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SARS-CoV-2 triggered a worldwide medical crisis, affecting the world’s social,

emotional, physical, and economic equilibrium. However, treatment choices

and targets for finding a solution to COVID-19’s threat are becoming limited. A

viable approach to combating the threat of COVID-19 is by unraveling newer

pharmacological and therapeutic targets pertinent in the viral survival and

adaptive mechanisms within the host biological milieu which in turn
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provides the opportunity to discover promising inhibitors against COVID-19.

Therefore, using high-throughput virtual screening, manually curated

compounds library from some medicinal plants were screened against four

main drivers of SARS-CoV-2 (spike glycoprotein, PLpro, 3CLpro, and RdRp). In

addition, molecular docking, Prime MM/GBSA (molecular mechanics/

generalized Born surface area) analysis, molecular dynamics (MD) simulation,

and drug-likeness screening were performed to identify potential phytodrugs

candidates for COVID-19 treatment. In support of these approaches, we used a

series of computational modeling approaches to develop therapeutic agents

against COVID-19. Out of the screened compounds against the selected SARS-

CoV-2 therapeutic targets, only compounds with no violations of Lipinski’s rule

of five and high binding affinity were considered as potential anti-COVID-

19 drugs. However, lonchocarpol A, diplacol, and broussonol E (lead

compounds) were recorded as the best compounds that satisfied this

requirement, and they demonstrated their highest binding affinity against

3CLpro. Therefore, the 3CLpro target and the three lead compounds were

selected for further analysis. Through protein–ligand mapping and interaction

profiling, the three lead compounds formed essential interactions such as

hydrogen bonds and hydrophobic interactions with amino acid residues at

the binding pocket of 3CLpro. The key amino acid residues at the 3CLpro active

site participating in the hydrophobic and polar inter/intra molecular interaction

were TYR54, PRO52, CYS44, MET49, MET165, CYS145, HIS41, THR26, THR25,

GLN189, and THR190. The compounds demonstrated stable protein–ligand

complexes in the active site of the target (3CLpro) over a 100 ns simulation

period with stable protein–ligand trajectories. Drug-likeness screening shows

that the compounds are druggable molecules, and the toxicity descriptors

established that the compounds demonstrated a good biosafety profile.

Furthermore, the compounds were chemically reactive with promising

molecular electron potential properties. Collectively, we propose that the

discovered lead compounds may open the way for establishing phytodrugs

to manage COVID-19 pandemics and new chemical libraries to prevent

COVID-19 entry into the host based on the findings of this computational

investigation.

KEYWORDS

SARS-CoV-2, COVID-19, 3CLpro, PLpro, RNA-dependent RNA polymerase (RdRp),
molecular modeling, glycoprotein

1 Introduction

With the emergence of different variations of the coronavirus

disease 2019 (COVID-19), such as alpha, delta, and omicron,

COVID-19 remains a global challenge to health and the economy

due to the unexpected emergence of severe acute respiratory

syndrome coronavirus-2 (SARS-CoV-2). COVID-19 is an agile

respiratory disease caused by a novel coronavirus first reported in

Wuhan, China, in December 2019 and declared a global

pandemic by the World Health Organization (WHO) in

March 2020 (Chan et al., 2020). Coronaviruses are positive

sensed, linear single-stranded RNA viruses which comprise

nucleoproteins (N), envelope proteins (E), matrix proteins

(M), spike proteins (S), and many non-structural proteins

(Luk et al., 2019). The length of the RNA genomes ranges

from 26–32 kb, which contains 12 open reading frames. A

structural analysis of the SARS-CoV-2 genomes using

biophysical and modeling techniques reveals that two

polyproteins divided into 15 or 16 non-structural proteins

make up the first two-thirds of the coronavirus genome (Xu

et al., 2020). A phylogenetic analysis shows that the remaining

ORFS contains the genetic makeup of four important structural

proteins: envelop (E), membrane (M), nucleocapsid (N), and

spike (S) proteins. These proteins played a significant role in the

virus survival and replication and have received intense interest

from several investigators to develop inhibitors of SARS-CoV-2

(Adedeji et al., 2012; Yu et al., 2012; Jia et al., 2019). Notably,

COVID-19 has been associated with an effect on multiple vital

organs and the central nervous system and can result in

respiratory problems with fatal consequences (Seah and
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Agrawal, 2020). Previous reports indicated that SAR-CoV-

2 therapeutic targets include receptor binding of glycosylated

spike (S) protein, which mediates host cell receptor recognition

and host cell entry and induces host immune responses, and non-

structural proteins such as RNA-dependent RNA polymerase

(RdRp), CoV main protease [Mopar; also known as 3-

chymotrypsin–like protease (3CLpro)], and papain-like

protease (PLpro) (Liu et al., 2020). Theoretically, drugs

competing with RBD for receptor binding sites can inhibit

viral entry and replication. Furthermore, the non-structural

proteins (PLpro, 3CLpro, and RdRp) play a vital role in

proteolysis and viral polyprotein processing. Thus, NSPs had

recently emerged as an essential therapeutic biomarker for the

design of COVID-19 drug candidates (Chen et al., 2020).

The therapeutic management of COVID-19 involves two

target selection approaches. One of the methods is boosting the

human immune system or human cells using an attenuated

vaccine, whereas the second technique involves inhibiting

molecular targets by small molecule inhibitors. Regarding the

human immune system, the innate immune system plays a key

role in disrupting coronavirus replication and its entry. As

expected, the interferon helps to enhance the immune

response to the virus (Omrani et al., 2014). One of the most

effective ways to halt viral replication and entry is using small

molecules to block the signaling pathways of human cells which

mediate virus replication. Furthermore, viruses interact with

certain receptor proteins on the surface of cells to gain entry

into human cells. Notably, RBD of SARS-CoV-2 binds with the

human angiotensin-converting enzyme 2 (ACE-2) receptor (Li

et al., 2003; Han et al., 2006; Ge et al., 2013).

Scientists have harnessed several strategies for developing

novel drugs against COVID-19 (Zumla et al., 2016). The first

strategy was to screen existing broad-spectrum anti-viral drugs

such as ribavirin and cyclophilin. This approach is advantageous

because the pharmacokinetic profile of the anti-viral drugs and

their associated side effects have been clearly stated. One of the

disadvantages of broad-spectrum anti-viral drugs is their non-

specificity, which might, in turn, result in low potency against

coronavirus (Chan et al., 2013; de Wilde et al., 2014). The second

techniques involve screening molecular databases such as the

ZINC database to identify potential anti-coronavirus compounds

via high-throughput virtual screening. This approach has been

used to develop biologically active compounds, lopinavir/

ritonavir, as anti-HIV agents (de Wilde et al., 2014). The third

approach is based on analyzing genomic datasets to develop new

targeted drug candidates from scratch for precision medicine

(Dyall et al., 2014). Therapeutic agents developed against

coronavirus via the third strategy exhibits promising

pharmacological potential. However, this approach’s long-term

process and expenses are major limiting factors.

Herbal medicine has been an alternative medicine since time

immemorial in managing various diseases andmay be an important

source of anti-coronavirus agents (Ling, 2020). An earlier systematic

study in 2003 shows that patients infected with SARS-CoV-2 treated

with traditional Chinese medicine (TCM) were reported to have

short time hospitalization, reduced steroid side effects, and

improvements from the viral symptoms (World Health

Organization, 2004). Therefore, a significant amount of research

has focused on developing therapeutic agents against coronavirus

from TCM, ethnobotanical herbs, and dietary supplements (Dudani

and Saraogi, 2020; Vellingiri et al., 2020). In vivo, in vitro, and in

silico studies have revealed the antiviral potential of numerous

bioactive compounds against coronavirus. Some

phytocompounds and sources include glycyrrhizin isolated from

Glycyrrhiza glabra L. (licorice); tetra-O-galloyl-β-D-glucose (TGG)
and luteolin, isolated from Rhus chinensis Mill. and Veronica

linariifolia Pall. ex Link; and aurantiamide acetate derived from

Artemisia annua L. plant. Several plants such as Sanguisorba

officinalis L., Stephania tetrandra S. Moore, and Strobilanthes

cusia (Nees) Kuntze have been reported for their antiviral

potential toward RNA and protein synthesis of the coronavirus

(Wu et al., 2004; Wang et al., 2007; Kim et al., 2010). In this study,

manually curated compounds library from some medicinal plants

were screened against four main targetable drivers of SARS-CoV-2

(spike glycoprotein, PLpro, 3CLpro, and RdRp) using high-

throughput virtual screening. Only compounds with no

violations of the Lipinski’s rule of five with at least a binding

energy of −5.0 kcal/mol against the four targets were considered

potential drug candidates with therapeutic effects against COVID-

19. Herein, lonchocarpol A, diplacol, and broussonol E (lead

compounds) were recorded as the best compounds that satisfied

this requirement and demonstrated their highest binding affinity

against 3CLpro. Therefore, the 3CLpro target and the three lead

compounds were selected for further analysis, such as molecular

dynamics simulation and quantum mechanical evaluation. Overall,

this study serves as a benchmark for developing the discovered three

lead compounds as COVID-19 therapeutic agents.

