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Universal multilayer network exploration by
random walk with restart

Anthony Baptista® 2™ Aitor Gonzalez® 2 & Anais Baudot® 3%

The amount and variety of data have been increasing drastically for several years. These data
are often represented as networks and explored with approaches arising from network
theory. Recent years have witnessed the extension of network exploration approaches to
capitalize on more complex and richer network frameworks. Random walks, for instance, have
been extended to explore multilayer networks. However, current random walk approaches
are limited in the combination and heterogeneity of networks they can handle. New analytical
and numerical random walk methods are needed to cope with the increasing diversity and
complexity of multilayer networks. We propose here MultiXrank, a method and associated
Python package that enables Random Walk with Restart on any kind of multilayer network.
We evaluate MultiXrank with leave-one-out cross-validation and link prediction, and measure
the impact of the addition or removal of network data on prediction performances. Finally, we
measure the sensitivity of MultiXrank to input parameters by in-depth exploration of the
parameter space.
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offering a unique opportunity to better understand

complex systems. Among the different modes of repre-
sentation of data, networks appear as particularly successful.
Networks are indeed interesting to refine raw data and extract
relevant features, patterns, and classes. They are exploited for
years to study complex systems, and a wide and powerful range of
tools from graph theory are available for their exploration.

However, the integrated exploration of large multidimensional
datasets remains a major challenge in many scientific fields. For
instance, a comprehensive understanding of biological systems
would require the integrated analysis of dozens of different
datasets produced at different molecular, cellular or tissular
scales. Recently, multilayer networks emerged as essential players
in the analysis of such complex systems. Multilayer networks
allow integrating more than one network in a unified formalism,
in which the different networks are considered as layers!. For
instance, Duran-Frigola et al.> combined 25 different networks of
chemical compounds and their relationships, gathering rela-
tionships from chemical structures to clinical outcomes. This
multilayer framework allows an integrated study of chemical
compounds and their biological activities. Another example is
given by the Hetionet project. The authors collected dozen of
heterogeneous networks, i.e networks with various types of
nodes such as genes, drugs or diseases, to prioritize drugs for
repurposing?.

Several definitions of multilayer networks have been proposed,
based on the (in)homogeneity of the layers and the properties of
the connections between layers*=6. For instance, multiplex net-
works are multilayer networks composed of different layers
containing the same nodes (called replica nodes) but different
types of edges, and thereby different topologies. Heterogeneous
networks link networks composed of different types of nodes
thanks to bipartite interactions. Temporal networks follow the
dynamic of a network over time: all the layers have the same
nodes, but each layer represents the interaction state at a given
time”. We will here consider universal multilayer networks, which
can be defined as multilayer networks composed of any number
of multiplex (or monoplex) networks (with edges that can be
directed and/or weighted), linked by bipartite networks (with
edges that can be directed and/or weighted) (Fig. 1). A wide range
of methods have been developed in the recent years to analyze
multilayer networks. For instance, different network metrics have
been adapted to multilayer networks®, as well as various network
clustering algorithms for community detection®!! or random
walk for network exploration!>~13.

Random walks are iterative stochastic processes widely used to
explore network topologies. They can be described as simulated
particles that walk iteratively from one node to one of its
neighbors with some probability!6. The PageRank algorithm, for
instance, is based on a random walk simulating the behavior of an
internet user walking from one page to another thanks to hyper-
links. The user can also restart the walk on any arbitrary page!”.
In this particular random walk strategy, the restart prevents the
random walker from being trapped in dead-ends!®. An interest-
ing alternative strategy restricts the restart to specific node(s),
called the seed(s)!°. In this strategy, named Random Walk with
Restart (RWR) or Personalized PageRank, the random walk
represents a measure of proximity from all the nodes in the
network to the seed(s). RWR can also be described as a diffusion
process, in which the objective is to determine the steady-state of
an initial probability distribution?0.

