

α

cpit − c0
C1−σ
it Eµt = λBCit (1 + τ)

λBCit pt = βiλ
BC
it+1(pt+1(1− δ) + rt+1) + βiλ

FC
it+1

Dividing the two first FOCs and rearranging gives cgitpt = 1−α
α (cpit − c0)(1 + τ).

Denote Iit = wtni + rtait − (ait+1 − (1− δ)ait). Plugging the previous equation for cgitpt in the
budget constraint of agent i yields:

cpit =
α

1 + τ
Iit + c0(1− α)

cgit =
1− α
pt

(Iit − c0(1 + τ))

The ex post budget constraint can be written PitCit = Iit.

Recall Cit = (cpit − c0)αc1−α
git , so that Cit =

(
α

1+τ (Iit − c0(1 + τ))
)α (

1−α
pt

(Iit − c0(1 + τ))
)1−α

.

Plugging this into the ex post budget constraint and rearranging yields Pit =
(1+τ)αp1−αt
(1−α)1−ααα + (1+τ)c0

Cit
.

A.2. Proof of Assumption 2

We have

C1t = 1
P

((
(1+η)

2 + αετ
1+τ(1−α)

)
ApK

η
t − (1 + αετ

1+τ(1−α))p(Kt+1 − (1− δ)Kt)− (1+τ(1−α−2ε))(1+τ)
1+τ(1−α) c0

)
(41)

C2t = 1
P

((
(1−η)

2 + α(1−ε)τ
1+τ(1−α)

)
ApK

η
t − ( α(1−ε)τ

1+τ(1−α))p(Kt+1 − (1− δ)Kt)− (1−τ(1+α−2ε))(1+τ)
1+τ(1−α) c0

)
(42)

P =
(1 + τ)αp1−α

(1− α)1−ααα
(43)
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C1t and C1t are positive whenever, respectively:

c0 ≤
(

(1+η)
2(1+τ(1−α−2ε))(1+τ) + αετ

(1+τ(1−α−2ε))(1+τ)

)
ApK

η
t −

(
1+τ(1−α)

(1+τ(1−α−2ε))(1+τ) + αετ
(1+τ(1−α−2ε))(1+τ)

)
p(Kt+1 − (1− δ)Kt) ≡ c01 (44)

c0 ≤
(

(1−η)
2(1−τ(1+α−2ε))(1+τ) + α(1−ε)τ

(1−τ(1+α−2ε))(1+τ)

)
ApK

η
t −

α(1−ε)τ
(1−τ(1+α−2ε))(1+τ)p(Kt+1 − (1− δ)Kt) ≡ c02 (45)

A.3. Proof of Proposition 2

From (29) and (30):

dc∗p
dτ

=
−α(1− α)

(1 + τ(1− α))2
K∗p

(
r∗/p

η
− δ
)

+
2α

(1 + τ(1− α))2
c0

dc∗g
dτ

=
1− α

p(1 + τ(1− α))2

(
K∗p

(
r∗/p

η
− δ
)

+ 2(1 + 2τ(1 + τ c(1− α)))c0

)

It is straightforward that dc∗g
dτ > 0.

dc∗p
dτ > 0⇐⇒ c0 >

(1−α)K∗p
(
r∗/p
η
−δ
)

2

A.4. Proof of Proposition 3

For the capitalist

The derivative of c∗p1 with respect to τ is a second degree polynomial. Polluting consumption
decreases for:

τ2
(
K∗p(1− α)

(
r∗/p
η − ηδ

)
+
(
r∗/p
η + η

(
1
β1
− 1− δ

))
(1−α)
2αε −

2ηc0
α

)
+ τ

((
r∗/p
η + η

(
1
β1
− 1− δ

))
(1−α)
αε −

4ηc0
α

)
−

(
K∗p

(
r∗/p
η − ηδ −

(
r∗/p
η

+η
(

1
β1
−1−δ

))
2αε

)
+ 2ηc0

α

)
> 0,

This is positive when

(
2
(
r∗/p
η − ηδ

)
−
(
r∗/p
η

+η
(

1
β1
−1−δ

))
ε

)(
K∗p( r

∗/p
η − δη)(1− α)− 2ηc0

)
>

0.
When this is negative, the sign of the polynomial is equal to the sign of K∗p(1−α)

(
r∗/p
η − ηδ

)
+(

r∗/p
η + η

(
1
β1
− 1− δ

)
(1−α)
2αε

)
− 2ηc0

α , which is positive for 0 < α < α̂1 and negative for α̂1 <

α < 1.