2 Materials and methods

2.1 Quantum mechanical calculation

2.1.1 Molecular docking studies
Theoretical approaches used to compute compounds’ chemical

and biological activities have been well documented. The quantum

chemical (QM) calculation was executed using the MOPAC

2016 software program (Stewart, 1990). PM7 semi-empirical

Hamiltonian incorporating an implicit COSMO solvation model

was used to perform the calculation (Klamt and Schuurmann, 1993;

Dutra et al., 2013). Notably, geometric pre-optimization of the top

four inhibitors was carried out using the molecular mechanics force

field (MMFF94) integrated with the Avogadro v 1.2.0 software

program (Hanwell et al., 2012), coupled with chemical structure

protonation at a pH of 7.4. The pre-optimized geometry serves as a

query for QM calculation (Chukwuemeka et al., 2021). A
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Broyden–Fletcher–Goldfarb–Shanno (BFGS) geometry optimizer

was used for structure minimization and optimization at the

semi-empirical theory level. The keywords “DIPOLE” and

“MULLIK” were used to compute the dipole moments and

Mulliken atomic charges, respectively. The time-dependent

Hartree Fock (TDHF) was used to calculate the molecular

polarizabilities using the “POLAR” keyword incorporated in

MOPAC 2016. A visualization tool (Jmol software program) was

used to visualize the charge distribution diagram of frontier

molecular orbitals (FMOs) and molecular electrostatic potential

(MEP) of the docked compounds (Hanson, 2010). A quantum

chemical calculation via density functional theory (DFT)was used to

investigate the physicochemical properties of lead phytocompounds

with the best conformer distribution. All the quantum chemical

reactivity descriptors were computed from the energies of the

highest occupied and lowest unoccupied molecular orbitals

(EHOMO–LUMO). The descriptors include the following:

• Energy band gaps (Eg).

• Ionization energy (I).

• Electron affinity (A).

• Chemical hardness (η).

• Chemical softness (δ).

• Chemical potential (μ).

• Electronegativity (χ).

2.1.2 Protein and ligand preparation
The crystal structures of the molecular targets RBD of spike

glycoprotein (PDB: 6MOJ), 3CLPro (PDB: 6M2N), PLPro (7CJM),

and RdRp (7D4F) were obtained from the protein data bank

(https://www.rcsb.org/). They were prepared using Schrödinger’s

protein preparation wizard (Sastry et al., 2013). Hydrogen bond

optimizations, water removal, protein structure correction, and

ultimately protein energy minimization using the OPLS_

2005 force field were carried out during the preparation. The

position of the co-crystallized ligands for each target was used to

define the protein binding pocket for receptor grid generation.

Subsequently, the 3D structure of 1,000 compounds consisting of

the substructure of the co-crystallized ligand of the targets was

downloaded from the PubChem database (https://pubchem.ncbi.

nlm.nih.gov). The structures of the ligands were cleaned, and their

geometries were subjected to structural optimization using the

default specifications of the LigPrep module incorporated in the

Schrodinger suite and utilized for hypothesis generation (Balogun

et al., 2021a). The prepared proteins and fully optimized geometry of

ligands were used as input for molecular docking.

2.1.3 Molecular docking
High-throughput virtual screening (HTVS) of the prepared

phytocompounds library was performed using the HTVSmodule

of Maestro integrated into the Schrodinger suite (Friesner et al.,

2004). The HTVS module used the 3D crystallographic structure

of the therapeutic targets and fitted the ligands based on their

structural conformations. During the virtual screening process,

an energy score of −5.0 kcal/mol was set as the threshold to

identify potential anti-coronavirus agents. The hits generated,

105 compounds out of 1,000 screened phytocompounds, were

subjected to molecular docking by considering the flexibility of

the protein using the SP (standard precision) model. The

compounds were subjected to XP (extra precision) docking

using the GLIDE XP module incorporated in Maestro to

achieve further accurate results based on binding affinity and

pose. The structural and energy information between the

protein–ligand complexes was considered for energetic

computation and further stability studies. The 2D interaction

profile of protein–ligand complexes was generated using the

Ligand Interaction Diagram (LID) in Maestro (Friesner et al.,

2004; Balogun et al., 2021b). The reproducibility and reliability of

the docking procedure were validated by superimposing and re-

docking the co-crystalized ligand structures into the target active

site, which generated an RMSD value of 0.76 A (normal range:

0–2 A). This confirms the reliability of the docking protocol.

2.2 Binding free energy and contribution
energies calculation using MM-GBSA

The XP-screened compounds were further subjected to a

Prime MM/GBSA analysis, where their binding energies were

computed to investigate the inhibitory potential of the docked

compounds against the targets. Based on the number of energy

parameters generated by the Prime algorithm, free energy

parameters were used to gain mechanistic insight into the

biological activity of the compounds. Nonetheless, the ligand

strain energy, Coulomb energy, and van der Waals energy were

also assessed in filtering the final hit compounds (Genheden and

Ryde, 2015; Schrödinger, 2020). The binding free energy and

essential amino acid interactions between the protein–ligand

complexes were computed using the following equations:

ΔGbind � ΔE + ΔGsolv + ΔGSA. (1)
ΔE � E(complex) − E(protein) − E(ligand), (2)

where E(complex), E(protein), and E(ligand) are the minimized

energies of the protein–inhibitor complex, protein, and inhibitor,

respectively.

ΔGsolv � Gsolv(complex) − Gsolv(protein) − Gsolv(ligand),
(3)

where Gsolv(complex), Gsolv(protein), and Gsolv(ligand) are the

salvation free energies of the complex, protein, and inhibitor,

respectively.

ΔGSA � GSA(complex) − GSA(protein) − GSA(ligand), (4)

where GSA (complex), GSA (protein), and GSA (ligand) are the

surface area energies for the complex, protein, and inhibitor,

respectively.
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2.3 Drug likeness and ADMET evaluation

To compute the lead compounds’ physicochemical

parameters and pharmacokinetic models, the compounds

inputted structures were transformed into their canonical

simplified molecular input line entry system (SMILES) form.

Therefore, the curated ligand database’s SMILES were uploaded

to the admetSAR web server (http://lmmd.ecust.edu.cn/) (Cheng

et al., 2012) and SwissADME (Daina et al., 2017). Drug-likeness

is a method for determining if a therapeutic agent is appropriate

for orally active medications. Lipinski’s rule of five principles are

used to compute in silico predictions based on parameters such as

molecular weight, hydrogen bond donor, and hydrogen bond

acceptor (Lipinski et al., 2001).

2.4 Molecular dynamics simulation

Molecular dynamics (MD) simulations were conducted to

predict the protein’s dynamic motion and stability at the atomistic

level with the bounded protein. The DESMOND module integrated

into the Schrodinger suite was used to generate protein–ligand

topologies and trajectories. The protein–ligand complexes were

performed for 100 ns with an OPLS3 force field, using the

DESMOND version of Schrödinger (2018). The solvation box was

designed as the shape of the rhombic dodecahedron type and

solvated using the TIP3P (transferable intermolecular potential

3 point) and an orthorhombic box (10 Å × 10 Å × 10 Å buffer)

watermodel. Na+ andCl− ions in 0.15 mMconcentrationwere added

to neutralize the charge of the systems during simulation. The system

minimization tool in the Desmond–Maestro interface was used for

energy minimization of the complete system under default

parameters of 1.0 kcal/mol/Å, convergence threshold, and

maximum iterations of 2,000. Furthermore, the system was

calibrated with the constant temperature (300 K) and pressure

(1 bar) via Berendsen thermostat coupling and default system

pressure coupling, respectively. Each of the equilibration steps was

carried out for 100 ps. The dynamic simulation of the complex

system was performed for 10 ns after all the pre-processing phases.