RWR are widely used to exploit large-scale networks. In
computational biology, for instance, RWR strategies have
been shown to significantly outperform methods based on
local distance measures for the prioritization of gene-disease

D ata amount and variety have soared as never seen before,

multiplex 1

As Ay

multiplex 3 multiplex 2

Fig. 1 A universal multilayer network. A universal multilayer network
composed of three multiplex networks (green, blue and red multiplex
networks). Each multiplex network contains different types of nodes
(denoted 1to 4, a to €, and a to d, respectively). Their corresponding Supra-
adjacency matrices are denoted by A;. The three multiplex networks are
linked by six bipartite networks (represented here as bipartite interactions
for the sake of visualization). The corresponding Bipartite network matrices
are denoted by B;;. It is to note that a connection between a node i in a first
multiplex network and @ and a node j in a second multiplex network g
imposes the creation of edges between all replicas of node i present in the
different layers of the multiplex network a and all replicas of node j present
in the different layers of multiplex network g. All the edges of the universal
multilayer networks can be weighted and/or directed.

associations?!. Importantly, different upgrades of the RWR
approach have been implemented during the last decade,
including its extension to (i) heterogeneous networks!2, (ii)
multiplex networks!3 and  (iii) multiplex-heterogeneous
networks!”. In RWR, the degrees of freedom are summarized in
the Transition rate matrix, and correspond to the available
transitions between the different nodes of the graph. The exten-
sions of RWR are challenging because the Transition rate
matrices need to be normalized. To the best of our knowledge,
this normalization is currently only solved for multilayer net-
works composed of two heterogeneous multiplex networks!>?22
and the more universal case of N multiplex networks remains
unsolved.

We propose here MultiXrank, a framework composed of a
method and a Python package to execute RWR on universal
multilayer networks. We first introduce the mathematical bases of
this RWR for universal multilayer networks, which correspond to
a generalization of the approach from!2. We evaluate MultiXrank
with leave-one-out cross-validation and link prediction protocols.
These evaluations reveal that more network data is not always
better and highlight the critical influence of the bipartite net-
works. We finally present an in-depth exploration of the para-
meter space to measure the stability of the RWR output scores
under variations of the input parameters. The MultiXrank Python
package is freely available at https://github.com/anthbapt/
multixrank, with an optimized implementation allowing its
application to large multilayer networks.

Results

Random walk with restart (RWR). Let us consider an irreducible
and aperiodic Markov chain, for instance a network composed of
a giant component with undirected edges, G = (V, E), where V is
the set of vertices and E C (V x V) is the set of edges. In the case of
irreducible and aperiodic Markov chains, a stationary probability
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Fig. 2 MultiXrank Random Walk with Restart parameters. Parameters of the Random Walk with Restart allowing to explore universal multilayer networks
composed of N multiplex networks (each composed of several layers containing the same set of (replica) nodes but different edges). The parameters § are

associated with the probability to jump from one layer to another in a given multiplex network, A with the probability to jump from one multiplex network to another
multiplex network, 7 with the probability to restart in a given layer of a given multiplex network, and 5 with the probability to restart in a given multiplex network.

p* exists and satisfies the following properties:
{p*(i) >0;VieV
Zievp () =1

We next introduce the probability defining the walk from one
node to another. Let us define x, a particle that explores the
network, x; its position at time ¢ and x,,, its position at time

t + 1. Considering two nodes i and j:
, . T ifGj)eE
P(xtﬂ =jlx, =1 = {di

0 Otherwise

(1)

()

with d; being the degree of the node i. All the normalized possible
transitions can be included in the Transition rate matrix. This
Transition rate matrix, noted M, can be seen as the matrix of the
degrees of freedom of the particle in the system. It is useful to
note that the Transition rate matrix is equal to the column-
normalized Adjacency matrix. The distribution denoted by p, =
(p,(1)),cy describes the probability of being in the node i at time ¢,
and the stationary distribution p* is obtained thanks to the
homogeneous linear difference equation [3]18:23;

PtT+1 = MPtT (3)

with p! denoting the transpose of the vector p;. Moreover, we can
introduce a non-homogeneous linear difference equation [4]23 to
take into account the restart on the seed(s). When the Transition
rate matrix is a Stochastic matrix, the stationary distribution is
reached!8 (Supplementary Note 1.A.1 for elements of proof of
convergence) and this distribution can be seen as a measure of
proximity of all the network nodes with respect to the seed(s).

piy = (1 —r)Mp; + rp; (4)

The distribution py corresponds to the initial probability
distribution, where only the seed(s) have non-zero values; r
represents the restart probability.