- ε < ε∗:

• When c0 < c0, the discriminant is negative and α < α̂, so the polynomial is positive,
meaning c∗p1 decreases.

• When c0 > c0, the discriminant is positive and there are 2 roots:

τ1
1 =

4ηc0
α
−
(
r∗/p
η

+η
(

1
β1
−1−δ

))
(1−α)
αε
−

√√√√√2K∗p

2
(
r∗/p
η
−ηδ

)
−

(
r∗/p
η +η

(
1
β1
−1−δ

))
ε

(K∗p( r∗/p
η
−δη)(1−α)−2ηc0

)
2
(
K∗p(1−α)

(
r∗/p
η
−ηδ+

(
r∗/p
η

+η
(

1
β1
−1−δ

))
(1−α)
2αε

)
− 2ηc0

α

)

τ1
2 =

4ηc0
α
−
(
r∗/p
η

+η
(

1
β1
−1−δ

))
(1−α)
αε

+

√√√√√2K∗p

2
(
r∗/p
η
−ηδ

)
−

(
r∗/p
η +η

(
1
β1
−1−δ

))
ε

(K∗p( r∗/p
η
−δη)(1−α)−2ηc0

)
2
(
K∗p(1−α)

(
r∗/p
η
−ηδ+

(
r∗/p
η

+η
(

1
β1
−1−δ

))
(1−α)
2αε

)
− 2ηc0

α

)
The denominator is positive for 0 < α < α̂1 and negative for α̂1 < α < 1, and α̂1 < 0
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for ε >
K∗p

(
1−β1
β1

(1+η)+(1−η)δ
)

4ηc0
.

When ε >
K∗p

(
1−β1
β1

(1+η)+(1−η)δ
)

4ηc0
, the denominator is negative. The numerators of τ1

1

and τ1
2 are always positive so τ1

1 < 0 and τ1
2 < 0 for any value of α and c∗p1 increases.

When ε <
K∗p

(
1−β1
β1

(1+η)+(1−η)δ
)

4ηc0
, the numerator of τ1

1 is an increasing function of α,
and evaluating the numerator of τ1

1 at α̂1, we find it is equal to zero. Hence τ1
1 < 0

for any value of α. The numerator of τ1
2 has an inverted-U shape in α, and we know

that it is negative at the minimum value of α, and positive when α = 1. Also, when
α→ α̂, τ1

2 → +∞, so there exists an α1 < α̂ such that τ1
2 > 0 and a α1 < α̂ such that

τ1
2 > 1. We can summarize:

α c∗p1
0 < α < α1 decreases
α1 < α < α1 has an inverted U-shape
α1 < α increases

- ε > ε∗:

• When c0 < c0, the discriminant is positive and there are 2 roots, τ1
1 and τ1

2 .

When ε >
K∗p

(
1−β1
β1

(1+η)+(1−η)δ
)

4ηc0
, the denominator is negative and the numerator of

τ1
1 is a decreasing function of α. At the maximum value α can take, the numerator is
positive, so the numerator is always positive on the interval and τ1

1 < 0 always. The
numerator of τ1

2 is always positive, so τ1
2 < 0 and c∗p1 increases.

