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When children learn to read, their neural system undergoes major changes

to become responsive to print. There seem to be nuanced interindividual

differences in the neurostructural anatomy of regions that later become

integral parts of the reading network. These differences might affect literacy

acquisition and, in some cases, might result in developmental disorders like

dyslexia. Consequently, the main objective of this longitudinal study was to

investigate those interindividual differences in gray matter morphology that

might facilitate or hamper future reading acquisition. We used a machine

learning approach to examine to what extent gray matter macrostructural

features and cognitive-linguistic skills measured before formal literacy

teaching could predict literacy 2 years later. Forty-two native German-

speaking children underwent T1-weighted magnetic resonance imaging

and psychometric testing at the end of kindergarten. They were tested

again 2 years later to assess their literacy skills. A leave-one-out cross-

validated machine-learning regression approach was applied to identify the

best predictors of future literacy based on cognitive-linguistic preliterate

behavioral skills and cortical measures in a priori selected areas of the

future reading network. With surprisingly high accuracy, future literacy was

predicted, predominantly based on gray matter volume in the left occipito-

temporal cortex and local gyrification in the left insular, inferior frontal,

and supramarginal gyri. Furthermore, phonological awareness significantly

predicted future literacy. In sum, the results indicate that the brain morphology

of the large-scale reading network at a preliterate age can predict how well

children learn to read.
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Introduction

Literacy is a multidimensional concept that comprises the
ability to read (derive meaning from written symbols) and
write (encode meaning through written symbols). Literacy
is a key competence in today’s information-driven society.
Not surprisingly, difficulties in reading can have far-reaching
consequences ranging from low academic achievement (Bruck,
1987; Fletcher and Vaughn, 2009) to emotional problems or even
psychiatric disorders (Schulte-Körne, 2010; Livingston et al.,
2018). To better understand why some children fail to acquire
literacy skills successfully, there has been quite some effort in
identifying factors that potentially facilitate or hamper reading
acquisition (Hoeft et al., 2007; Perry et al., 2019). This has led
to the identification of several precursors of literacy that predict
future reading and spelling at the end of kindergarten.

To date, the most robust predictors of literacy prior to
formal instruction at school are cognitive-linguistic preliterate
skills. The two most reliable skills are rapid automatized naming
(RAN) and phonological awareness (PA). RAN tasks assess a
child’s speed and accuracy in naming familiar stimuli such as
digits, letters, and colors. RAN and fluent reading share many
subprocesses, such as saccadic eye movements, lexical access,
and the mapping of visual objects onto language representations
(Norton and Wolf, 2012). PA refers to the ability to represent,
recognize, access, and manipulate any phonological unit within
a word. Thus, PA is essential to map orthography onto
phonology and hence bootstrap reading acquisition (Ziegler
et al., 2014, 2020). The strong link between these two variables
and reading acquisition has been repeatedly shown in large-scale
cross-linguistic studies both at the concurrent (Ziegler et al.,
2010; Landerl et al., 2013) and the longitudinal level (Caravolas
et al., 2012; Landerl et al., 2019, 2022). In recent years, there
has also been an increasing effort to study neurofunctional
(Lohvansuu et al., 2018; Liebig et al., 2020, 2021) predictors of
future reading proficiency before the onset of literacy (see Chyl
et al., 2021 for a recent review). The overlap of the functional
and anatomical neural architecture of reading suggests a close
link between brain morphology and function.

Consequently, multiple studies have examined reading-
related macrostructural features of the cortex (Linkersdörfer
et al., 2012; Richlan et al., 2013; Eckert et al., 2016). However,
the results of different studies are far from converging into a
uniform picture (Ramus et al., 2018; Chyl et al., 2021). Thus,
in the present study, we aimed to compare and weigh the effects
of several gray matter macrostructural brain maturation features
and behavioral measures of cognitive-linguistic preliterate skills,
which were gathered at the end of kindergarten to predict
individual literacy skills 2 years later.

A large-scale reading network has been identified in skilled
adult readers that can roughly be characterized by two posterior
and one anterior stream. The ventral stream is linked to the
occipito-temporal cortex and hosts the visual word form area. It

is associated with direct orthographic reading strategies (Cohen
and Dehaene, 2004; Dehaene and Cohen, 2011). The dorsal
stream, located in the temporo-parietal cortex, is primarily
devoted to auditory-phonological recoding (Pugh et al., 2000).
Both streams converge in the frontal stream linked to the
inferior frontal gyrus and insular cortex, among others (Binder
et al., 2009; Price, 2012; Martin et al., 2015; Froehlich et al.,
2018). However, in the last decades, the modularized view of
reading has been increasingly challenged and replaced by a
unified view of reading (Price and Devlin, 2011; Braun et al.,
2019). According to this view, reading is orchestrated by the
large-scale network in a highly distributed and interactive way
(Hofmann and Jacobs, 2014; Ziegler et al., 2018). This partly
pre-existing network already devoted to language and sensory-
motor processing must be fundamentally reorganized during
reading acquisition to become responsive to print (Dehaene
et al., 2015; Liebig et al., 2017; Dehaene-Lambertz et al., 2018).

Until today, most work examining reading-related brain
morphology has focused on altered gray matter volume,
hereafter referred to as cortical volume, in impaired compared
to neurotypical readers (Ramus et al., 2018). The underlying
reason might be the cortical morphology’s potential to be a
promising early biomarker of future literacy as it is primarily
determined by neurodevelopmental processes in utero and is
partly confined by genetic heritability (Gilmore et al., 2018).
Yet, brain structure undergoes continuing changes that are
highly intertwined with changes in cognitive abilities, resulting
in interindividual variability (Raznahan et al., 2011; Frangou
et al., 2022) and might thus be very well suited to identify subtle
differences in the cortical morphology that will affect future for
reading acquisition.

However, the results of three coordinate-based meta-
analyses showed little consistency across studies (Linkersdörfer
et al., 2012; Richlan et al., 2013; Eckert et al., 2016).
Nonetheless, they point to decreased cortical volume in all
three reading streams. More specifically, bilateral temporo-
parietal, left ventral occipito-temporal, left frontal, and bilateral
cerebellar regions show volumetric differences in developmental
dyslexia. A handful of studies focused on the cortical folding
pattern in relation to reading acquisition and dyslexia. Impaired
readers seem to exhibit abnormal gyrification in the left
occipito-temporal and temporo-parietal cortices (Im et al., 2016;
Williams et al., 2018), i.e., the ventral and the dorsal stream.
Focusing on single structural features generally bears the risk of
overseeing interactions between different anatomical measures.
Therefore, Płoński et al. (2017) tested several macrostructural
features using a cross-validated (CV) classification algorithm in
a large cross-linguistic sample of 8- to 13-year-old children and
adolescents. Children with dyslexia displayed increased folding
and curvature in left temporo-parietal regions, lower surface
area in the prefrontal cortex, i.e., in all three reading streams.
This comprehensive analysis revealed the benefit of machine
learning approaches and the combination of neuroanatomical
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measures to identify cortical differences more closely and with
greater specificity.