RWR on multiplex networks. The RWR method has been
extended to multiplex networks, i.e., multilayer networks with a
one-to-one mapping between the (replica) nodes of the different
layers (Fig. 1)11314, Multiplex networks can be represented by
Supra-adjacency matrices, which correspond to a generalization
of the standard Adjacency matrix. In the following, we will use

several multiplex networks, indexed by k. We denoted by A, the
Supra-adjacency matrix of the multiplex network indexed by k.
The Adjacency matrix of the layer I of the multiplex network k is

denoted by AE(Z]. The element of this adjacency matrix from node i
to node j is defined as (Ag])ij 20. The dimension of the Supra-

adjacency matrix A, of the multiplex network k is equal to
(Le*ng)*(Ly*ng), with ny the number of nodes in each layer of the
multiplex network k and L; the number of layers in the multiplex
network k. The Supra-adjacency matrix .4, is defined as follows:

ifl=m

(A, = (Ag‘ﬂ)w‘ )

8, ifl #m
where § defines the Kronecker delta (i.e., 1 if i equal j and 0
otherwise), and | and m represent the layers of the multiplex
network k. We can also define a multiplex network as a set of
nodes, V4, and a set of edges, E 4 :

GAk Z(VAk,EAk)
Vy=Whi=1..,n,l=1..L)}

©)

Eq =1l ij=1 .. ,m,l=1,.. ,Lk7(A§f])iJ # 0}

1‘]717
l .
ufe i=1,...

ii0

Ny, 1 # m}

Importantly, we need to column-normalize the Supra-adjacency
matrix defined in the equations [5-6] in order to converge to the
steady-state, as defined in!>. This normalization requires including
the parameters & related to the jumps from one layer to another
inside the matrix representation, as described in!3 (Fig. 2). In the
next section, we need to index by k all the parameters that are
dedicated to the multiplex network k. The Supra-adjacency matrix
representing the multiplex network k can be written as described in
equation [7]. The matrix I; represents the Identity matrix of size .

5 5

(1] :
=04 ginlk Tk
n (11— 5)A2 T
L—1)"k Kk L—1)"k
A=| D @D @
5 5 (L]
5l Ol (- 8al

COMMUNICATIONS PHYSICS| (2022)5:170 | https://doi.org/10.1038/s42005-022-00937-9 | www.nature.com/commsphys 3


www.nature.com/commsphys
www.nature.com/commsphys

ARTICLE

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-022-00937-9

RWR on universal multilayer networks. We here define a RWR
method that can be applied to universal multilayer networks. Uni-
versal multilayer networks are composed of any combination of
multiplex networks, linked by any combination of bipartite networks
(Fig. 1). All network edges can also be weighted and/or directed. The
formalism for the application of RWR on multiplex networks is
described in the previous section. We will now detail the Bipartite
network matrices, and how to combine intra- and inter- multiplex
networks information to obtain the Supra-heterogeneous adjacency
matrix. The Supra-heterogeneous adjacency matrix will embed all
the possible transitions in a universal multilayer network.

Bipartite networks connect heterogeneous nodes. The Bipartite
network matrices contain the transitions between different types
of nodes present in different networks. If the network « has n,
nodes, and the network f has nz nodes, the Bipartite network
matrix denoted b,z has a size equal to n,*ng. Now, let us define
A, and Ay, two Supra-adjacency matrices representing the

multiplex networks & and f. The Bipartite network matrix B,
represents the transitions from the nodes of the multiplex net-
work « to the nodes of the multiplex network . The size of the
Bipartite network matrix B, is equal to (Ls*n,)*(Lg*ng). The
Bipartite network matrices are composed of (L,X*ng) times the
Bipartite network matrix b, (equation [8]). The matrix b, is
composed of all the transitions from one layer of the multiplex
network « to one layer of the multiplex network 8. We extended
the formalism used in!® in order to consider more than two
different multiplex networks.

bonﬁ blxﬁ b“ﬁ
bocﬁ ba,ﬂ bOf.ﬁ
Ba,ﬁ = : : . : L, times (8)
boc.ﬁ ba,ﬂ b“:ﬁ
Lﬁ times

The representation of the bipartite networks as a set of nodes
V5 and a set of edges Ei can be written as:

Gg = (V,Ep)
VB:{V,‘j,kzl,...,na}U{vlﬁ,lzl,...mﬁ} ©)
Eg={ehk=1, .. n.1=1, . (b, =0

It is to note that if the bipartite networks are undirected, bga =
b, and BE(X =B,