When ε <
K∗p

(
1−β1
β1

(1+η)+(1−η)δ
)

4ηc0
, the numerator of τ1

1 has an inverted U shape in
α, and is positive at max(α). We know then it crosses 0 once at α̂1, so τ1

1 < 0 on
that interval. The numerator of τ1

2 is an increasing function of α, and we have the
numerator negative when α → 0, and positive when α → max(α). Hence we know
there exists an α1 such that the numerator becomes positive. We also know that the
numerator is positive at α̂1, so α1 < α̂1. When α → α̂1, τ1

2 → +∞. Therefore, there
exists an α1 such that on (α1, α̂1), τ1

2 > 1. Results can be summarized in the following
table:

α c∗p1
0 < α < α1 decreases
α1 < α < α1 has an inverted U-shape
α1 < α increases

• When c0 > c0, the discriminant is negative and α > α̂1, so the polynomial is negative,
i.e c∗p1 increases.
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For the worker

The derivative of c∗p2 with respect to τ is a second degree polynomial. Polluting consumption
decreases for:

τ2
(
K∗p(1− α)

(
r∗/p
η − ηδ

)
+
(
r∗/p(1−η)

η

)
(1−α)

2α(1−ε) −
2ηc0
α

)
+ τ

((
r∗/p(1−η)

η

)
(1−α)
α(1−ε) −

4ηc0
α

)
−

(
K∗p

(
r∗/p
η − ηδ −

(
r∗/p(1−η)

η

)
2α(1−ε)

)
+ 2ηc0

α

)
> 0,

which holds when

(
2
(
r∗/p
η − ηδ

)
−
(
r∗/p(1−η)

η

)
1−ε

)(
K∗p( r

∗/p
η − δη)(1− α)− 2ηc0

)
> 0.

When this is negative, the sign of the polynomial is equal to the sign of

K∗p(1− α)

(
r∗/p

η
− ηδ +

(
r∗/p(1− η)

η

)
(1− α)

2α(1− ε)

)
− 2ηc0

α
(46)

,
which is positive for 0 < α < α̂2 and negative for α̂2 < α < 1.

- ε < ε∗:

• When c0 < c0, the discriminant is positive, so there are two roots:

τ2
1 =

4ηc0
α
−
(
r∗/p(1−η)

η

)
(1−α)
α(1−ε)−

√√√√√2K∗p

2
(
r∗/p
η
−ηδ

)
−

(
r∗/p(1−η)

η

)
1−ε

(K∗p( r∗/p
η
−δη)(1−α)−2ηc0

)
2
(
K∗p(1−α)

(
r∗/p
η
−ηδ+

(
r∗/p(1−η)

η

)
(1−α)

2α(1−ε)

)
− 2ηc0

α

)

τ2
2 =

4ηc0
α
−
(
r∗/p(1−η)

η

)
(1−α)
α(1−ε)+

√√√√√2K∗p

2
(
r∗/p
η
−ηδ

)
−

(
r∗/p(1−η)

η

)
1−ε

(K∗p( r∗/p
η
−δη)(1−α)−2ηc0

)
2
(
K∗p(1−α)

(
r∗/p
η
−ηδ+

(
r∗/p(1−η)

η

)
(1−α)

2α(1−ε)

)
− 2ηc0

α

)
The denominator is positive for α < α̂2 and negative for α > α̂2, with α̂2 < 0 for

ε < 1−
K∗p

(
r∗/p
η

)
(1−η)

4ηc0
.

When ε < 1 −
K∗p

(
r∗/p
η

)
(1−η)

4ηc0
, the numerators of τ2

1 and τ2
2 are always positive, so

τ2
1 < 0 and τ2

2 < 0 for any value of α: c∗p2 increases.

When ε > 1−
K∗p

(
r∗/p
η

)
(1−η)

4ηc0
, the numerator of τ2

1 is an increasing function of α and
is equal to zero at α̂2, so τ2

1 < 0 for any value of α. The numerator of τ2
2 has an

inverted U shape in α and is negative when α is close to zero and positive around its
maximal value, meaning there exists an α2 < α̂2 such that the numerator becomes
positive. When α → α̂2, τ2

2 → +∞, meaning there exists α2 < α̂2 such that τ2
2 > 1.