In summary, children and adults with impaired reading
show a pattern of decreased cortical volume and surface area
paired with abnormal gyrification in diverse regions of the
large-scale reading network. The neuroanatomical differences
seemed to precede the onset of reading instruction at school.
Prereaders later diagnosed with dyslexia showed reduced surface
area in all three future reading streams, i.e., the bilateral fusiform
gyri (Beelen et al., 2019), the left supramarginal gyrus, and the
left inferior frontal gyrus (Hosseini et al., 2013). In contrast,
cortical thickness did not differ between groups (Hosseini et al.,
2013; Beelen et al., 2019). However, neuroanatomical differences
in all three reading streams have not been comprehensively
investigated yet. In a longitudinal study examining native
German-speaking children, Kuhl et al. (2020) reported mixed
results concerning the relationship between macrostructural
features and reading. Only abnormal gyrification in the left
auditory cortex dissociated preliterate children who developed
dyslexia from their typically developing peers. Although a
uniform picture is still missing, these studies provide a crucial
foundation for characterizing the neural basis of reading
difficulties.

All of the above-described studies compared typical and
impaired reading acquisition. However, group contrasts can
be problematic because there is no consistent definition of
impaired reading or dyslexia, and thus different methods
and thresholds are utilized to classify children across studies
(Francis et al., 2005; Fletcher, 2009). Furthermore, reading
performance is a continuous variable and splitting the
sample into two categorical groups loses valuable information
(Button et al., 2013). A different approach is to directly
target the relationship between anatomy and reading in
typically developing children using continuous sampling and
spanning the entire range of reading proficiency. However,
studies investigating macrostructural features of typical reading
acquisition are scarce and yield mixed results. Longitudinal
studies in emergent to intermediate readers show that decreases
in cortical volume in different regions linked to the dorsal
and frontal stream (e.g., left inferior parietal cortex, superior
temporal gyrus, and precentral gyrus) correlate positively with
literacy skills (Houston et al., 2014; Linkersdörfer et al., 2014;
Jednoróg et al., 2015). These results indicate that an age-
appropriate maturation of the large-scale reading network
facilitates reading acquisition from early on. In contrast, Torre
and Eden (2019) did not find any relationships between cortical
volume and word reading in pre-defined regions of the reading
network, neither in a large sample of 404 typical readers (6- to
22-year-old) nor in a subsample of 6- to 9-year-old children.

Similarly, Perdue et al. (2020) reported mixed results. They
identified a positive relationship between cortical thickness in
the left superior temporal gyrus and word and pseudoword
reading in typically developing children (4- to 9-year-old) but
did not find a relationship between reading skills and surface

area in their whole-brain based analysis. These results were
supported by a study that tested Chinese-speaking children and
showed that word reading was positively correlated with cortical
thickness in bilateral superior temporal gyri, the left inferior
temporal gyrus, and the left supramarginal gyrus (Xia et al.,
2018).

In all of these studies, neuroanatomical features were
correlated with literacy-related skills. Correlational frameworks,
however, do not allow for generalization to unseen individuals
(Dubois and Adolphs, 2016). Furthermore, correlational
approaches with a small sample size are prone to over-fitting
both signal and noise (Vul et al., 2009; Dubois and Adolphs,
2016; Elliott et al., 2020; Sui et al., 2020). This limitation can
be tackled by using CV methods, in which a training sample
predicts performance in an independent data set. Until today,
there are only a few landmark studies using CV methods
to predict literacy-related skills in continuous samples. For
example, Skeide et al. (2016) used a whole-brain kernel ridge
regression to test individual differences in cortical volume in
several reading-related regions to predict reading speed in
5- to 12-year-old native German-speaking children. Bilateral
middle frontal gyri, the left superior temporal gyrus, and the
left occipito-temporal cortex were positively associated with
reading skills. In addition, clusters in the visual word form
area and the left visual cortex were negatively associated with
reading speed (Skeide et al., 2016). Thus, crucial regions of
the dorsal and ventral stream predicted reading with high
precision. Choosing a similar approach (Cui et al., 2018), used
large datasets of the Human Connectome Project to predict
individual reading comprehension and decoding skills in young
adults. More specifically, they performed an elastic net penalized
linear regression to predict individual literacy scores based
on whole-brain cortical volume. The most critical predictive
clusters were located in frontal and subcortical regions. The
generalizability of the prediction model was then tested in an
independent sample of Chinese children (8- to 13-years-old)
with mixed results.

One could summarize the mixed results of the relationship
between the macrostructural features and typical reading
development in the following way: Firstly, all studies that
found a significant relationship between macrostructural brain
measures and reading report positive relationships. Secondly,
cortical volume, particularly in the temporo-parietal areas
(Houston et al., 2014; Linkersdörfer et al., 2014), i.e., in the
ventral and dorsal stream, is not only robustly correlated with
but also predicts reading performance in children (but see, Torre
and Eden, 2019, for an exception). Cortical thickness in all three
reading streams, i.e., superior temporal gyrus, supramarginal
gyrus, and inferior frontal gyrus, showed a positive relationship
in typical reading children (Xia et al., 2018; Perdue et al.,
2020). Until today, there is only one study testing the effect of
the surface area on typical reading acquisition, which did not
find any significant correlation (Perdue et al., 2020). However,
replication is still outstanding. Thus, the goal of the present
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study was to add new evidence to the still preliminary data on
the relationship between macrostructural features and reading
acquisition. More specifically, we aimed at predicting future
literacy in a sample of German-speaking kindergarten children
using continuous sampling and CV prediction modeling.
Several aspects distinguish the present research from the two
studies summarized above. Firstly, we analyzed longitudinal
data to predict the literacy skills of kindergarten children
2 years later instead of examining concurrent brain-behavior
relationships (see Ramus et al., 2018, for promises and pitfalls).
Secondly, we included several macrostructural features and
compared their relative importance. Thirdly, we used both
structural and behavioral information (RAN and PA tested
at the end of kindergarten) in the CV models to investigate
whether or not, and if so, to what extent adding neuroanatomic
data would improve the prediction of future literacy over
and above cognitive-linguistic preliterate skills. For that, we
obtained cortical volume, surface area, and local gyrification
(lGI) from structural scans of preliterate children at the end
of kindergarten. The reasoning behind our choice was the
following: Firstly, we included cortical volume as one of the most
widely tested cortical measures to show the validity of our data
and see if we could replicate the well-established pattern using
a CV-algorithm. Secondly, we aimed to re-test surface area as
this feature was so far tested only once in a continuous sample.
Thirdly, we added the lGI that was previously only tested in
group comparisons (Williams et al., 2018), where it yielded new
and promising insights. Thus, we decided to incorporate this
relatively new measure into the present analysis.