Universal multilayer networks unify the representation of hetero-
geneous multiplex networks. We previously defined the Supra-
adjacency matrices of each multiplex network and the Bipartite
network matrices connecting the different multiplex networks.
We now introduce the Supra-heterogeneous adjacency matrix,
denoted by S. This matrix, defined in equation [10], collects
the N Supra-adjacency matrices representing each multiplex
network, A; A, ..., Ay, and the N*(N-—1) Bipartite
network matrices connecting each multiplex network, Bj,,

BI,S) cees Bl,N) BZ,I) ey BN,N*I'
‘Al BI,Z BI,N
BZ,I AZ BZ,N
S= (10)
BN,I BN,Z ‘AN

We can also define the Supra-heterogeneous adjacency matrix
as a set of nodes and edges:

Gs = (Vg,Es)

N
Vs = U{vZfi,iz L..,m,a=1..,L}
k=1

N
. [o]
Eg :kLgl({eZ;“‘,z,] =1,..,n, <Akak)i.j # 0}
Ul i =1 # B B =1 L)

N
U U (i1 mj=1,.,m, (Bk‘l)” 0}
, y

kl=1;k=1
(11

The normalization of the Supra-heterogeneous adjacency matrix
ensures the convergence of the RWR to the steady-state. The most
complex issue is the normalization of the Supra-heterogeneous
adjacency matrix into a Transition rate matrix that can be used in
equation [4]. The normalization allows obtaining a Stochastic matrix
that guarantees the convergence of the RWR to the steady-state!®
(see elements of proof in Supplementary Note 1.A.1). It is important
to note that we have chosen a column normalization. The resulting

normalized matrix, denoted by S is defined in equation [12]. We
generalized the formalism of Li and Patral? established for two
heterogeneous monoplex networks (Supplementary Note 1.D). This
generalization to universal multilayer networks is done thanks to the
intra- and inter- multiplex network normalizations defined in
equations [13-14], with « € [[1, N]], B € [[1, N]]. In addition, ¢ is
the number of bipartite networks in which the node i, appears as
source of the multiplex network « denoted by M,,.

~

Sll SIZ SlN
:S\, _ SZI SZZ SZN (12)
SNZ SNZ SNN

In equation [13], S, defines the transition probabilities inside a
given multiplex network. In the case of a multiplex network, if a
node has no bipartite interactions with nodes from another
multiplex networks, we can use the standard normalization. If
bipartite interactions exist, then the normalization takes into
account the probability that the walker can stay in the multiplex
network (1 — Z;"’:l Awg)- In equation [14], §a,,3 defines the
transition probability between two different multiplex networks.
There are here three possibilities. If the node has no bipartite
interactions, the transition probability is equal to zero. If the node
has bipartite interactions, the transition probability is equal to the
standard normalization weighted by the jump probability (Aug).
Finally, if the node exists only in the bipartite network, the
normalization corresponds to the standard normalization weighted
by a modified jump probability. This normalization takes into
account all the bipartite interactions of the considered node.

Agligsfa)
ng
2 Agliky)
kg=1

Sarx(imja) = < Cig )
1= 3 g | #A4Giy)
f=1

5 Agligky)
ka=1

g
if VB © 32 By (i kg) =0
ky=1 "

(13)

Otherwise

4 COMMUNICATIONS PHYSICS| (2022)5:170 | https://doi.org/10.1038/s42005-022-00937-9 | www.nature.com/commsphys


www.nature.com/commsphys

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-022-00937-9

ARTICLE

n
AgBaplivip) .o & )
T f Y0 B i, kg) # 0

p=

S Byplipky)  Ke=l
kg=1
T hap & .
Socﬁ(lavjﬁ) = 5 Ao iazle”"ﬂ(l“’Jﬂ) (14)
1

— if i, notin M,
By glig:k
ZlkE::1 o5 (oK)

ig=

0 Otherwise

The normalization allows including the parameters A,z to jump
between the multiplex networks (Fig. 2). In other words, these
parameters weight the jumps from one multiplex network «a to
another multiplex network f, if the bipartite interaction exists.
Moreover, the standard probability condition of normalization
imposes that Zg’;l Aog =1,V B, where N represents the number
of multiplex networks. Finally, the RWR equation on universal
multilayer networks is defined as:

Py = (1 —1Sp] + rp; - (15)

RWR initial probability distribution in universal multilayer net-
works. The initial probability distribution p, from equation [15],
which contains the probabilities to restart on the seed(s), can be
written in its general form as follows:

<1
MVo

-2
Vo

(16)