Results can be summarized in the following table:

α c∗p2
0 < α < α2 decreases
α2 < α < α2 has an inverted U-shape
α2 < α increases

• When c0 > c0, the discriminant is negative and α > α̂2 so c∗p2 increases.
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- ε > ε∗:

• When c0 < c0, the discriminant is negative and α < α̂2 so the polynomial is negative,
and c∗p2 decreases.

• When c0 > c0, the discriminant is positive and there are 2 roots τ2
1 and τ2

2 . In this

case, we always have ε > 1−
K∗p

(
r∗/p
η

)
(1−η)

4ηc0
, i.e a > 0 for α < α̂2 and a < 0 otherwise.

The numerator of τ2
1 has an inverted-U shape in α, is negative at the minimum value

of α and positive at α = 1, so it crosses 0 once at α̂. Hence τ2
1 < 0 always. The

numerator of τ2
2 is an increasing function of α, negative at min(α) and positive at

α = 1. As before, there exists an α2 < α̂2 such that the numerator becomes positive,
and an α2 < α̂2 such that τ2

2 > 1. Results are summarized in the following table:

α c∗p2
0 < α < α2 decreases
α2 < α < α2 has an inverted U-shape
α2 < α increases

A.5. Proof of Proposition 4

We have:

∂P ∗2C
∗
2

∂τ
= K∗p

(
r∗/p

η
− δ
)

α(1− ε)
(1 + τ(1− α))2

+
2(1− ε)(1 + 2τ + 2τ2(1− α))

(1 + τ(1− α))2
c0

∂P ∗1C
∗
1

∂τ
= K∗p

(
r∗/p

η
− δ
)

αε

(1 + τ(1− α))2
+

2ε(1 + 2τ + 2τ2(1− α))

(1 + τ(1− α))2
c0

It is straightforward that ∂P ∗2 C
∗
2

∂τ >
∂P ∗1 C

∗
1

∂τ for ε < 1
2 .

A.6. Proof of Proposition 5

Impact on overall consumption

For the capitalist: Taking the derivative of C∗1 with respect to τ gives the following:

τ2c0(1− α)(2ε− 1 + α) + 2τc0(2ε− 1 + α) +K∗p(
r∗/p

η
− δ)αε+ c0(2ε− 1)

Solving for the polynomial gives that ∂C∗1
∂τ > 0 for c0 < c0 and ε < 1−α

2 or c0 > c0 and ε > 1−α
2 .

• c0 < c0:
If ε > 1−α

2 , C∗1 increases.
If ε < 1−α

2 , the polynomial has two roots:
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τ11 =
2c0(1− α− 2ε)−

√
∆1

2c0(1− α)(2ε− 1 + α)

τ12 =
2c0(1− α− 2ε) +

√
∆1

2c0(1− α)(2ε− 1 + α)

and ∆1 the discriminant associated to ∂C∗1
∂τ . τ12 < 0 as the nominator is positive and the

denominator negative.
τ11 > 0 iff ε > ηc0

2ηc0+K∗pα
(

1−β1
β1

+δ(1−η)
) ≡ ε1. If not, τ11 < 0 and C1 decreases. Assuming

ε1 < ε < 1−α
2 , we must now ensure that τ11 < 1.

τ11 < 1⇐⇒ α2ηc0 + α

(
2εηc0 −K∗pε

(
1− β1

β1
+ δ(1− η)

)
− 4ηc0

)
+ 4ηc0(1− 2ε) > 0

The polynomial in α has two roots, α̂ and ˆ̂α. ˆ̂α < 0 and 0 < α̂ < 1 iff ε > ηc0

6ηc0+K∗p
(

1−β1
β1

+δ(1−η)
) ,

which is always verified under the assumption ε > ε1. Hence, we have τ11 < 1 for α < α̂

and C∗1 has an inverted U-shape, and τ11 > 1 for α > α̂, leading to an increase in C∗1 .

• c0 > c0:
If ε < 1−α

2 , C∗1 decreases.
ε > 1−α

2 , the polynomial has two roots τ11 < 0 and τ12. τ12 > 0 iff ε < ε1. If ε > ε1, C∗1

increases.
Assuming ε < ε1 and after some computations, we find that τ12 > 1, meaning that C∗1
decreases.