The V-rescale and Parrinello–Rahman methods were used for

temperature and pressure coupling, respectively (Parrinello and

Rahman, 1981). Leonard-Jones potential and the particle mesh

Ewald (PME) method were used to handle van der Waals and

long-range electrostatic interactions, respectively (Darden et al.,

1993). The complexes underwent a final MD simulation

production run for 100 ns. Root-mean-square deviations (RMSD)

were computed using the MD trajectory to estimate the variations in

protein conformation during the various simulations period, and

root-mean-square fluctuation (RMSF) as well as the total number of

intermolecular contacts were used for each protein–ligand complex

to gain insights into the compound’s inhibitory potential (Pearson,

1986).

3 Results and discussion

3.1 Frontier molecular orbital analysis and
global reactivity descriptors

FMOs such as HOMO and LUMO are essential in demystifying

the chemical reactivity at the atomic level and are crucial descriptors

for rationalizing various chemical reactions. The reactivity descriptors

calculated for lonchocarpol A, broussonol A, diplacol, and

dexamethasone are shown in Table 1. HOMO energy denotes the

potential of a molecule to easily donate an electron, which also

corresponds to the ionization potential of a molecule. In contrast, the

electron-withdrawing potential of compounds is referred to as the

LUMO energy, which signifies the first empty innermost orbital

unfilled by an electron and correlates with a molecule’s electron

affinity. The band gap energy is the difference between the HOMO

and the LUMO energy and provides information about the

compound’s chemical stability at the molecular level. Band gap

TABLE 1 Calculated quantum reactivity descriptors of top four compounds using the PM7 Hamiltonian method.

SN Quantum chemical
property

Lonchocarpol A Broussonol E Diplacol Dexamethsaone

1 HOMO −8.776 eV −8.647 eV −8.763 eV −9.964 eV

2 LUMO −0.501 eV −1.117 eV −0.902 eV −0.501 eV

3 Energy gap (ΔE) −8.275 eV −7.530 eV −7.861 eV −8.275 eV

4 Ionization potential (I) 8.776 eV 8.647 eV 8.763 eV 8.776 eV

5 Electron affinity (A) 0.501 eV 1.117 eV 0.902 eV 0.501 eV

6 Chemical hardness (η) 4.138 eV 3.765 eV 3.931 eV 4.138 eV

7 Chemical softness (ζ) 0.242 (eV)−1 0.267 (eV)−1 0.254 (eV)−1 0.242 (eV)−1

8 Electronegativity (χ) 4.639 eV 4.882 eV 4.833 eV 4.639 eV

9 Chemical potential (µ) −4.634 eV −4.882 eV −4.833 eV −4.634 eV

10 Electrophilicity index (ω) 2.595 eV 3.165 eV 2.971 eV 2.595 eV

ΔE = HOMOε−LUMOε, I = −EHOMO, A = −ELUMO, η = (I − A)/2, ζ = 1/η, χ = (I + A)/2, µ = − (I + A)/2, ω = µ2/2η.
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energy also describes the chemical reactivity of a molecule,

deciphering the movement of electrons from the ground state to

its excitation state. Furthermore, other parameters (such as chemical

hardness, softness, electronegativity, or polarizability) that provide

information about compounds’ ionic structure and the electronic

configuration can be easily computed via HOMO–LUMO energy

(Pearson, 1986; Sylaja et al., 2017). For example, a lower energy gap

between two frontier molecular orbitals means lower kinetic stability

and higher polarizability and reactivity of a molecule, which indicates

the softness of the molecule and vice versa.

Lonchocarpol A has the second highest HOMO energy value

(EHOMO = −8.77 eV), denoting the valence electron density

distribution for lochocarpol A is more available to be donated,

suggesting that lonchocarpol A is the most reactive compound

after dexamethasone. Similarly, broussonol E and diplacol

recorded a HOMO energy value of −8.647 and −8.763 eV,

respectively. Clearly, lonchocarpol A, broussonol E, and

diplacol demonstrated an intermolecular charge transfer as

they excited from the ground state (S0) to the first excitation

state. Interestingly, the LUMO energy is in the following order:

lochocarpol A < dexamethasone < diplacol < broussonol E. The

LUMO energy suggests that lonchocarpol A and dexamethasone

are more susceptible to accepting electronic density because a

lower energy molecular orbital will describe the additional

electron. The chemical reactivity of a compound is measured

using the HOMO–LUMO energy gap (ΔEGap), which represents
a lower energy difference (lower energy gap) (Figure 1).

Broussonol E had the lowest energy value of −7.530 eV

compared to dexamethasone (−8.275 eV), which implies more

chemical reactivity to broussonol E. Lonchocarpol A and

FIGURE 1
HOMO, LUMO, and band gap energy (ΔE) of the top four compounds: (A) lonchocarpol A, (B) broussonol E, (C) diplacol, (D) dexamethasone.
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dexamethasone showed the same energy gap (−8.275 eV) which

is in consistent with their LUMO values. This suggests that both

the compounds may share similar chemical reactivity properties

and mechanisms of action toward the targets. To fully gain

insights into the reactivity and chemical species of the top

four compounds with drug-likeness properties, the following

parameters were evaluated from the HOMO and LUMO

energy: ionization potential, electron affinity, chemical

hardness (η), chemical softness (ζ), electronic chemical

potential (µ), electrophilicity index (ω), and electronegativity

(χ). The expression for the reactivity parameters, as

mentioned earlier, has been described according to

Koopman’s theory (Phillips, 1961) and can be calculated by

the following mathematical statements:

Energy Gap ΔE � HOMOε − LUMOε; (5)
Ionization Potential I � −EHOMO; (6)
Electron affinity A � −ELUMO; (7)

Chemical hardness η � 1
2
(z2E

zN2
)V � 1

2
( zµ
zN

)V � (I − A)/2;

(8)
Chemical potential μ � (zE

zN
)V � −(I + A)/2; (9)

Electronegativity χ � −μ � −(zE

zN
)V � (I + A)/2; (10)

Softness ζ � 1
η
; (11)

Electrophilicity index ω � µ2
2η
. (12)

Ionization energy helps to determine the amount of free

energy required to remove an electron of an atom from a

molecule. Furthermore, electron affinity represents the amount

of energy liberated when an atom or molecule is attached to a

neutral atom or molecule. Lower ionization potential indicates

lower stability or higher reactivity of the compound and its

contribution toward analyzing inhibitory potential. Contrarily,

electron affinity depicts the high electron-withdrawing ability of

a compound. Table 1 shows that lochocarpol A and

dexamethasone had the highest chemical stability and

electron-withdrawing potential compared to broussonol E and

diplacol. This observation is consistent with the gap energy

between the HOMO and LUMO FMOs (Figure 2). The

softness and hardness properties of compounds contribute to

their chemical stability. Although a higher hardness value means

a more stable chemical entity, compound’s stability decreases

with softness. Pearson’s HSAB theory proposed that a favorable

interaction between two compounds occurs when both are hard

and soft (Pearson, 1990; Arjunan and Mohan, 2009). It is evident

from Table 1 that lonchocarpol A and dexamethasone have

chemical hardness values of 4.138 eV, indicating they are the

most stable compound, followed by diplacol (3.931 eV) and

broussonol E (3.765). The chemical softness of the

compounds shows that there is only a subtle difference

between the compounds denoting their chemical stability. The

ability of a compound to not decompose spontaneously into an

element, which denotes its stability, is determined by a higher

negative chemical potential. All the compounds demonstrated

chemical stability due to their negative value of chemical

potential. Electronegativity and electrophilicity are another

important set of reactivity descriptors. Lonchocarpol A and

dexamethasone have the same electrophilicity index (2.595 eV)

and electronegativity values (4.639 eV), which implies their

susceptibility to accept electron density and classifies them as

promising electrophilic compounds. Broussonol E was recorded

as the most electrophilic molecule with an electrophilicity index

value of 3.165 eV. Therefore, Table 1 provides appropriate

information regarding the chemical reactivity and stability of

the studied compounds.