Py =
Vo
where # is the probability to restart in one of the layers of the
multiplex network k, and £ is the initial probability distribution of
the multiplex network k. The size of \7’5 is equal to (L *ny), where Ly
is the number of layers in the multiplex network k and ny is the
number of nodes in the multiplex network k. We constraint the
parameter # with the standard condition of normalization of the
probability that imposes ij:l iy = 1. We defined another para-
meter, 7, to take into account the probability of restarting in the
different layers of a given multiplex network. This parameter
includes 7, where k corresponds to the index of the multiplex
network, and j to the index of the layer of the multiplex network k
(Fig. 2). In other words, 7;; corresponds to the probability to restart
in the jt layer of the multiplex network k. Finally, v% is defined as
follows: vk = [1,, v, 7,vE, ... ,rkLkvg]T, with v being a vector
with 1/wy in the position(s) of seed(s) and zeros elsewhere, and wy
being the number of seeds in the multiplex network k. The standard
condition of normalization of the probability gives the constraint:

ST =LY k.

Numerical implementation: multiXrank. Our RWR on uni-
versal multilayer networks is implemented as a Python package
called MultiXrank (Supplementary Note 2). MultiXrank has
an optimized implementation. Default parameters allow explor-
ing homogeneously the multilayer network (Supplementary
Note 1.B). The running time of the package depends on the
number of edges of the multilayer network (complexity analyses
in Supplementary Note 2.A). The package is available on GitHub
https://github.com/anthbapt/multixrank, and can be installed
with standard pip installation command: https://pypi.org/project/
MultiXrank.

Evaluations. We evaluated the performances of MultiXrank using
two different multilayer networks. The first one is a large biolo-
gical multilayer network composed of two multiplex networks

and one monoplex network. It contains a gene multiplex network
gathering gene physical and functional relationships, a drug
multiplex network containing drug clinical and chemical rela-
tionships, and a disease monoplex network representing disease
phenotypic similarities. Each monoplex/multiplex network is
connected to the others thanks to bipartite networks containing
gene-disease, drug-gene, and drug-disease interactions (Supple-
mentary Note 3.B). The second multilayer network is composed
of three multiplex networks. It contains a French airports mul-
tiplex network, a British airports multiplex network, and a Ger-
man airports multiplex network. In each multiplex network, the
nodes represent the airports of each country and the edges
represent the national flight connections between these airports
for three different airline companies. The three multiplex net-
works are linked with bipartite networks corresponding to
transnational flight connections (Supplementary Note 3.A).

We designed a Leave-One-Out Cross-Validation (LOOCV)
protocol inspired by F.Mordelet and ].P.Vert?* and A.Valdeolivas
et al.1>, In this protocol, we systematically leave-out some known
associations and assess the reconstruction of this left-out data
using the data remaining in the network (Supplementary Note 4.A
and Fig. $9). In the case of the biological multilayer network,we
systematically left-out known gene-disease associations. More
specifically, for each disease associated with at least two genes,
each gene is remove one-by-one and considered as the left-out
gene. The remaining gene(s) associated with the same disease are
used as seed(s). When the disease network is considered in the
evaluation, the disease node is used as seed together with the gene
node(s). The RWR algorithm is then applied, and all the network
nodes are scored according to their proximity to the seed(s). The
rank of the gene node that was left-out in the ongoing run is
recorded. The perfect ranking for the left-out gene is 1; the closer
the rank is to 1, the better the prediction. The gene left-out
process is repeated iteratively for all the genes. Finally, the
Cumulative Distribution Function (CDF) of the ranks of the left-
out genes is plotted (Fig. 3). The CDF displays the ratio of left-out
genes that are ranked by the RWR within the top-K ranked gene
nodes. The CDFs are used to evaluate and compare the
performance of the RWR applied to different combinations of
biological networks: the protein-protein interactions (PPI) net-
work alone, the gene multiplex network, the multilayer network
composed of the gene multiplex and the disease monoplex
networks, and the multilayer network composed of the gene and
drug multiplex networks and the disease monoplex network
(Fig. 3a).

We observed that considering multiple sources of network data
is always better than considering the PPI alone. In addition,
considering multilayer information is better than considering
only the gene multiplex network. However, the increased
performances in the LOOCV seem to arise only from combining
the gene multiplex network with the disease monoplex network
(and associated gene-disease bipartite network). Indeed, the
addition of the drug multiplex network (and associated drug-gene
and drug-disease bipartite networks) to the multilayer system
does not increase the performances (Fig. 3a).