For the worker: Taking the derivative of C∗2 with respect to τ gives:

τ2c0(1− α)(2(1− ε)− 1 + α) + 2τc0(2(1− ε)− 1 + α) +K∗p(
r∗/p

η
− δ)α(1− ε) + c0(1− 2ε)

Solving for the polynomial gives that ∂C∗2
∂τ > 0 for c0 < c0 and ε > 1+α

2 or c0 > c0 and ε < 1+α
2 .

• c0 < c0:
If ε < 1+α

2 , C∗2 increases.
If ε > 1−α

2 , the polynomial as two roots:

τ21 =
2c0(1− α− 2(1− ε))−

√
∆2

2c0(1− α)(2(1− ε)− 1 + α)

τ22 =
2c0(1− α− 2(1− ε)) +

√
∆2

2c0(1− α)(2(1− ε)− 1 + α)

and ∆2 the discriminant associated to ∂C∗2
∂τ . τ22 < 0 as the nominator is positive and the

denominator negative, and after some computations we find τ21 > 1. Hence, C∗2 decreases.

• c0 > c0:
If ε > 1+α

2 , C∗2 decreases.
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If ε < 1+α
2 , the polynomial has two roots τ21 and τ12 tht are both negative. Therefore C∗2

increases.

Impact on welfare

An increase in the commodity tax rate leads to changes in utilities:

dUi
dτ

= µ
dE∗

dτ
E∗µ−1C

∗1−σ
i

1− σ
+
dCi
dτ

C∗−σi E∗µ

The result is straightforward:

• when c0 < c0, if Ci increases, then Ui increases. If Ci decreases, Ui increases if µ > µ∗i (τ, ε)

and decreases otherwise;

• when c0 > c0, if Ci decreases, then Ui decreases. If Ci increases, Ui decreases if µ > µ∗i (τ, ε)

and increases otherwise.

A.7. Proof of Proposition 6

Looking at the characteristic polynomial:

Pol(−1) = 2(1 +D)− β1f
′′(K∗)C∗1P(

1 + αετ
1+τ(1−α

) (
σ − (1 + τ)c0C

∗−1
1

)
Pol(1) =

β1f
′′(K∗)C∗1P(

1 + αετ
1+τ(1−α

) (
σ − (1 + τ)c0C

∗−1
1

)
If c0 < c∗0, then σC∗1 − (1 + τ)c0 > 0 and we have a saddle.
If c0 > c∗0, Pol(1) > 0 so we must check the sign of Pol(−1) in order to know whether there is
indeterminacy of the equilibrium or not.
Looking at Pol(−1), we have Pol(−1) > 0 if c0 > cF0 , meaning the equilibrium is either a sink
or a source, depending on whether D > 1 or not, i.e. whether η > η or not.
Setting D = 1, we have η = δ

1
β1
−1+δ

−
(

1
β1
− 1
)(

1 + 2αετ
1+τ(1−α)

)
.

Pol(−1) = 0 is a second degree polynomial in c0. After some computation, we find that the
first root is greater than c01. Hence, cF0 is the second root of this polynomial, and Pol(−1) < 0

whenever c0 ∈ (c∗0, c
F
0 ), and greater than zero otherwise.

cF0 is given by:

(1+τ)(1+D)
(

1+
σ(1+τ(1−α−2ε))
P (1+τ(1−α))

)
− β1f

′′(K∗)K∗

P

(
1+ αετ

1+τ(1−α)

)( r∗/p
η

( 1+η
2

+ αετ
1+τ(1−α) )−δ(1+ αετ

1+τ(1−α) )
)

(1+τ)(1+τ(1−α−2ε)
1+τ(1−α) −

√
∆

−
β1
p f
′′(K∗)

P

(
1+ αετ

1+τ(1−α)

)( (1+τ)(1+τ(1−α−2ε)
1+τ(1−α)

)2

with ∆ the discriminant associated with Pol(−1).
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A.8. Expressions for critical values of µ