3.2 Molecular electrostatic potential

MEPs have proved useful in determining the relative polarity

of compounds as well as providing essential information on

molecular charge distribution patterns. As a result, studying the

MEP of the examined compounds may provide insight into their

electrophilic and nucleophilic cores (Figure 2). It is worth

mentioning that molecular electrostatic potential data can be

classified using traditional color codes. The electron-rich centers

are indicated by a red color scheme, which symbolizes the highest

negative electrostatic potential. On the other hand, a blue hue

region denotes electron-deficient areas (i.e., the most positive

electrostatic potential). The light blue, yellow, and green moieties

represent a molecule’s region of slightly electron-deficient cores,

marginally electron-rich areas, and zero electrostatic potential

FIGURE 2
Molecular electrostatic potential (MEP) of the top four
compounds: (A) lonchocarpol A, (B) broussonol E, (C) diplacol, (D)
dexamethasone.
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TABLE 2 Calculated Mulliken atomic charges of the top four compounds.

Atom
No

Atom
(lonchocarpol
A)

Mulliken charge
(lonchocarpol
A)

Atom
(broussonol
E)

Mulliken
charge
(broussonol
E)

Atom
(diplacol)

Mulliken
charge
(diplacol)

Atom
(dexamethasone)

Mulliken charge
(dexamethasone)

1 O −0.44443 O −0.34135 O −0.43335 F −0.22161

2 O −0.52506 O −0.5126 O −0.57712 O −0.57211

3 O −0.49887 O −0.48847 O −0.5101 O −0.59853

4 O −0.59159 O −0.45938 O −0.57763 O −0.47831

5 O −0.51036 O −0.59099 O −0.49375 O −0.5496

6 C 0.207278 O −0.53436 O −0.47351 O −0.50928

7 C −0.64918a O −0.48846 O −0.47101 C 0.119523

8 C 0.553263 C −0.68688a C 0.111928 C −0.17951

9 C −0.73661a C −0.45146 C −0.09313 C −0.19425

10 C −0.37697 C 0.553329 C −0.73622a C 0.167313

11 C 0.702303b C 0.602767b C 0.601256b C 0.126795

12 C −0.45972 C 0.219836 C 0.597236 C −0.40441

13 C 0.597616 C 0.012863 C −0.03862 C −0.51737

14 C 0.506552 C −0.21543 C −0.4738 C −0.07233

15 C −0.20439 C 0.532411 C 0.611783b C 0.110405

16 C −0.21769 C 0.620079b C −0.6357a C −0.00231

17 C −0.2394 C −0.02945 C −0.23452 C −0.32459

18 C −0.06819 C −0.60901a C 0.561417 C −0.62434a

19 C −0.01567 C −0.06649 C −0.33019 C −0.41779

20 C −0.32883 C −0.22206 C −0.14207 C 0.177623

21 C −0.35013 C −0.3368 C −0.36668 C 0.407181

22 C −0.35526 C −0.25838 C 0.123515 C −0.60478a

23 C −0.44732 C 0.104187 C −0.39687 C −0.60459a

24 C 0.158178 C 0.234676 C 0.215686 C −0.11383

25 C 0.371538 C −0.37461 C −0.34313 C −0.52143

26 C 0.137273 C −0.34269 C −0.29078 C −0.23229

27 C −0.64618a C 0.210516 C 0.227416 C −0.43236

28 C −0.65128a C 0.149934 C −0.65057 C 0.621716b

29 C −0.64474a C −0.66075 C −0.33623 H 0.174307

30 C −0.65366a C −0.66589 C 0.161681 H 0.199263

31 H 0.177918 C −0.64924 C −0.65057 H 0.18274

32 H 0.260334 C −0.65697 C −0.64239 H 0.202663

33 H 0.257829 H 0.202691 H 0.209879 H 0.217255

34 H 0.180081 H 0.147876 H 0.229331 H 0.223055

35 H 0.186761 H 0.290018 H 0.291301 H 0.155531

36 H 0.170022 H 0.224598 H 0.172566 H 0.197823

37 H 0.214067 H 0.192595 H 0.212728 H 0.181412

38 H 0.193514 H 0.204748 H 0.248627 H 0.185519

39 H 0.206486 H 0.264391 H 0.222298 H 0.21967

40 H 0.201087 H 0.195052 H 0.216964 H 0.193173

41 H 0.217387 H 0.21727 H 0.371795 H 0.211806

42 H 0.413892 H 0.41358 H 0.196626 H 0.200817

43 H 0.376606 H 0.367127 H 0.185069 H 0.208468

44 H 0.242263 H 0.37573 H 0.218915 H 0.191525

45 H 0.226644 H 0.214546 H 0.170655 H 0.211997

46 H 0.204763 H 0.210442 H 0.176395 H 0.217508

47 H 0.204729 H 0.206894 H 0.41009 H 0.209823

48 H 0.202827 H 0.205874 H 0.220548 H 0.221053

49 H 0.229196 H 0.236009 H 0.200566 H 0.211325

50 H 0.203416 H 0.209537 H 0.214513 H 0.362716

(Continued on following page)
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potions, respectively. We can deduce that a molecule’s potential

declines in the following order based on the color scheme: blue >
light blue > green > yellow > red. Figure 2 represents molecular

electrostatic potential maps of lonchocarpol A, broussonol E,

diplacol, and dexamethasone. There is a clear maximum

concentration of electrons located at the alkyl groups and

oxygen atoms of lonchocarpol A attached to the diphenyl groups.

In contrast, the region of most positive electron potential of

lonchocarpol A is located at the hydrogen atoms of the methyl

group of the phenyl group. The most negative potential for

dexamethasone is situated on the imidazole rings’ two-

hydroxyl group and oxygen atoms. Broussonol E recorded the

highest negative electrostatic potential, including multiple

hydroxyl group points. All the compounds have been reported

for their biological and chemical properties. Therefore, MEP

provides detailed insights into the molecular charge distribution

clusters in the studied compound.

3.3 Mulliken population analysis

Table 2 shows the atomic charge distribution of lonchocarpol

A, broussonol E, diplacol, and dexamethasone computed via the

Mulliken population analysis using the PM7-based semi-

empirical Hamiltonian calculations.

Because atomic charges affect compounds’ molecular and

electrical characteristics, estimating each compound’s partial

atomic charges is critical for understanding the charge

distribution. Calculating the atomic charges of any small

molecule ligand can be used to calculate the adsorptive

centers. Table 2 shows that the examined structures’ oxygen

and carbon atoms have electron-rich chemical species (i.e., they

have the most negative electronic charges), which may be due to

their molecular relaxation. However, the predominant positive

charge regions were observed to be covered by carbon atoms,

despite the fact that some carbon atoms in the investigated

compounds possessed negative atomic charges. Table 2 shows

that the atoms O7, C9, and C27–30 of lonchocarpol have the

most negative atomic charges, whereas the C11 and C16 of

broussonol E have the highest negative atomic charges in

lonchocarpol A. In terms of broussonol E, C10 and C16 were

observed for negatively charged atoms, whereas C11 and

C15 occupied positive regions. Dexamethasone’s ionic

structure established negatively charged electrostatic contacts

with C18 and C22–23 while demonstrating C27 as the only

positive electrostatic atoms. Overall, it can be deduced that there

are variations between the atoms of the studied compounds

occupying positive and negative regions. This is also

supported by the difference between the compound’s

inhibitory potential and their chemical stability.

3.4 Non-linear optics analysis

NLO materials have played an important role in contemporary

technologies, providing various industrial and medicinal benefits,

some of which have been detailed in prior studies (Muhammad

et al., 2021). The most prominent quality of analyzing NLO

properties from a fascinating perspective on chemical

methodologies and applications is their tendency to provide

considerable insights into how small changes in molecular

structures might alter NLO responses. Tables 3, 4 present and

summarize various NLO responses and their components for

lonchocarpol A, broussonol E, diplacol, and dexamethasone

estimated using the PM7 semi-empirical Hamiltonian

calculations in MOPAC 2016. The dipole moment (µ) gives

information on a bond’s or molecule’s ionic character state. Ionic

property is generally associated with molecules with a higher dipole

TABLE 2 (Continued) Calculated Mulliken atomic charges of the top four compounds.