The cohort of children was then tested again at the end of the
second year of primary school to assess their literacy skills. An
elastic net regularized regression was applied to predict future
literacy ability. The model was based on cognitive-linguistic
preliterate skills and anatomical markers of the cortical surface
in pre-defined regions of the “future” reading network. To
the best of our knowledge, this is the first study to apply
a continuous machine-learning approach to predict future
literacy abilities.

Based on previous pediatric neuroimaging, we hypothesized
that cortical volume, surface area, and lGI in all three (future)
reading streams gathered at a preliterate age would predict
literacy 2 years later. More specifically, we expected a crucial
contribution of the cortical volume of the occipito-temporal
(Skeide et al., 2016) and temporo-parietal cortices (Houston
et al., 2014; Linkersdörfer et al., 2014; Jednoróg et al., 2015)
to the prediction of future reading skills. Our hypothesis
regarding the lGI was less specific, as this feature has not yet
been tested with a continuous approach. However, referring
to the promising results in group-based approaches (Williams
et al., 2018), we expected that the gyrification pattern in the
occipito-temporal cortex might predict future literacy. Similarly,
reduced surface area in the temporo-parietal (Hosseini et al.,
2013; Beelen et al., 2019) areas, as well as the frontal cortex

(Hosseini et al., 2013; Płoński et al., 2017), has been associated
with dyslexia. Thus, we were interested in finding out, if
interindividual differences in the surface area of these regions
also predict future literacy skills.

Materials and methods

Study participants

Eighty-six German-speaking preliterate children were
recruited in their last year of kindergarten on a voluntary basis
throughout the city of Berlin. Advertisements in newsletters,
kindergartens, and social media platforms were the main
recruitment channels. Initial screening ensured that participants
had no history of neurological diseases and normal hearing
and visual acuity. All participants scored above the 85th
percentile on the non-verbal part of the German adaption
of the Wechsler Intelligence Scale for Children (WISC-IV;
Petermann and Petermann, 2011) tested in the second grade
of primary school. Furthermore, children were screened for
reading expertise to ensure true preliteracy using a custom-
made screening test (see Supplementary material and Liebig
et al., 2021 for a detailed description). Both parents and
children were carefully briefed about the longitudinal study
design and the functional magnetic resonance imaging (MRI)
constraints. Parents gave written informed consent and
received compensation for their travels. All children gave their
informed consent to participate in the study and were given
age-appropriate education gifts. The Ethics Committee of the
German Association for Psychology (DGPs) approved the
study.

At the first appointment, nine children refused to participate
in the MRI training session (mock-scanner) and were thus
excluded from the study. All children who successfully
participated in the actual functional MRI session were reinvited
2 years later at the end of the second grade. Ten participants
could not be reinvited for the second appointment, and two
children had to repeat the second grade and were tested
1 year later. Twenty-five children were excluded from the T1-
weighted image analysis pipeline due to poor image quality
or insufficient cortex reconstruction (discussed in section “T1-
weighted imaging analysis”). The final sample consisted of
42 children, as summarized in Table 1. Seven of them had
at least one first or second-degree relative with diagnosed
developmental dyslexia stipulated by a parental questionnaire
(Landerl and Moll, 2010).

Psychometric assessment

This study applied an extensive battery of psychometric
testing at the two aforementioned developmental time points.
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TABLE 1 Demographic and psychometric information of the final pediatric sample before (TP1) and after literacy acquisition (TP2).

Descriptive data Test Raw scores
(mean ± SD)

Range of raw
scores

Percentile ranks
(mean ± SD)

Demographic information

Age at TP1 5.58± 0.48 5.01–6.09

Age at TP2 8.25± 0.53 7.41–8.92

Female/male 24/18

Family history of dyslexia 7

Right-handed/left-handed 38/4

Monolingual/bilingual 37/5

Non-verbal intelligence at TP1 CPM 23.26± 5.37 13–35

Non-verbal intelligence at TP2 WISC 115.48± 12.71 90–147

Dyslexia at TP2 10

Literacy precursor abilities (at TP1)

Rapid naming BISC 14.81± 3.79 5–20 n.a.

Phonological awareness BISC 36.17± 3.41 24–40 n.a.

Literacy abilities (at TP2)

Reading fluency SLRT-II 36.76± 15.69 6–71 52.95± 34.52 lp

54.94± 33.91 hp

Reading comprehension ELFE 1-6 54.00± 22.71 6–90 49.49± 32.14

Spelling accuracy DERET 1-2 + 17.36± 11.56 1–50 40.24± 30.74

Literacy ability SLRT-II, ELFE 1-6, DERET 1-2 + 0.00± 0.98 −2.60 to 1.84 n.a.

Dyslexia was defined as performance below the 16th percentile rank of the reference population in either spelling accuracy or real word reading fluency or in both based on Kuhl
et al.’s (2020) classification criteria. CPM, Colored Progressive Matrices; WISC, Wechsler Intelligence Scale for Children; BISC, Bielefelder Screening zur Früherkennung von Lese-
Rechtschreibschwierigkeiten; SLRT-II, Salzburger Lese- und Rechtschreibtest; ELFE 1-6, Ein Leseverständnistest für Erst- bis Sechstklässler; DERET 1-2+, Deutscher Rechtschreibtest für
das erste und zweite Schuljahr; n.a., age-standardized scores are not available for subtests and literacy ability overall; lp, percentile lower boundary; hp, percentile higher boundary.

Only tests used for the analyses of the present paper are
described in this section [for a detailed description of all
assessments, see Liebig et al. (2021) and the Supplementary
material).

At the first assessment (TP1), i.e., prior to reading
acquisition, PA and RAN were assessed with the
Bielefelder Screening zur Früherkennung von Lese-
Rechtschreibschwierigkeiten (BISC; Jansen, 2002). PA was
calculated using several subtests of the BISC: syllable
segmentation, rhyme recognition, word synthetization,
and sound-to-word comparisons. RAN was operationalized
by the time needed to name the color of objects printed in
black and white and in an incongruent color. Errors made were
sanctioned with a penalty time, i.e., incorrect responses were
penalized with a longer reaction time. Non-verbal intelligence
was measured using the Raven’s Colored Progressive Matrices
(CPM; Raven and Court, 1998).