We repeated the same LOOCV protocol for the airports
multilayer network, in which the left-out nodes are French airport
nodes associated with a given British airport node. Here, the
behavior is different, as adding the third multiplex network
containing German airports connections (and associated French-
German and British-German bipartite networks) increases the
performances of the RWR to predict the associations between
French and British airports (Fig. 3b).

To better understand these different behaviors, we examined in
detail the amount of common nodes (called overlaps) existing
between the nodes of the different bipartite networks. We
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Fig. 3 Evaluation and comparison of multiXrank performances on different combinations of multilayer networks. a, b Cumulative Distribution Functions
(CDFs) representing the ranks of the left-out nodes in the Leave-One-Out Cross-Validation (LOOCV) protocol. a: focus on different combinations of
biological networks: protein-protein interactions network alone (PPI), gene multiplex network (multi-1), multilayer network composed of the gene multiplex
network and the disease monoplex network (multi-2), and multilayer network composed of the gene and drug multiplex networks and the disease
monoplex network, for two different sets of parameters (multi-3, multi-3 bis). The multilayer networks are connected by the bipartite networks described in
the Evaluations section. b: focus on different combinations of airports networks: French multiplex network (multi-1), multilayer network composed of the
French and British airports multiplex networks (multi-2), and multilayer network composed of the French, British, and German airports multiplex networks,
for two different sets of parameters (multi-3, multi-3 bis). These multilayer networks are connected by the bipartite networks described in the Evaluations
section. ¢, d CDFs representing the ranks of the left-out nodes in the LOOCV protocol for the multi-3 multilayer networks described previously with
artificially increased connectivity in the gene-drug and disease-drug bipartite networks. € The connectivity is artificially increased thanks to the addition of 1
(multi3+1), 2 (multi3+2) or 5 (multi3+5) transit drug nodes for each gene-disease association. d: In the airport multilayer network, the connectivity is
artificially increased in the French-German and British-German bipartite networks thanks to the addition of 1 (multi3+1), 2 (multi3+2) or 5 (multi3+5)
transit German nodes for each French-British airports association. The parameters of the Random Walk with Restart (RWR) are detailed in Supplementary

Tables S5-Sé6.

observed that only 23% of the genes from the gene-disease
bipartite network are present in the drug-gene bipartite network.
Similarly, only 5% of the diseases from the gene-disease bipartite
network are present in the disease-drug bipartite network
(Fig. S10). Given these low overlaps, the drug multiplex network
might not contribute significantly to connecting gene and disease
nodes during the random walks. This might explain why adding
the drug multiplex network does not improve the performances
of the LOOCV. Contrarily, the bipartite networks of the airport
multilayer network displays high overlaps (Fig. S10). These high
overlaps might explain why the addition of the third multiplex
network in this case increases the predictive power (Fig. 3b).

To validate the proposed central role of bipartite networks in
the RWR performances, we artificially increased the connectivity

of the gene-drug and disease-drug bipartite networks before
applying the same LOOCV protocol. To this goal, we added
artificial transit drug nodes linking existing gene-disease associa-
tions (strategy described in Supplementary Note 4C and Fig. S12).
We observed that these artificially added transit nodes increased
drastically the performances of the LOOCV (Fig. 3c). The same
phenomenon is observed for the airports multilayer network
(Fig. 3d). In addition, we checked if random perturbations in
these artificially enhanced bipartite networks would decrease the
performances of the LOOCV. To do so, we progressively
randomized the edges in the bipartite networks with artificially
increased connectivity, until obtaining completely random
bipartite networks. We observed that the progressive randomiza-
tion of the bipartite networks continuously decreases the
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predictive power of the RWR up to obtaining the same
performances as with only two multiplex networks (Fig. S13.A
for the airport multilayer networks and S13.B for the biological
multilayer networks).

Finally, we repeated all these evaluations using a standard Link
Prediction (LP) protocol (Supplementary Note 4.B). LP has already
been used to measure the predictive power of RWR methods??. In
the LP protocol, we systematically removed gene-disease edges from
the gene-disease bipartite network, and predicted the rank of the
removed gene using the disease as seed in the RWR. The LP
protocol is applied on the airport multilayer network by removing a
French-British edge from the French-British bipartite network, and
predicting the rank of the French airport using the British airport
node as a seed in the RWR. We overall observed similar behaviors
as in the LOOCV (Fig. S11 and S14).