Atom
No

Atom
(lonchocarpol
A)

Mulliken charge
(lonchocarpol
A)

Atom
(broussonol
E)

Mulliken
charge
(broussonol
E)

Atom
(diplacol)

Mulliken
charge
(diplacol)

Atom
(dexamethasone)

Mulliken charge
(dexamethasone)

51 H 0.199179 H 0.378383 H 0.382286 H 0.222359

52 H 0.207816 H 0.210921 H 0.194678 H 0.354091

53 H 0.210879 H 0.213816 H 0.349727 H 0.252387

54 H 0.209347 H 0.21176 H 0.347314 H 0.231837

55 H 0.208034 H 0.206996 H 0.207703 H 0.204019

56 H 0.20602 H 0.219071 H 0.210102 H 0.244501

57 H 0.216366 H 0.211674 H 0.204851 H 0.356402

58 H 0.354056 H 0.36951 H 0.207125 — —

59 — — — — H 0.205716 — —

60 — — — — H 0.207643 — —

aMost negatively charged region.
bMost positively charged region.
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moment value. Furthermore, dipole moments are crucial in

forecasting a molecule’s structure and reactivity. The dipole

moments for the studied compounds, lonchocarpol A,

broussonol E, diplacol, and dexamethasone, were 2.663, 4.122,

5.209, and 5.334, respectively. The computation of polarizability

(α0) and hyperpolarizability (β0 and γ0) in molecular systems are

TABLE 3 Non-linear optics (NLO) measurements of the top four compounds.

Parameters Lonchocarpol Broussonol E Diplacol Dexamethasone (control)

Dipole moment (Debye)

µx −0.016 0.936 5.075 1.003

µy 2.546 4.004 1.089 1.943

µz 0.781 −0.284 0.444 4.865

µ 2.663 4.122 5.209 5.334

Polarizability (a.u.)

αxx 423.2262 422.1966 474.0150 276.5705

αxy −32.1733 422.1966 20.7672 −1.9526

αyy 321.3188 415.5835 337.6663 249.1648

αxz 5.8622 5.8562 11.7997 −38.5436

αyz 12.2187 38.3700 32.3409 6.6118

αzz 252.3939 230.5271 228.9737 308.3070

α0 332.31294 356.10239 346.88497 278.01414

Hyperpolarizability (a.u.)

ßxxx −828.11534 −1,758.35361 −857.13155 −105.90769

ßxxy 1,274.91556 1,770.96251 1,087.95116 −11.22939

ßxyy 408.19522 −939.40438 392.33997 −56.47036

ßyyy −205.66502 198.04721 −145.10306 −0.22422

ßxxz 218.15245 622.87825 −23.37222 −19.56624

ßxyz −56.15189 19.08646 31.58709 14.60703

ßyyz −40.72098 −90.27506 22.36855 30.11794

ßxzz 67.05907 86.15574 8.42037 164.77391

ßyzz −12.20923 −74.49353 9.07706 −12.27861

β0 678.2379 1946.6357 633.4487 83.4142

γxxxx 136,082.88516 437,948.46962 122,946.68736 13,932.57214

γyyyy 40,946.55150 86,024.86024 18,258.69096 14,983.28635

γzzzz 6,622.48729 6,562.67994 3,978.16272 15,251.43212

γxxyy 49,373.55773 208,421.66382 48,042.22109 4,810.78759

γxxzz 8,548.39107 18,233.01061 11,992.55351 4,799.66326

γyyzz 4,755.42360 11,210.83548 2,029.91003 7,556.43105

γ0 61,448.83940 205,675.48909 53,862.59096 15,788.15525

Standard value for urea (µ = 1.3732 Debye; ß0 = 0.3728 × 10−30 esu); esu, electrostatic unit. (For α, 1 a.u is equal to 0.1482 × 10–24 esu. Similarly, for β, 1 a.u is equal to 8.6393 × 10−33 esu).

TABLE 4 Molecular electric dipole moment (µ), static polarizability (α0), static first-order hyperpolarizability (ß0), and static second-order
hyperpolarizability (γ0) of the top four compounds.

Compound Dipole moment (Debye) Static polarizability
(α0 × 10−23 esu)

Static first-
order hyperpolarizability
(ß0 × 10−30 esu)

Static second-order
hyperpolarizability
(γ0 × 10−39 esu)

Lonchocarpol A 2.663 5.1226 0.0586 30,949.9528

Broussonol E 4.122 5.2774 0.0017 103,592.6267

Diplacol 5.209 5.1654 0.0590 32,680.4170

Dexamethasone (control) 5.334 4.1202 0.7207 7,952.0242
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helpful in describing charge delocalization and measuring NLO

effects (Maragatham et al., 2019). More intriguingly, they have been

used in pharmaceutical development. The coefficients in the Taylor

series expansion depending on the energy in the external electric

field (Muthu et al., 2014;Maragatham et al., 2019) are denoted as the

first hyperpolarizability (β0) and associated properties (µ, α0, and γ0)
of the described compounds: lonchocarpol A, broussonol E, diplacol,

and dexamethasone. The expansion can be expressed as follows for a

weak homogenous external electric field:

E � E0 −∑−1̂/2∑−j
^̂1/6∑−jk

^̂
1̂/24∑−jkl

^̂
^̂.... . (13)

Note that E0 describes the energy of the unperturbed

molecules; Fi represents the field at the origin; and µi, αij, βijk,
and γijkl correlate to the dipole moment, static polarizability, first-

order hyperpolarizability, and second order hyperpolarizability,

respectively. The total dipole moment µ, static mean

polarizability α0, mean first-order hyperpolarizability β0, and
second order hyperpolarizability γ0 can be estimated by the

following equations:

Dipole moment μ �











μ2x + μ2y + μ2z

√
; (14)

Static mean polarizability α0 � (αxx + αyy + αzz)/3; (15)

TABLE 5 Binding energy of compounds library against the SARS-CoV-2 therapeutic target.

S/
NS

Compounds Spike
glycoprotein
RBD (6MOJ)
(kcal/mol)

Compounds 3CLpro
(6M2N)
(kcal/
mol)

Compounds PLpro
(7CJM)
(kcal/
mol)

Compounds RdRp
(7D4F)
(kcal/
mol)