At the second assessment (TP2), i.e., after 2 years of
schooling, children were tested on reading fluency and accuracy
using two subtests of the Salzburger Lese- und Rechtschreibtest
(SLRT-II) that focused on word and pseudoword reading speed
and accuracy (Moll and Landerl, 2010). Reading comprehension
was quantified using the Ein Leseverständnistest für Erst- bis
Sechstklässler (ELFE 1-6; Lenhard and Schneider, 2006). This
test captures reading comprehension on three levels with
increasing complexity: word comprehension (decoding and
synthesis), sentence comprehension (understanding of syntax),
and text comprehension (understanding information and
drawing conclusions). Spelling accuracy was assessed by writing

from dictation using continuous text and gapped sentences
using the German spelling test Deutscher Rechtschreibtest für das
Erste und Zweite Schuljahr (DERET 1-2+; Stock and Schneider,
2008). Descriptive statistics for these psychometric tests are
provided in Table 1.

T1-weighted magnetic resonance
image acquisition

T1-weighted images were acquired at TP1, i.e., at the end
of kindergarten. A few days before the actual image acquisition,
children had undergone a training session at the Max Planck
Institute for Human Development Berlin using a mock scanner
to familiarize them with the MRI procedure. The actual MRI
session took place at the Centre for Cognitive Neuroscience
Berlin (CCNB). Both sessions were adapted for young children.
Their heads were cushioned with foam to ensure head stability
and comfort, and age-appropriate earplugs were provided to
attenuate scanner noise. Whole-brain anatomical images were
gathered for each participant on a 3.0 Tesla Magnetom MRI
system (Siemens Healthineers, Erlangen, Germany), equipped
with a 12-channel head coil (repetition time: 2,000 ms, echo
time: 30 ms, flip angle = 70◦, 176 sagittal sections, voxel size:
2 mm × 2 mm × 2 mm, and field of view: 256 × 256 voxel
matrix). Acquisition of the T1-weighted images followed a brief
experiment in the scanner (described in Liebig et al., 2021) and
lasted 4.5 min. During this time, a child-friendly video was
played.
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T1-weighted imaging analysis

First, the T1-weighted images were visually inspected
by two independent raters using Freeview 3.0, FreeSurfer’s
visualization tool (Fischl, 2012), and MANGO 4.1, a multi-
image analysis graphical user interface (Lancaster and Martinez,
2006). Additionally, image quality was assessed using the
Computational Anatomical Toolbox (CAT) 12, an extension to
the statistical parametric mapping (SPM) 12 software (Welcome
Department of Cognitive Neurology; Ashburner et al., 2021).
Fourteen participants were excluded due to severe ringing and
blurring artifacts in the MRI scans caused by head motion.
Children with moderate rigid body movement were marked and
treated with special care in the subsequent visual inspection step,
i.e., after reconstructing the surfaces during preprocessing. The
cortices of eleven children were insufficiently reconstructed and
excluded from subsequent analyses.

A fully automated pipeline of the FreeSurfer 7.1.1 software
package (Fischl, 2012) was utilized to preprocess the T1-
weighted MRI scans, which included removal of non-
brain tissues, transformation, and intensity normalization,
segmentation of white and deep gray matter, correction of
topological errors, and reconstruction of the cortical surface.
Surface area and cortical volume were extracted from the T1-
weighted image. In FreeSurfer, surface area is quantified as
the sum of the areas of adjacent triangle faces on the surface
mesh, computed in each participant’s native space, allowing
for individual variations in the area of each triangle. Cortical
volume is defined as the amount of gray matter between the
gray/white and pial boundary. These features were modeled for
each hemisphere separately.

After completing all preprocessing steps, the segmentation
of each participant’s cortex was visually inspected in Freeview
3.0 (Fischl, 2012) to ensure accurate classification of gray–
white matter boundaries, correct skull stripping, and true
separation between brain and non-brain matter. All surfaces
were checked and edited in the coronal, sagittal, and axial
planes to ensure optimal results. All edits strictly followed the
guidelines provided by FreeSurfer.1 The editor was blind to
the participants’ degrees of literacy. Subsequently, the adjusted
images were reprocessed via the automated reconstruction
pipeline and checked a second time for accurate reconstruction
by the editor.

Next, the three-dimensional lGI proposed by Schaer et al.
(2008) was computed in FreeSurfer and the Image Processing
Toolbox of Matrix Laboratory (MATLAB) 2020b (The Math
Works Inc, 2020) to measure the regional folding of the cortex
using a spherical kernel of 25 mm at each vertex. Compared to
other metrics of cortical folding such as curvature, sulcal depth

1 http://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/
TroubleshootingData

measurement, and the classical two-dimensional gyrification
index (Zilles et al., 1988), the lGI takes the inherent three-
dimensional nature of the cortical surface into account and
makes it robust against slice orientation and the presence
of buried sulci. The automated construction of the lGI was
validated against manual measurement and manifested as a
reliable measure of gyrification (Schaer et al., 2012).

For the subsequent region of interest (ROI) analyses, eight
left-hemispheric ROIs spanning all three reading streams were
selected a priori based on the functional meta-analysis of
Richlan et al. (2009) and previous research in children (Płoński
et al., 2017; Beelen et al., 2019; Perdue et al., 2020). For the
ventral stream, these included (1) the fusiform gyrus, (2) the
inferior temporal gyrus, and (3) the middle temporal gyrus;
the dorsal stream was represented by (4) the superior temporal
gyrus, (5) the inferior parietal cortex, consisting of the inferior
parietal and the angular gyrus, and (6) the supramarginal gyrus;
finally, (7) the insular cortex, and (8) the inferior frontal gyrus,
a result of combining pars opercularis and pars triangularis,
linked to the frontal stream were selected. ROIs were taken from
the Desikan-Killiany atlas, which subdivides the cortex into 34
gyral regions based on curvature and sulcal information on the
inflated cortex for each hemisphere (Desikan et al., 2006). This
automatic labeling has been discussed as having higher accuracy
than manual parcelation (Desikan et al., 2006). Next, the mean
metrics for all ROIs were extracted from the FreeSurfer output
and imported into MATLAB. Although the FreeSurfer average
participant is adult-based, it is frequently used in pediatric
samples, and surface-based registration has been validated in
children ages 1–11 with good alignment of cortical landmarks
(Ghosh et al., 2010). No smoothing was applied to the lGI data
as it is already intrinsically smoothed on the individual level as
defined by the algorithms employed during the lGI procedure
(averaging across a 25-diameter circle). Surface area and cortical
thickness metrics were smoothed at full width half maximum
(FWHM) of 20 mm to approximate the intrinsic smoothing
of the lGI algorithms and increase the signal-to-noise ratio
(mri_surf2surf). In contrast to volumetric smoothing, surface-
based smoothing only averages data from nearby vertices on the
cortical surface, preventing the merging of signals from different
tissue types and resulting in higher spatial specificity (Greve and
Fischl, 2018).