Importantly, the LOOCV and LP protocols can be used to
evaluate the pertinence of adding new multiplex networks in a
multilayer network or new network layers in a multiplex network.
Both evaluation protocols are available within the MultiXrank
package.

Parameter space exploration. We next evaluated the stability of
MultiXrank output scores upon variations of the input para-
meters. We illustrate this exploration of the parameter space with
the biological multilayer network composed of the gene multiplex
network and the disease monoplex network. We first compared
the top-5 and top-100 gene and disease nodes prioritized by
MultiXrank using 125 different sets of parameters (see Supple-
mentary Note 5 for the definition of the sets of parameters). We
observed that the top-ranked gene nodes vary more depending on
the input parameters than the top-ranked disease nodes (Fig. 4a).

To better understand the stability of the output scores upon
variations of the input parameters, we proposed a protocol based
on 5 successive steps: (i) definition of the sets of parameters, (ii)
construction of a matrix containing the similarities of the RWR
output scores obtained with each set of input parameters, using a
the similarity measure defined in equation [17]. The similarities
are computed for each type of node independently (i.e., for gene
and disease nodes independently).

2 2

N\ @]) o)

e, =3

j=1 ((r’;)] + (r’;)]) 2

where y and o define two sets of parameters, 7y is the number of
nodes associated with the multiplex network k. In addition, r’;

(17)

(resp. r¥) is the rank output scores distribution that associates
with each node its rank given by the RWR with the set of
parameters y (resp. o) for the multiplex network k. Finally, rl;a
(resp. r’;y) gives to each node of the output scores distribution
obtained by the set of parameters y (resp. o) (in the multiplex
network k) their rank in the distribution o (resp. y).

We next computed a consensus Similarity matrix with a
normalized euclidean norm of each individual Similarity matrix
(equation [18]).

(18)

where N is the number of multiplex networks.
The next step is (iii) projection of the consensus Similarity
matrix into a Principal Component Analysis (PCA) space

(Fig. 4b). In this PCA space, each dot represents the output
scores resulting from a set of parameters. Then, (iv) clustering
(using k-means on the two first principal components) to identify
sub-regions containing similar RWR output scores. Finally, (v)
comparing the top-ranked nodes obtained with the set of
parameters belonging to each cluster (Fig 4c, Supplementary
Note 5).

We applied this protocol to evaluate the output scores obtained
by MultiXrank on the previously defined biological multilayer
network composed of the gene multiplex network and the disease
monoplex network, using 125 different combinations of para-
meters (Fig. 4, supplementary Fig. S16). We projected the
consensus Similarity matrix into a PCA space and identified 8
clusters (Fig. 4b). To illustrate the behavior inside clusters, we
concentrated our analyses on the two clusters defined in the
bottom left subspace (clusters number 4 and 6, zoom-in Fig. 4b).
The top-100 ranked gene and disease nodes inside each of the two
clusters are overall similar (Fig. 4c). This means that, even if the
node prioritization can be sensitive to input parameters, we can
identify regions of stability in the parameter space. Moreover, the
protocol allows identifying the monoplex/multiplex networks that
generate most variability in the output scores upon changes in the
input parameters.

We applied the parameter space exploration protocol to
other multilayer networks and observed diverse behaviors, from
highly variable top-rankings and scattered projections in the
PCA space for the airport multilayer network (Supplementary
Fig. S15) to robust top-rankings with well-clustered projections
in the PCA space for the biological multilayer network
composed of 3 types of nodes (genes, diseases and drugs,
Supplementary Fig. S16). Overall, our parameter space study
reveals different sensitivities to input parameters depending on
the multilayer network explored. The protocol is available
within the MultiXrank package and can be used to characterize
in-depth the sensitivity to input parameters of any multilayer
network.

Discussion

Multilayer networks are nowadays very popular, in particular
because they allow capturing a larger part of real and engi-
neered systems. In biology, multilayer networks integrating
multiscale sources of heterogeneous interactions provide a
more comprehensive picture of biological system functional-
ities. However, data representation as multilayer networks must
be accompanied by the development of tools allowing their
exploration. Many efforts are thereby dedicated to extend
classical network theory algorithms to multilayer systems>-2.
These algorithms include for instance clustering algorithms?”,
Graph Convolutional Networks?%2° or meta-path based
methods?30. Other important network exploration algorithms,
such as diffusion kernels or methods based on random walk, are
based on the principle of network propagation26. The methods
based on random walk, such as PageRank, biased random walk
or Random Walk with Restart (RWR), are widely used in net-
work science. They are indeed versatile: the random walk
output scores can be used directly for node prioritization and
subnetwork extraction, but can also be used as input for
downstream analyses, for instance for supervised classification
or node embedding?2.