1 Rutin −10.941 Nicotiflorin −11.442 Aucubin −8.767 Acteosides −10.632

2 Delphinidin 3-O-beta-
D-sambubioside

−10.709 Schaftoside −11.389 Rutin −8.698 Cynaroside −9.193

3 Hesperidin −10.627 Acteoside −11.291 Nicotiflorin −8.685 Hydroxycitric acid −9.087

4 Acteoside −10.033 Mallophenol B −11.226 Mallophenol B −8.106 Rutin −8.704

5 Kuromanin −9.902 Kolaflavanone −10.496 Hesperidin −7.671 Schaftoside −8.347

6 Pelargonidin 3-
glucoside

−9.684 Aucubin −10.295 Cynaroside −7.537 Bergenin −8.127

7 Lauroside E −9.599 Tanariflavanone C −10.278 Kuromanin −7.186 Kuromanin −7.687

8 Nicotiflorin −9.447 (+)-Gallocatechin
gallate

−10.334 Schaftoside −7.114 Mallophenol B −7.680

9 Diplacol −8.733 Delphinidin 3-O-beta-
D-sambubioside

−10.035 Pelargonidin 3-
glucoside

−6.811 Lauroside E −7.641

10 Myricetin −8.725 Rutin −8.987 Nymphaeol B −6.687 Hydroxycitric acid −7.629

11 Nymphaeol B −8.291 Luteolin −8.866 (+)-Gallocatechin
gallate

−6.663 Pelargonidin 3-
glucoside

−7.489

12 Schaftoside −8.251 Nymphaeol C −8.748 Macaranone A −6.548 (+)-Gallocatechin
gallate

−8.937

13 (+)-Gallocatechin
gallate

−8.289 Macakurzin A −8.723 Myricetin −6.531 Delphinidin 3-O-beta-
D-sambubioside

−7.333

14 Macakurzin A −8.191 Isovitexin −8.710 Bergenin −6.378 Gallic acid −7.122

15 Tanariflavanone D −8.160 Lonchocarpol Aa −8.644a Quercetin −6.377 Lonchocarpol A −7.017

16 Chlorogenic acid −8.131 Diplacola −8.576a Isovitexin −6.277 Nicotiflorin −6.819

17 Isovitexin −8.096 Tomentosanol D −8.470 Lonchocarpol A −6.161 Aucubin −6.752

18 Cynaroside −7.991 Isolicoflavonol −8.451 Lauroside E −6.117 Tanariflavanone D −6.739

19 Quercetin −7.996 Fisetin −8.459 Acteoside −6.115 Broussonol E −6.342

20 Bonnaniol −7.904 Denticulaflavonol −8.253 Nymphaeol A −6.047 Macarangioside F −6.255

21 Macakurzin A −7.884 Glepidotin A −8.231 Diplacol −5.972 Chlorogenic acid −6.089

22 Aucubin −7.818 Myricetin −8.187 Catalpol −5.733 Protocatehuic acid −6.019

23 Broussonol E −7.490 Catalpol −8.164 Tomentosanol D −5.692 Diplacol −5.997

24 Mallophenol B −7.425 Macarangin −8.134 Broussonol E −5.674 Cianidanol −5.992

25 Luteolin −7.414 Cynaroside −8.066 Macakurzin A −5.631 Tomentosanol D −5.875

26 Lonchocarpol A −7.331 Broussonol Ea −8.069a Isolicoflavonol −5.602 Isovitexin −5.871

27 Dexamethasone −5.641 Dexamethasonea −5.302a Dexamethasone −3.939 Dexamethasone −2.946

aSelected compounds and their binding energy against 3CLpro for further molecular dynamics analysis.
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Static first order hyperpolarizability β �











β2x + β2y + β2z

√
; (16)

where βx �
3
5
(βxxx + βxyy + βxzz), (17)

βy �
3
5
(βyyy + βyzz + βyxx), (18)

βz �
3
5
(βzzz + βzxx + βxyy), (19)

βTotal �






















































(βxxx + βxyy + βxzz)2 + (βyyy + βyzz + βyxx)2 + (βzzz + βzxx + βxyy)2√

,

(20)

γ � 1
5
[γxxxxγyyyyγzzzz + 2(γxxxx + γyyyy + γzzzz)]. (21)

Notably, any compound with a higher value of first-order

hyperpolarizability denotes an NLO active compound and vice

versa. Table 4 shows that the hyperpolarizability value of

dexamethasone is (0.7207 × 10–30), which is 10 times higher

than that of lonchocarpol A (0.0586 × 10–30), broussonol E

(0.0017 × 10–30), and diplacol (0.0590 × 10–30). Collectively,

this study proposed that dexamethasone is the most suitable

compound for NLO-based technology.

3.5 Molecular docking and binding site
analysis

3.5.1 Inhibitory potential of promising
phytodrugs against SARS-CoV-2 spike
glycoprotein, 3CLpro, PLpro, and RdRp

The 3CLpro, also referred to as NSP5, mediates the

maturation of Nsps, which is vital in the virus’s lifecycle. The

structural analysis and catalytic mechanism of 3Clpro using

biophysical techniques have been widely investigated (Pillaiyar

et al., 2016). Therefore, 3CLpro remained an important

therapeutic target for developing potential anti-coronavirus

drug candidates. Peptide inhibitors and small molecules are

inhibitors targeting the SARS-CoV-2 3CLpro. From the

molecular docking result, various molecular interactions,

including hydrogen bonding, hydrophobic, polar, and pi–pi

interactions, were observed and analyzed while ranking the

compounds based on their binding poses. Although,

nicotiflorin, schaftoside, acetoside, and mallophenol

demonstrated average binding energy of −11.20 kcal/mol

(Table 5). They were eliminated from further studies because

of their undruggable properties. Interestingly, lonchocarpol A,

broussonol E, diplacol, and dexamethasone (reference

compound) were selected for further analysis because of drug-

like properties, molecular interactions, and high binding energy.

Lonchocarpol A is a flavone obtained from Lonchocarpus and

Erythrina species and has been reported for its biological

activities, including anticancer, insecticidal, and antibacterial

activity, amongst others. Interestingly, lonchocarpol A has also

been synthesized using various synthetic methods and have also

received significant interest as a compound with numerous

therapeutic benefits (Salvatore et al., 1998). Lonchocarpol A

has a binding affinity of −8.644 kcal/mol and hydrogen bond

interactions with ARG188 based on its side hydroxyl group. All

significant interactions exhibited by the compound were mainly

due to its alkyl side group and phenyl ring.

The alkyl groups present in the phenyl moiety interact with

hydrophobic amino acids TYR54, PRO52, MET49, CYS44,

TABLE 6 Molecular interaction profiling and docking score of top four compounds.

S/
N

II interacting amino acid residues

Lead
compounds
against
3CLPro

Docking
score
(kcal/mol)

H-bond Hydrophobic Polar Charged
(negative)

Charged
(positive)

Glycine

1 Lonchocarpol A −8.644 ARG188 TYR54, PRO52, MET49, CYS44,
VAL42, LEU27, CYS145,
VAL186, ALA191, LEU167,
PRO168, MET165

HIS41, ASN142,
GLN189, THR190,
GLN192, HIS164

ASP48,
ASP187,
GLU166

ARG188 GLY143

2 Diplacol −8.576 ARG188 TYR54, PRO52, CYS44, MET49,
MET165, CYS145, LEU27

GLN189, HIS41,
HIS164, ASN142,
THR26, THR25,
THR24

ASP48,
GLU166,
ASP187

ARG188 GLY143

3 Broussonol E −8.069 ARG188 CYS145, CYS44, MET49, PRO52,
TYR54, MET165, LEU167

THR26, THR25,
THR24, HIS164,
GLN192, THR190,
GLN189, HIS41,
ASN142

ASP48,
ASP187,
GLU166

ARG188 GLY143

4 Dexamethasone −5.302 ARG188 PRO168, LEU167, MET165,
MET49, CYS44, PRO52, TYR54

HIS164, GLN189,
HIS41, ASN142

GLU166,
ASP48,
ASP187

ARG188 —
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VAL42, LEU27, CYS145, VAL186, ALA191, LEU167, PRO168,

and MET165, and polar amino acids HIS41, ASN142, GLN189,

THR190, GLN192, and HIS164 (Table 6). The other notable

interactions were pi–pi/charge interactions between the aromatic

ring of lochocarpol A with ASP48, ASP187, GLU166, and

ARG188 (Figure 3). The second selected lead compound,

diplacol, showed a similar hydrogen bond with amino acid

ARG188 as in lonchocarpol A; however, the two

dihydroxylphenyl and the alky group of the compounds were

responsible for its hydrophobic interactions with various amino

acid residues (TYR54, PRO52, CYS44, MET49, MET165,

CYS145, and LEU27) at the 3CLpro active site. The polar

protein–ligand interactions exhibited by diplacol follow the

same pattern as lonchocarpol A with subtle differences.

Diplacol established polar interactions with the following

amino acid residues: GLN189, HIS41, HIS164, ASN142,

FIGURE 3
3D interaction of top four docked complexes: (A) lonchocarpol A–3CLpro complex, (B) broussonol E–3CLpro complex, (C) diplacol–3CLPro,
(D) dexamethasone–3CLPro.
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THR26, THR25, and THR24; these residues were present at the

binding pocket of 3CLpro. Broussuonol E has a binding energy

of −8.069 kcal/mol and shows key biomolecular interactions with

certain amino acids such as THR26, THR25, THR24, HIS164,

GLN192, THR190, GLN189, HIS41, and ASN142 within the

3CLpro active site. Broussuonol E demonstrated other

interactions, such as polar and pi–pi interactions. The

reference compound (dexamethasone) has the least binding

energy with similar inter- and intramolecular interactions with

the lead compounds. Notably, dexamethasone interacted with

PRO52, TYR54, MET165, MET49, and CYS44 amino acid

residues, which were also recorded in the lead compounds

interactions. Therefore, the top three compounds were

proposed to have a similar mechanism of action as

dexamethasone since they share the same amino acid

interactions with the targets.