Statistical analyses

Demographic and psychometric data were assessed in
MATLAB 2020b. Literacy ability was calculated as the mean of
reading fluency of words and pseudowords (SLRT-II), reading
comprehension of words, sentences, and text (ELFE 1-6), and
spelling accuracy scores from dictation (DERET 1-2+) to match
other attempts of reading predictions in German-speaking
samples (e.g., Kuhl et al., 2020). Instead of age-normed standard

Frontiers in Neuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2022.920150
http://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/TroubleshootingData
http://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/TroubleshootingData
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-920150 September 27, 2022 Time: 11:53 # 7

Beyer et al. 10.3389/fnins.2022.920150

scores, raw scores for all psychometric measures were utilized
as we were interested in the within-subject association between
measures at TP1 and TP2 and not in comparisons between
peers.

A CV elastic net linear regression (Zou and Hastie, 2005)
was used to perform a variable selection of the best preliterate
brain and behavioral predictors of literacy ability, as introduced
above. Furthermore, previous studies have shown that there may
be subtle differences in literacy skills between females and males
as well as an association with non-verbal intelligence (Flannery
et al., 2000; Rutter et al., 2004; Liederman et al., 2005; Cotton
and Crewther, 2009; Halpern, 2013; Quinn and Wagner, 2015).
Therefore, sex and non-verbal intelligence measured at TP1
were added as additional prediction variables to the model. All
analyses steps outlined below were implemented in R 4.1.2 (R
Core Team, 2021) using the packages caret 6.0-90 (Kuhn, 2015)
and glmnet 4.1-3 (Friedman et al., 2010).

Regularized analysis methods such as elastic net regressions
are better suited for handling neuroimaging data than classical
linear regression models because of their superiority in dealing
with inter-correlated predictors (Carroll et al., 2009). In
regularized linear models, a penalty term is added to the least-
squares objective function (Hoerl and Kennard, 1970). The
amount of penalization is governed by smoothing parameters.
The penalty, in turn, controls the bias-variance trade-off by
reducing variance at the cost of deliberately introducing some
bias into the resulting estimators (Hastie et al., 2009). The
elastic net penalty (Zou and Hastie, 2005) combines the power
of a least-absolute-shrinkage-and-selection-operator (LASSO)
regularization (Tibshirani, 1996) to select relevant variables in
the model, i.e., set the weights of certain coefficients to zero,
with a Ridge penalty (Hoerl and Kennard, 1970), which takes
correlation between prediction variables better into account
(Cho et al., 2010). Thus, highly correlated predictors are retained
or discarded from the model as variables, making it an ideal
regression approach for brain data with high ratios of features
to cases (Zou and Hastie, 2005; Whelan and Garavan, 2014).

The elastic net aims at minimizing the following loss
function:
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Ridge (or L2) penalty, λ is the tuning parameter that determines
the weight of the composite regularization term, i.e., the bias-
variance trade-off, and α the hyperparameter that controls
the balance between the two types of penalties. The former
parameter ranges from 0 to infinity, with λ = 0 resulting in the
ordinary least squares solution due to eliminating the penalty
from the equation. The latter hyperparameter may take on
values from 0 to 1. If α = 0, the regression is identical to the Ridge

regression; if α = 1, the L2 term cancels out, and the penalty
corresponds to the LASSO penalty.

Here, both α and λ were estimated within the inner loop
of a nested leave-one-out cross-validation (LOOCV). LOOCV
is the most extreme form of k-fold CV (Allen, 1974; Stone,
1974; Geisser, 1975). When using LOOCV, the number of folds
equals the number of observations (k = n), which is especially
valuable when the sample size is small (Allen, 1974; Stone, 1974).
A nested LOOCV method was chosen to avoid a biased, overly
optimistic estimate of the true generalization error, which may
be the case if observations are part of both the training and test
dataset (Varma and Simon, 2006). This framework is visualized
in Figure 1.

The best model in the inner loop was selected based on the
lowest prediction error, quantified by the root mean squared
error (RMSE). The resulting model was then utilized in the
outer loop to predict literacy ability. In turn, the vector of
predicted test observations over iterations was entered into
several formulas to calculate the following goodness-of-fit
measures: the mean absolute error (MAE), the RMSE, and R2

based on the test set observations. Top prediction variables were
identified based on their variable importance as calculated by
caret (Kuhn, 2015).

An ordinary least squares linear regression was computed
using only the two cognitive-linguistic skills, i.e., PA and RAN.
The resulting RMSE was then compared to the RMSE from
the elastic net model to determine if adding the gray matter
macrostructural prediction variables and covariates would
improve the prediction of literacy ability.

For comparison, the prediction model was recomputed
using a nested 10-fold CV procedure. This process was repeated
50 times to enhance the estimate of the true unknown
underlying mean model performance by fitting and evaluating
more models and thereby controlling for potential biases caused
by the pseudorandom split of the data (Vehtari et al., 2017).

Frequently, estimated total intracranial volume (eTIV) is
used as a covariate in similar research paradigms. Therefore,
the LOOCV model was recomputed with eTIV as an additional
prediction variable. However, this variable was not part of the
final model because past research has suggested that controlling
for eTIV may overcorrect for differences in head volume and
may reduce individual differences in continuous regression
approaches (Westman et al., 2013; Wierenga et al., 2014). Due to
this incongruity, we decided to focus on the more parsimonious
model, in line with Occam’s razor (Blumer et al., 1987).

Furthermore, partial correlations between the gray matter
features within the ROIs were calculated to investigate the
associations between the different indices. The resulting
p-values were Holm–Bonferroni family-wise error corrected.
A correlational whole-brain analysis was conducted to identify
potential areas associated with literacy ability but was not
captured by the selected ROIs. The methodology and results are
described in Supplementary material.
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FIGURE 1

Representation of the nested k-fold cross-validation framework.

Results

A LOOCV elastic net regression model was computed to
identify the behavioral and gray matter features measured at
a preliterate age that were the strongest predictors of literacy
ability 2 years later. The predictive strength of literacy ability
was improved when gray matter macrostructural features were
added as prediction variables on the top of the cognitive-
linguistic preliterate skills variables, i.e., PA and RAN. More
precisely, the RMSE of 0.82 decreased by 29% to 0.58 in the
elastic net model that included the gray matter macrostructural
features. The same elastic net regression produced highly
accurate estimations of literacy ability as testified by a high
correlation coefficient between predicted and observed values of
r = 0.80 (see Figure 2).

On average, the LOOCV models were reduced to 20
prediction variables, i.e., dropping approximately eight
predictors in each iteration. This was affected by a low mean
value of lambda, λ̄ = 0.01, and a high mean value of alpha,
ᾱ = 0.85, which led to a small weight of the composite penalty
term with a stronger contribution of the LASSO penalty. The

models were approximately stable over iterations, as indicated
in Table 2.