The trace and determinant of the characteristic polynomial when c0 > 0 and µ > 0 are given by

Tr(c0) =
r∗

p

( 1+η
2 + αετ

1+τ(1−α)

1 + αετ
1+τ(1−α)

)
+ 2− δ +

β1
p f
′′(K∗)PC∗1 − αµ

(1−η)r∗

2p PC∗1(
1 + αετ

1+τ(1−α)

) (
(1 + τ)c0C

∗−1
1 − σ − αµPC∗1

)
(47)

D(c0) =
r∗

p

( 1+η
2 + αετ

1+τ(1−α)

1 + αετ
1+τ(1−α)

)
+ 1− δ −

αµ (1−η)r∗

2p PC∗1(
1 + αετ

1+τ(1−α)

) (
(1 + τ)c0C

∗−1
1 − σ − αµPC∗1

) (48)

µH(τ, ε) is such that D = 1, which yields

µH(τ, ε) =

(
(1 + τ)c0C

∗−1
1 − σ

) (
r∗

p

(
1+η

2 + αετ
1+τ(1−α)

)
− δ

(
1 + αετ

1+τ(1−α)

))
αPC∗1

(
r∗

p − δ
)(

1 + αετ
1+τ(1−α)

) (49)

µF (τ, ε) is such that 1+Tr+D=0. We obtain

µF (τ, ε) =
(1 + τ)c0C

∗−1
1 − σ

αPC∗1
+

β1
p f
′′(K∗)

2α
(
r∗

p

(
1+η

2 + αετ
1+τ(1−α)

)
+ (2− δ)

(
1 + αετ

1+τ(1−α)

)) (50)

A.9. Proof of Lemma 2

The derivatives of µH and µF with respect to ε are given by:

∂µH
∂ε =

(
σ− 2(1+τ)c0

C∗1

)
∂C∗1
∂ε

(
1+ αετ

1+τ(1−α)

)(
r∗
p

(
1+η
2

+ αετ
1+τ(1−α)

)
−δ
(

1+ αετ
1+τ(1−α)

))
+

(
(1+τ)c0
C∗1

−σ
)
C∗1

r∗(1−η)ατ
2p(1+τ(1−α))

αP
(
r∗
p
−δ
)(
C∗1

(
1+ αετ

1+τ(1−α)

))2
∂µF
∂ε

=

(
σ − 2(1+τ)c0

C∗1

)
∂C∗1
∂ε

αPC∗21

−
β1
p f
′′(K∗)

(
r∗

p + (2− δ)
)

τ
(1+τ(1−α))

2
(
r∗

p

(
1+η

2 + αετ
1+τ(1−α)

)
+ (2− δ)

(
1 + αετ

1+τ(1−α)

))2

Both derivatives are positive when ∂C∗1
∂ε < 0, i.e when decreasing ε and redistributing more to-

wards workers.

Derivatives with respect to τ yield:

∂µH
∂τ =

((
σ− 2(1+τ)c0

C∗1

)
∂C∗1
∂τ

+c0

)(
r∗
p

(
1+η
2

+ αετ
1+τ(1−α)

)
−δ
(

1+ αετ
1+τ(1−α)

))(
1+ αετ

1+τ(1−α)

)
+

(
(1+τ)c0
C∗1

−σ
)
C∗1

r∗(1−η)αε
2p(1+τ(1−α))2

αP
(
r∗
p
−δ
)(
C∗1

(
1+ αετ

1+τ(1−α)

))2
∂µF
∂τ

=

(
σ − 2(1+τ)c0

C∗1

)
∂C∗1
∂τ + c0

αPC∗21

−
β1
p f
′′(K∗)

(
r∗

p + (2− δ)
)

ε
(1+τ(1−α))2

2
(
r∗

p

(
1+η

2 + αετ
1+τ(1−α)

)
+ (2− δ)

(
1 + αετ

1+τ(1−α)

))2

also positive when ∂C∗1
∂τ < 0, which happens under the condition ε < ε1.
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