Spike is coronavirus’s major structural protein, which

assembles as a trimer into a unique corolla structure on the

virus’s surface. The spike protein mediates the virus interaction

with the host cell by binding to the host angiotensin-converting

enzyme (ACE-2). Certain host cell proteases, such as TMPRSS2,

cleave the spike protein into two subunits, S1 and S2, which play

FIGURE 4
Graphical representation of Prime/MM-GBSA binding energy
(ΔGbind) for docked complex and MD trajectory. The left frame
(blue) denotes the post-docking MM-GBSA binding energy,
whereas the right frame (green) signifies the MM-GBSA
binding energy of post-simulation analysis.

TABLE 7 Pharmacokinetics profile of top four compounds.

Models Lonchocarpol A Diplacol Broussonol E Dexamethasone

Absorption and distribution

Blood–brain barrier BBB− BBB+ BBB− BBB+

Caco-2 permeability Caco-2+ Caco-2− Caco-2− Caco-2+

P-glycoprotein (substrate) Non-substrate Non-substrate Non-substrate Substrate

P-glycoprotein (inhibitor) Inhibitor Inhibitor Inhibitor Non-inhibitor

LogS (aqueous solubility) −3.925 −4.285 −3.567 −3.703

Renal organic cation transporter 2 (OCT2) Non-inhibitor Non-inhibitor Non-inhibitor Inhibitor

Metabolism

CYP450 2C9 (substrate) Non-substrate Non-substrate Non-substrate Non-substrate

CYP450 2C9 (inhibition) Inhibitor Inhibitor Inhibitor Non-inhibitor

CYP450 2D6 (substrate) Non-substrate Non-substrate Non-substrate Non-substrate

CYP450 2D6 (inhibition) Non-inhibitor Non-inhibitor Non-inhibitor Non-inhibitor

CYP450 3A4 (substrate) Substrate Non-substrate Non-substrate Substrate

CYP450 3A4 (inhibition) Non-inhibitor Inhibitor Inhibitor Non-inhibitor

CYP450 1A2 Inhibitor Inhibitor Inhibitor Non-inhibitor

CYP450 2C19 Inhibitor Inhibitor Inhibitor Non-inhibitor

Toxicity

Ames toxicity Non-toxic Toxic Non-toxic Non-toxic

hERG inhibition Inhibitor Inhibitor Inhibitor Inhibitor

Carcinogenicity Non-carcinogenic Non-carcinogenic Non-carcinogenic Non-carcinogenic

Acute oral toxicity III III III III

Rat LD50 2.705 2.591 2.129 2.189
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a crucial role in receptor recognition and cell membrane fusion

(Millet and Whittaker, 2015). Therefore, blocking the

coronavirus entry into the cell by targeting the spike

glycoprotein has significantly been harnessed in the

development of therapeutic agents against coronavirus. From

the virtual screening results, rutin, delphinidin 3-O-beta-D-

sambubioside, and hesperidin show the highest binding

energy of −10.941, −10.709, and −10.627 kcal/mol,

respectively. Unfortunately, these compounds failed the

toxicity assessment and were eliminated from a further study.

However, the leads compounds, namely, diplacol E, broussonol

E, and lonchocarpol A, have a binding affinity of −8.733, −7.490,

and −7.331 kcal/mol against spike glycoprotein, respectively. The

protein–ligand contacts show that the lead compounds

established some essential hydrogen and hydrophobic

interactions. It can be deduced that lonchocarpol has the

lowest binding energy against spike glycoprotein when

compared to the remaining two lead compounds (diplacol and

broussonol E).

Papain-like proteinase (Plpro) plays a role in the cleavage of

the N-terminus of the replicase polyprotein to produce non-

structural proteins, including Nsp1, Nsp2, and Nsp3, which are

involved in the virus replication (Li et al., 2016). Thus, based on

the vital role played by PLpro in virus replication and infection, it

has received intense consideration as a therapeutic target for

coronavirus inhibitors. There have been no FDA-approved

inhibitors of PLpro. Aucubin was recorded with the highest

binding energy against PLpro, with −8.767 kcal/mol.

Aucubin’s high binding energy may be attributed to its

structural basis, including its imidazole ring. Nicotiflorin

optimally occupied the binding pocket of the target (PLpro),

which may be attributed to its ring system. The presence of

multiple hydroxyl groups at the nicotiflorin structures establishes

intermolecular hydrogen bonds. Several docked compounds,

including rutin, diplacol, hesperidin, and kuromanin, showed

high binding energy against PLpro while demonstrating pi–pi

and hydrophobic interactions with amino acid residues at the

active site of PLpro. The lead compounds lonchocarpol A,

diplacol, and broussonol E have a binding energy

of −6.161, −5.972, and −5.674 kcal/mol, respectively, when

docked into the binding pocket of PLpro. The binding energy

against PLpro follows a similar pattern to that of 3CLpro.

However, the lead compounds’ structural poses, binding

energy, and molecular interactions against PLpro are relatively

low when compared to that 3CLpro.

RNA-dependent RNA polymerase (RdRp: NSP 12) is a

conserved protein in coronavirus with a primary function in

the coronavirus replication/transcription complex. Targeting

NSp-12RdRp has been well documented for its little to no

side effects on the host cell (Ruan et al., 2020). However,

there has been no specific RdRp inhibitor till present. The

crystal structure of RdRp was downloaded and refined for the

protein–ligand docking process. Molecular docking results of

RdRp following the extra-precision approach show the antiviral

potential of the docked compounds.

Interestingly, acetosides and cynarosides demonstrated the

highest binding energy of −10.632 and −9.193 kcal/mol,

respectively. However, they were not selected for further

analysis because of their rule of five violations. The lead

compounds (lonchocarpol A, diplacol, and broussonol E) and

the reference compound (dexamethasone) had a very low

binding energy against the RdRp target; this may be attributed

to the configuration and nature of the RdRp active site and its

amino acid residues. The molecular docking results predicted

that the lead compounds could stop the viral replication of SARS-

CoV-2 through their inhibitory potential. Lonchocarpol A

exhibited a docking score of −7.017 kcal/mol when docked

into the active site of RdRp. Broussonol E has a binding

energy of −6.342 kcal/mol, followed by diplacol with a binding

energy of −5.997 kcal/mol. Although, other screened small

molecules such as kuromanin, lauroside E, gallic acid,

chlorogenic acid, and isovitexin demonstrated relatively high

binding energy of −7.687, −7.641, −7.122, −6.089,

and −5.871 kcal/mol, respectively.

3.6 MM-GBSA binding energy of top
inhibitors

Molecular mechanics generalized Born surface area (MM-

GBSA) has been widely explored as an advanced computational

approach to analyze binding energy with an improved algorithm

and solvation model. Compared to docking, post-scoring

compounds using MM-GBSA have been demonstrated to

TABLE 8 Drug-likeness prediction of top four compounds.

Compounds MW HBA HBD Veber’s rule Violation of
ROF

Pains

Lonchocarpol A 408.49 g/mol 5 3 TPSA = 86.99 Å2 Num. rotatable bonds = 5 0 0 alert

DIplacol 440.49 g/mol 7 5 TPSA = 127.45 Å2 Num. rotatable bonds = 6 0 1 alert (catechol)

Broussonol E 438.47 g/mol 7 5 TPSA = 131.36 Å2 Num. rotatable bonds = 5 0 1 alert (catechol)

Dexamethasone (reference compound) 392.46 g/mol 6 3 TPSA = 94.83 Å2 Num. rotatable bonds = 2 0 0 alert

MW, molecular weight; HBA, hydrogen bond acceptor; HBD, hydrogen bond donor; TPSA, topological surface area; ROF, rule of five; PAINS, pan-assay interference structure.
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correlate better to their reported binding affinity of docked

complexes (Greenidge et al., 2013; Tripathi et al., 2013). The

MM-GBSA method is more accurate in estimating the free

binding energies of protein–ligand complexes than docking

scores. A post-docking MM/GBSA analysis of the docked

complexes was −55.562, −49.137, −46.628, and −39.605 kcal/

mol for lonchocarpol A, broussonol E, diplacol, and

dexamethasone, respectively, as shown in Figure 4. The post-

simulation MM/GBSA, which further validates the binding

affinity of the compounds, shows similar binding energy to

the post-docking analysis.