The features with the greatest contribution to the prediction
of literacy ability were lGI in the insular cortex and
cortical volume in the fusiform gyrus. Additionally, lGI in
the supramarginal and posterior inferior frontal gyrus and
cortical volume in the inferior temporal gyrus were also
important variables in predicting reading and writing skills.
Both cognitive-linguistic prediction variables were in the final
model, with PA (b̄ = 0.41) explaining twice as much variance
in literacy ability as RAN (b̄ = 0.18). Moreover, sex contributed
unique variance to the model (b̄ = 0.15): Females showed
a greater probability of slightly higher literacy scores than
males. Non-verbal intelligence (b̄ = 0.01) was excluded from
the model in most iterations of the LOOCV procedure.

The 10-fold CV elastic net model revealed results
comparable to the LOOCV model, as documented in
Tables 2–4. A list of the central gray matter and behavioral
prediction variables of the leave-one-out and 10-fold CV models
is provided in Table 4 and visualized in Figure 3. A complete
listing of all predictors is provided in Supplementary material.
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FIGURE 2

Predicted literacy ability from leave-one-out cross-validated
(LOOCV) elastic net regression model. Scatterplots depict the
observed literacy ability (y-axis) by predicted literacy skills
(x-axis). The black line represents the line of identity; the gray
line is the regression line of literacy ability on predicted literacy,
with the shaded area representing a 95% pointwise confidence
interval.

Model predictions, mean coefficients and feature ranks
remained almost unchanged when intracranial volume was
added as a covariate.

Correlational analyses revealed a high, positive association
of cortical volume and surface area across ROIs (r = 0.87–
0.96, p < 0.001 Holm–Bonferroni corrected). In contrast,
lGI correlated only low to moderately with cortical volume
(r = 0.03–0.41) and surface area (r = 0.06–0.45).

Discussion

The present study aimed to predict future literacy in
preliterate children using a continuous sampling approach. We
successfully applied a linear regression approach to predict
future reading acquisition of children with measures gathered at
the end of kindergarten (i.e., before formal reading instruction).
The CV model captured individual differences in future literacy

TABLE 3 Model performance of the leave-one-out (LOO-) and
10-fold cross-validated (CV) elastic net regressions.

RMSE MAE R2 R

LOOCV 0.575 0.459 0.652 0.807

10-fold CV 0.579 0.438 0.646 0.804

R, coefficient of determination; RMSE, root mean squared error; MAE,
mean absolute error.

based on gray matter macrostructural features and cognitive-
linguistic preliterate skills measured at the end of kindergarten.
More specifically, the elastic net regularized linear regression
models predicted approximately 65% of the variance in literacy
2 years later (Figure 2). Intriguingly, the top five features
contributing to the prediction are part of the three major
reading streams. These were lGI in the insular cortex, the
inferior frontal gyrus, the supramarginal gyrus, and cortical
volume in the fusiform gyrus and inferior temporal gyrus. This
pattern emphasizes that reading readiness in all crucial parts
of the large-scale reading network differs among children and
that these individual variations significantly impact reading
acquisition.

Individualized prediction of future
literacy in cross-validated frameworks

The identification and validation of biomarkers for the early
detection of children at risk of developing reading difficulties
have been of major interest over the past years. A better
knowledge of the prerequisites facilitating or hampering reading
acquisition improves our understanding of the multifaceted
learning process and forms the basis for developing specific
preventive treatment strategies. Recently, it has been advocated
to replace the traditional correlational approach with prediction
frameworks to generalize the observed patterns to independent
data sets (Gabrieli et al., 2015; Dubois and Adolphs, 2016).
In line with this, we applied CV regression models to assess
the composition of neural and behavioral markers of future
reading acquisition. We were able to predict future literacy with
high precision. Compared to classical linear regressions, the
algorithm prevents over-fitting by adding additional constraints
to the model. Automatic feature selection in the training
phase results in sparse predictive models, making it an optimal
algorithm for neuroimaging, characterized by many features and

TABLE 2 Tuned hyperparameters and selected non-zero coefficients of the leave-one-out (LOO-) and 10-fold cross-validated (CV) elastic
net regressions.

Alpha (mean ± SD) Lambda (mean ± SD) Number of non-zero coefficients (mode, range)

LOOCV 0.853± 0.328 0.012± 0.006 20, 16–27

10-fold CV 0.658± 0.392 0.022± 0.016 19, 13–27

The count of regression variables does not include the model’s intercept. Twenty-eight variables were entered into the model. SD, standard deviation.

Frontiers in Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2022.920150
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-920150 September 27, 2022 Time: 11:53 # 10

Beyer et al. 10.3389/fnins.2022.920150

TABLE 4 The top ten prediction variables of literacy ability (mean coefficient >0.15) based on the leave-one-out (LOO) and 10-fold cross-validated
(CV) elastic net linear regressions.

Rank Selection frequency
(LOOCV)

Mean coefficient Gray matter feature or
psychometric variable

Region of the left
hemisphere

LOOCV 10-fold CV

1 76.19% 0.71 0.61 Local gyrification Insular cortex

2 71.43% 0.69 0.59 Cortical volume Fusiform gyrus

3 71.43% −0.50 −0.43 Local gyrification Supramarginal gyrus

4 64.29% −0.47 −0.43 Cortical volume Inferior temporal gyrus

5 57.14% −0.40 −0.33 Local gyrification Inferior frontal gyrus

6 59.52% 0.41 0.41 Phonological awareness

7 76.19% −0.24 −0.24 Surface area Inferior temporal gyrus

8 61.90% 0.21 0.19 Cortical volume Middle temporal gyrus

9 38.10% 0.18 0.18 Rapid naming

10 35.71% 0.18 0.15 Local gyrification Middle temporal gyrus

Predictors are listed according to their average rank. The rank displays the variable importance as defined by caret (Kuhn, 2015), i.e., how much unique variance of the response variable
can be explained by this variable. Compared to the mean correlation coefficient, this metric is more stable against outlier models. The selection frequency shows how often the variable
was chosen at this rank for the LOOCV regression. All prediction variables were standardized before being entered into the model.

FIGURE 3

Visualization of the primary features collected at the end of kindergarten predicting literacy ability measured at the end of the second grade.
Features with the greatest contribution to the prediction of literacy ability are coded purple and red. The regions are depicted on the left pial
surface of the FreeSurfer template based on the Desikan-Killiany atlas (Desikan et al., 2006). Literacy ability is defined as the summary score of
reading fluency, reading comprehension and spelling accuracy, measured with the Salzburger Lese- und Rechtschreibtest, Ein
Leseverständnistest für Erst- bis Sechstklässler, and Deutscher Rechtschreibtest für das erste und zweite Schuljahr, respectively.
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small sample sizes (Cui and Gong, 2018). Computationally, our
results replicate and thus further demonstrate the effectiveness
of elastic net penalized linear regressions for gray matter-
based reading prediction as reported by Cui et al. (2018)
for a large sample size (N = 870). We further generalize
its suitability to the longitudinal prediction of literacy skills
based on macrostructural and behavioral information. Similar
to Cui et al. (2018), applying the previously built models to
new cohorts of preliterate children in cross-linguistic studies
would be interesting. If the biomarkers identified here could be
replicated across languages, this would strengthen the generality
of the approach and the validity of the predictors thus making it
possible to test for orthography-specific effects.