Different random walk methods have been adapted to con-
sider multilayer networks. However, a large variety of multi-
layer networks exist, from multiplex to temporal networks, for
instance. To the best of our knowledge, network exploration
algorithms that have been adapted to handle multilayer net-
works can usually be applied only to specific categories of
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Fig. 4 Exploration of multiXrank parameter space. a Comparison of the top-5 and top-100 nodes ranked by MultiXrank using a biological multilayer
networks composed of the gene multiplex network and the disease monoplex network for 125 different sets of parameters. The top-5 or top-100 ranked
nodes for each set of parameters are merged, and the number of occurrences of each node are counted. The nodes are represented in bars colored in red
when the node is found in all top-5 or top-100 scores, and in blue otherwise. b Clustering in the Principal Component Analysis (PCA) space of the output
scores obtained with MultiXrank on the biological multilayer network composed of the gene multiplex network and the disease monoplex network using
125 different sets of parameters. The zoom-in emphasizes the clusters number 4 and 6. ¢ Comparison of the top-100 nodes retrieved for the sets of
parameters belonging to clusters 4 and 6 defined in (b). The bar is colored in red when a node is found in all top-100 scores, and in blue otherwise. The
parameters of the Random Walk with Restart (RWR) are detailed in Supplementary Table S7.

multilayer networks, such as multiplex networks composed of
the same set of nodes.

We present here MultiXrank, a tool that proposes an optimized
and general formalism for RWR on universal multilayer net-
works. MultiXrank can be applied to explore multilayer networks
composed of any combination of multiplex, monoplex or bipar-
tite networks, and all the network edges can be directed and/or
weighted. To the best of our knowledge, any type of multilayer
networks could be represented with our formalism, even if it
might sometimes require some adaptations. We illustrated the use
of MultiXrank with RWR on biological and airport multilayer
networks and thereby provide guidelines for users. Even if one’s
initial intuition in data analysis could be that “more data is
better”, the addition of interaction network layers also brings
additional degrees of freedom®. To evaluate the pertinence of the
addition of multiplex networks or the addition of layers in a
multilayer system, MultiXrank includes a systematic evaluation
protocol based on Leave-One-Out-Cross-Validation and Link
Prediction. Overall, our results show that adding networks data
does not always increase the predictive power of the RWR, as
already suggested by previous studies!!. Our evaluation protocol
can be used, for the first time to our knowledge, to evaluate in-
depth the signal-to-noise of multilayer system combinations.
Finally, we complemented MultiXrank with a parameter space
exploration protocol to measure the influence of varying the input
parameters on the global stability of the output scores. It is to
note that this parameter space exploration protocol is universal
and can be used to study any complex system exploration
approach providing scores as outputs.

The output scores of MultiXrank can be used in a wide variety of
downstream analyses. For instance, shallow embedding methods
need similarity measures for the optimization of the loss
function?231. MultiXrank can produce such a similarity measure
respecting the global topology of the multilayer network. An
interesting application could be to use MultiXrank output scores for
embedding and evaluate the predictive power of the gene-disease
association prediction task. Indeed, the embedding is expected to be
more robust to the noise than the direct network space32

The MultiXrank package can be applied to any kind of multilayer
network such as social, economic, or ecological multilayer networks.
MultiXrank is optimized and can handle multilayer networks
containing up to millions edges. To consider billion-scale network
problems, several strategies could be considered, such as the Block
Elimination Approach for RWR (BEAR) that can be exact or
approximate33 or the Best of Preprocessing and Iterative approa-
ches (BEPI) that is an approximate approach34,

Data availability

All the data and the code used in the article are available on an OSF repository: https://
osf.io/zsmua (DOI 10.17605/OSF.IO/ZSMUA). This repository includes all the results
obtained in the article.

Code availability

The package is available on GitHub https://github.com/anthbapt/multixrank, can be
installed with standard pip installation command: https://pypi.org/project/MultiXrank,
and is associated with complete documentation: https://multixrank-doc.readthedocs.io/
en/latest.
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