Hybrid Flow Bioreactor with All Catalysts Immobilized for Enzymatic Electrosynthesis
Résumé
The electrochemical regeneration of the NADH cofactor was realized in a hybrid flow reactor coupling fuel cell technology and redox flow device, paying attention to the robust immobilization of all catalysts. The rhodium catalyst Rh(Cp∗)(bpy)Cl+ was covalently immobilized on a MWCNT layer and the association with the gas diffusion electrode was carefully optimized. High stability and activity of the electrochemical system were assessed by cyclic voltammetry and amperometry in the flow reactor. Afterwards, the optimal cofactor regeneration was applied to NADH-dependent biosynthesis using immobilized lactate dehydrogenase for the conversion of pyruvate to lactate in the flow cell in the presence of cofactor concentration as low as 10 μM. 79 % faradaic efficiency was achieved and remarkable total turnover number (TTN) were reached: 2500, 18000, and 180000, for the NADH cofactor, the Rh complex and the LDH enzyme, respectively.
Origine | Fichiers produits par l'(les) auteur(s) |
---|