The predictive power of reading
streams

The three central reading streams did not equally contribute
to predicting literacy. Compared to the ventral and frontal
streams, individual variations in the macrostructural features
linked to the dorsal stream played a minor role. Indeed, out of
three a priori defined ROIs associated with the dorsal stream,
only the supramarginal gyrus was consistently selected during
the CV prediction. Interestingly, Linkersdörfer et al. (2012)
identified a link between gray matter reduction and functional
underactivation in the supramarginal gyrus in dyslexia. The
present findings strongly suggest that individual variations
in the supramarginal gyrus apply to impaired reading and
affect future literacy in a wide range of typically developing
children. In a previous study, we examined possible early
neurofunctional literacy markers in the same cohort of children
(Liebig et al., 2021). We observed a correlation between RAN
and neural functioning in the supramarginal gyrus. Likewise,
a cluster in the angular gyrus, extending to the supramarginal
gyrus, predicted future reading fluency. The latter, however,
did not survive additional rigorous correction for the number
of regression models (Liebig et al., 2021). Taken together, the
present results converge with our previous findings to suggest
that variations in both the functional and structural architecture
of the supramarginal gyrus might be a promising biomarker for
predicting future reading acquisition.

In contrast, neither the superior temporal gyrus nor the
inferior parietal cortex explained significant amounts of unique
variance in literacy skills. On the one hand, the subordinate role
of the dorsal stream stands in contrast with the classical model
of reading acquisition, according to which initial decoding relies
on the dorsal stream. In contrast, parallel automatized word
recognition relies on the ventral stream and emerges only later
during reading acquisition (Pugh et al., 2000, 2013). On the
other hand, recent functional (Kronbichler et al., 2007; Price
and Devlin, 2011; Richlan et al., 2011; Liebig et al., 2017) and
structural (Richlan et al., 2013; Williams et al., 2018) brain

imaging studies on reading acquisition strongly emphasize the
crucial role of the ventral stream not only in beginning readers
but already in preliterate children (Hoeft et al., 2011; Liebig et al.,
2021). The fact that all a priori defined regions of the ventral
stream were reliably selected during the prediction iterations
supports the idea that neuroanatomical characteristics of the
ventral occipito-temporal cortex are essential determinants of
successful reading acquisition. This finding does not question
the general importance of the dorsal stream for initial decoding
(Martin et al., 2015; Zhou et al., 2016; Liebig et al., 2017;
Braun et al., 2019), but it raises the question of whether the
transition from serial decoding to rapid parallel access to written
word forms (automatization) requires the integrity of specific
neuroanatomical properties related to the ventral stream that
can be assessed even prior to reading.

Our results thus extend the fast-growing knowledge about
the early importance of the ventral stream in several ways:
Firstly, macrostructural features of the ventral stream do not
only distinguish between children and adults with and without
dyslexia (Linkersdörfer et al., 2012; Richlan et al., 2013) but
individual differences in the morphology of gray matter features
significantly contribute to the individualized prediction of
future reading acquisition. This has been observed in the
functional data of Liebig et al. (2021), who showed that neural
activity in the ventral stream correlated with RAN and predicted
future reading fluency in the same cohort of children. Taken
together, we observed highly similar relationships in the same
cohort of children on the functional and structural levels when
applying different computational approaches (CV prediction
vs. classical correlational analysis) both on the whole-brain
level and in an ROI-based study. This convergence across
the two studies clearly supports the plausibility of our effects.
Similarly, the results converge with a recent finding to suggest
that increased neural plasticity of temporo-parietal regions in
emergent readers supports reading acquisition (Phan et al.,
2021) paving the way for early identification and targeted
intervention of children at-risk of encountering difficulties
during reading development.

Like the ventral stream, all parts of the frontal stream
significantly contributed to the prediction models. This result is
in line with the interactive account of reading (Price and Devlin,
2011), according to which reading acquisition is marked by
top-down influences from frontal to ventral occipito-temporal
regions. Hence, individual differences in the gyrification pattern
of the frontal stream should be seen in concert with gray matter
features in the ventral stream.

Gray matter macrostructural features
underlying future literacy

In the present study, we compared different macrostructural
indices (lGI, cortical volume, and surface area) to evaluate
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their suitability for the individualized prediction of literacy.
We found that lGI and cortical volume had better predictive
power than surface area. Regional specificities seem to drive
the individualized prediction when looking at the distributional
pattern. Cortical volume was the decisive feature in the
ventral stream, whereas the lGI was the strongest feature in
the frontal and dorsal stream, which makes it a promising
macrostructural feature in relation to reading. Computationally,
the lGI allows a more reliable calculation of the cortical folding
than previous measures because it utilizes three-dimensional
surface properties to fully capture the patterns of the cortical
mantle (Schaer et al., 2008). Using lGI as a measure, it has
already been shown that developmental dyslexics exhibited
a thinner and more gyrified left occipito-temporal cortex
(Williams et al., 2018) and a more gyrified primary auditory
cortex (Kuhl et al., 2020). The present results suggest that the
lGI is also suitable to detect subtle individual differences in
continuous sampling. However, future studies need to replicate
and thus validate the suitability of lGI in relation to literacy
skills.

The considerable importance of cortical volume in the
ventral stream is in line with previous results. Several meta-
analyses confirm that cortical volume in the ventral occipito-
temporal cortex distinguish children and adults with and
without dyslexia (Linkersdörfer et al., 2012; Richlan et al., 2013)
and is generally associated with reading skills (Eckert et al., 2016;
Skeide et al., 2016).

Surface area only played a minor role in the individualized
prediction of literacy ability, which might be explained by the
high correlation of surface area and cortical volume across
regions of interest (r = 0.87–0.96). This is in line with the notion
that cortical volume is the product of cortical thickness and
surface area (Winkler et al., 2010). Instead, lGI and cortical
volume were only moderately correlated (r = 0.03–0.42). When
aiming to capture different aspects of variance in the gray matter,
it might thus be advisable to focus on not too strongly correlated
features and integrate these into the prediction models.

In the present study, we observe both negative and positive
relationships between literacy and the macrostructural features
depending on the ROIs. The associations can be characterized
as follows: previously, different macrostructural features, i.e.,
cortical volume and thickness of the supramarginal gyrus,
were reliably associated with reading skills. Both positive
relationships between cortical volume (Jednoróg et al., 2015; Xia
et al., 2018) and longitudinal volume reductions (Houston et al.,
2014; Linkersdörfer et al., 2014) were associated with reading
skills. In the present study, we observed a negative relationship
between literacy and the lGI in the supramarginal gyrus, which
was frequently selected as the third most important predictor
of literacy. This finding strongly suggests that the gyrification
pattern in the dorsal stream also affects literacy.

We observed both positive and negative associations in
the ventral stream: while cortical volume in the fusiform

gyrus and the middle temporal gyrus was positively associated
with future literacy, both cortical volume and surface area
exhibited a negative relationship with reading and writing.
The positive association partly contradicts previous findings in
children (Simon et al., 2013; Skeide et al., 2016). However, the
operationalization of literacy and the age of the samples differ
substantially from the present study. While we examined literacy
ability on different levels to better account for this multifaceted
nature of reading, Simon et al. (2013) and Skeide et al. (2016)
focused on reading speed. However, positive relationships have
been reported when also looking at cortical thickness (Xia
et al., 2018). In sum, there is cumulative evidence that different
regions of the ventral occipito-temporal cortex crucially relate to
individual differences in reading ability and distinguish between
children with and without dyslexia (Płoński et al., 2017; Beelen
et al., 2019). In the present study, the cortical volume of the
fusiform gyrus and the inferior temporal gyrus could explain
twice as much unique variance as the two literacy precursory
skills. This robust finding aligns with the increasingly recognized
importance of the ventral stream in the first steps of reading
acquisition (e.g., Hoeft et al., 2011; Liebig et al., 2021).

Local gyrification in the frontal stream also showed both
directions, i.e., positive in the insular cortex and negative
in the inferior frontal gyrus. Although the insular cortex
is an integral part of the language and reading network
(Price, 2012) its macrostructural features have seldomly been
examined concerning reading acquisition. The lGI of the
insular cortex was selected as the strongest predictor of future
literacy. The insular cortex has previously been associated
with diverse aspects of language and reading (Price, 2012).
Most interesting for the present study, the insula might be a
crucial part of the phonological network in reading acquisition,
which is delayed in children with developmental dyslexia
(Łuniewska et al., 2019). Similarly, the insula seems to be
more strongly involved in pre-readers compared to readers
emphasizing its importance during the first steps of reading
acquisition (Monzalvo and Dehaene-Lambertz, 2013; Chyl et al.,
2018). With the present results, we provide first evidence that
the gyral folding pattern of the insular cortex might be a
promising early biomarker of future literacy acquisition in
native German-speaking children. However, future research
needs to refine this ample evidence and disentangle the
contribution of different aspects of gray matter morphology
and possible sensitive phases of cortical plasticity. The idea
of the interaction of neural plasticity and reading acquisition
was recently endorsed by a structural neuroimaging study
showing a gray matter volume increase in decisive regions of the
ventral and dorsal reading network during the earliest phases
of reading acquisition (Phan et al., 2021). Whether this holds
for the insular cortex as well needs to be tackled in future
research.

In general, the observed pattern of regional-specific
directions of the relationships found in the same cohort of
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participants is in line with previous continuous approaches
(Jednoróg et al., 2015; Skeide et al., 2016).

Cognitive-linguistic preliteracy skills

The cognitive-linguistic preliterate skills were among the
top ten features that were frequently selected in the CV
approach with PA being a stronger predictor of literacy than
RAN. This pattern does not entirely align with previous
behavioral results in German-speaking children. It has been
reported that preliterate RAN reliably predicts reading while
PA only becomes significant in beginning readers (Landerl
et al., 2019). However, in the present study, we combine neural
and behavioral information in a CV predictive framework and
operationalized literacy on different levels of complexity, which
might have led to the observed differences. Our results suggest
that a combination of both behavioral and macrostructural
features makes it possible to predict reading outcomes with high
accuracy even before the onset of literacy instruction.

Limitations and conclusions

Prior work linking brain anatomy to reading ability
was primarily based on groups with and without dyslexia
(Linkersdörfer et al., 2012; Richlan et al., 2013). Only a few
studies investigated this link with a continuous approach
(e.g., Houston et al., 2014; Jednoróg et al., 2015; Torre and
Eden, 2019). However, developmental trajectories might differ
between individuals within each group of typical and dyslexic
readers (Chyl et al., 2021). Thus, continuous sampling and
group-based approaches should be combined to track both
group differences and interindividual differences. Such an
integrated approach allows identifying both general neural
makers applicable to the entire range of reading acquisition and
abnormal patterns related explicitly to impaired reading.

Furthermore, examining very young children in the MRI
scanner led to a greater motion and thus lower image quality
than studies with older children. However, we thoroughly
controlled the images and applied rather strict dropout criteria
to control for the pitfalls of pediatric neuroimaging. From a
theoretical perspective, we only provide preliminary insights
into the prerequisites of reading acquisition. We systematically
targeted possible predictors of future literacy by comparing
several macrostructural and behavioral measures. However,
even in a CV predictive framework, in which the number of
features may expand the number of observations, the maximal
number of features has to be limited when aiming to obtain
interpretable results. Thus, we utilized an ROI approach rather
than a whole-brain analysis and limited the number of gray
matter structural features. A priori selection of regions and

features may risk overseeing relationships beyond the targeted
areas and features.

Apart from these limitations, the present study is a further
step in applying CV models to examine biomarkers of typical
reading acquisition in pediatric neuroimaging. Individual
variations in several macrostructural gray matter features in
crucial parts of the large-scale left-hemispheric reading network
predicted literacy skills 2 years later with high precision. In the
predictive framework, the ventral and frontal streams showed
considerable importance. Thus, from a theoretical perspective,
our results support recent arguments about the importance of
the ventral stream in reading acquisition (Hoeft et al., 2011;
Richlan, 2012; Liebig et al., 2017) in concert with top-down
modulation of the frontal stream (Price and Devlin, 2011).

From a clinical perspective, the present results might also
have implications for education and therapy. We provide
evidence that children might come to the task of learning to
read with different initial conditions at the neuroanatomical
and behavioral level that might well impact how quickly and
efficiently they will be able to learn at school (see also Liebig
et al., 2021). With the increasing number of longitudinal
structural and functional studies conducted at the end of
kindergarten pointing in the same direction (Chyl et al., 2021),
our results clearly favor an early diagnosis of future reading
difficulties. Structural neuroimaging might be a promising
tool, given that gray matter features are far easier to acquire
than functional neuroimaging. Firstly, no task is required and
thus, imaging time notably drops compared to functional
imaging. Secondly, the requirements put upon the children
in terms of attention and compliance decrease substantially
in structural neuroimaging, making the features gathered
even more objective. Thus, structural imaging seems more
feasible in a clinical routine and daily practice than functional
neuroimaging. Notably, we observed a substantial overlap of
those regions contributing to the prediction in the structural
and functional analysis in the same cohort of children (see
Liebig et al., 2021, for the functional analysis), emphasizing the
potential of gray matter features to be become early biomarkers
of normal and impaired reading development.
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