3.7 Drug likeness and toxicity descriptors
prediction

Pharmacokinetic properties of the top four lead potential

antiviral flavonoids were predicted, studied, and tabulated, as

shown in Table 7. It is clear that except (-) lonchocarpol A and

broussonol E, none penetrated the blood–brain barrier. Under

the adsorption and distribution, the Caco-2 permeability of

the lead compounds shows that lonchocarpol A and

dexamethasone showed positive ions of Caco-2−

permeability whereas diplacol and broussonol E showed

negative ion of Caco-2− permeability.

The action of the four lead compounds on the P-glycoprotein

(substrate) showed that lonchocarpol A, diplacol, and broussonol

E are non-substrate. In contrast, only dexamethasone showed the

level of a substrate to the glycoprotein. Lonchocarpol A, diplacol,

and broussonol E are promising glycoprotein inhibitors from

COVID-19, whereas only dexamethasone shows its non-

inhibiting property. About the LogS (aqueous solubility),

broussonol E has the least solubility with −3.567, followed by

dexamethasone with −3.703, which is greater than broussonol E;

lonchocarpol A has a solubility value in the aqueous range

of −3.925, and the highest solubility value out of the four lead

compounds in the aqueous state is diplacol with a value

of −4.285. All the compound complexes exhibit non-inhibitor

on renal organic cation transporter 2 (OCT2), except

dexamethasone, which shows inhibiting properties.

For the metabolism, the CYP450 2C9 (substrate) and

CYP450 2D6 (substrate) showed that all the four lead

compounds are non-substrate in nature, and CYP450 2D6

(inhibition) showed the lead compounds as non-inhibitors.

CYP450 2C9 (inhibition), CYP450 1A2, and CYP450

2C19 showed that three lead compounds are natural

FIGURE 5
Calculated RMSD values for alpha carbon (Cα) atoms (blue curve) of 3CL protease and protein fit ligands viz., (A) lochocarpol A, (B) broussonol E,
(C) diplacol, (D) dexamethasone, were plotted with respect to 100 ns simulation period.

Frontiers in Chemistry frontiersin.org16

Balogun et al. 10.3389/fchem.2022.964446

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.964446


inhibitors, whereas only dexamethasone was non-inhibitor in

nature.

For the Ames toxicity, all three lead compounds are non-

toxic, whereas only the diplacol is toxic. In the analysis of hERG

inhibition and carcinogenicity, all lead compounds exhibit

inhibiting properties and non-carcinogenic ability. The Rat

LD50 is higher on lonchocarpol A with a value point of

2.705 and lower on broussonol with a value of 2.129. Thus,

natural phytocompounds are not naturally occurring and

reported negligible toxicity when tested in vitro; hence, it

could be a promising drug candidate and can be tested

in vitro then in vivo. Lethal doses (LD50) of all the natural

compounds were higher when compared to chemical drugs,

which denotes that even at a higher dosage natural

compounds are less toxic than chemically synthesized drugs.

Thus, chemical drugs are toxic from the pharmacokinetic

predictions compared to natural compounds; natural

compounds have shown potential against several diseases with

the least side effects (Benfenati et al., 2009). The drug-likeness

properties (Table 7) of the compounds show they are druggable

compounds with no violations of Lipinski’s assessment and

Verber’s rules (Table 8). Some classes of compounds have

been reported for their false-positive results during virtual

screening. These compounds are referred to as Pan-assay

interference compounds (PAINS). Chemical compounds in

this category have been found to target numerous biological

targets rather than a specific target (Baell, 2016). Catechols,

quinones, curcumin, and toxoflavin are common examples of

PAINS (Baell and Walters, 2014). PAINS screening of our

compounds was carried out using the SwissADME web server

(Daina et al., 2017), and the results shows that diplacol and

broussonol E are PAINS compounds because of their

substructural motifs with catechols. However, lochocarpol A

and the reference compound (dexamethasone) will produce

specific molecular interactions because they do not belong to

the PAINS class.

3.8 Molecular dynamics simulation of the
complexes

Molecular dynamics (MD) simulation is an essential tool that

helps in the study of macromolecules such as nucleosomes,

ribosomes, membrane proteins, organic solids, and

proteins–ligand complexes and has evolved rapidly over the

last 4 decades because of advances in force fields, thanks to

FIGURE 6
Line representation of the evolution of root-mean-square fluctuation of 3CL protease Cα during the 100 nsMD simulation. (A) Lonchocarpol A,
(B) broussonol E, (C) diplacol, (D) dexamethasone.
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the development of quantum physics and computational

chemistry (Mekni phyto-drugset al., 2019). The simulation is

widely used to analyze the structure-to-function relationship of

protein and protein–ligand complexes. The current generation

molecular dynamics mimic the actual biological systems with a

potential simulation period of up to 100 ns for each complex and

their behavior in the order of nanoseconds with appropriate

system configurations using high-speed supercomputers. It takes

thousands to several million steps and involves intra- and

interatomic interactions simulated simultaneously, for which

supercomputers play a vital role in attaining so. It is essential

to study the simulation in the order of shortest duration,

preferably femtoseconds, because biomolecules’ structural and

functional properties concern nano- and microseconds (Liang

et al., 2007).

After the chemical profiling, the association of compound

complexes was examined, and the dynamic stability of screened

compounds was studied using MD simulation at 100 ns in terms

of root-mean-square deviation, root-mean-square fluctuations,

and molecular contacts (Figures 5–7). This was achieved with the

aid of the Desmond module integrated into the Schrodinger

suite. Analyzing the molecular dynamics simulation at the

atomistic level, all the compounds were relatively stable

through the MD simulation period.

Lonchocarpol A-3CLpro complexes were stable within

0–50 ns (Figure 5). However, fluctuations were observed from

55 to 65 ns before the ligand retained its stability. The RMSF

analysis explicitly shows that some amino acid residues (PHE3,

ARG4, GLY138, and GLU255) contributed to the ligand

fluctuations. Clearly, broussonol E was found to be stable

when in a complex with the protein backbone, with subtle

fluctuation recorded at 25–35 ns and 65–75 ns. The RMSF

analysis of broussonol E shows its residue index and

established molecular contacts largely dominated by water

bridges and hydrophobic interactions. Diplacol demonstrated

a varying degree of fluctuations between 0 and 20 ns.

Interestingly, it was found to be very stable from 25 to 100 ns.

However, a slight increase in the RMSD value of the ligand was

observed toward the end (90–100 ns) of the simulation period, as

shown in the trajectory. The reference compound (dexamethasone)

peaked at RMSD 2.0 A at 20 ns and established essential interaction

profiling such as hydrogen and water bridges. Our results, herein,

suggest that the binding of the compounds may prompt

conformational alterations. In consistent with this, the analysis of

FIGURE 7
Post simulation analysis of protein–ligand interaction mapping. (A) Lonchocarpol A–3CLPro complex, (B) broussonol E–CLPro complex, (C)
diplacol–3CLPro, (D) dexamethasone–3CLPro.

Frontiers in Chemistry frontiersin.org18

Balogun et al. 10.3389/fchem.2022.964446

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.964446


MM-GBSAwith trajectory againstMM-BGSAwithout the trajectory

residue number showed that the compound complexes showed

higher oscillations in backbone residues when compared to other

complexes in the systems, as shown in the figure below. This is

consistent with the docking results of the four lead compounds that

showed the highest binding free energy to other compounds with the

low or least binding free energy of −7.3 and −8.1 kcal/mol.

The establishment and immovability of H-bonds were inspected

over the simulation period. H-bond features are essential in drug

design and discovery due to their irreplaceable role in drug specificity,

metabolism, and absorption (Kurczab, 2017). Figure 7 shows that the

four lead compounds could establish at least one hydrogen bondwith

amino acid residues. Thus, the stability of complexes was maintained

by H-bond formation with active site residues. According to the

docking and MD simulation analyses, the four lead compounds

showed good affinity toward COVID-19 compared to the other

compounds. However, lonchocarpol A showed a high docking score

(−8.644 kcal/mol) and formed pi-stacking interactions with the

essential amino acids of the COVID-19 binding domain. The MD

simulation of the complexes in the study was very helpful in

analyzing the conformational stability and dynamics of the

protein and protein–ligand complexes at different nanosecond

time intervals, fluctuations, and their deviations from the

reference structure on COVID-19.

4 Conclusion

This study used an integrated computational approach such as

molecular docking, molecular dynamics simulation, and semi-

empirical Hamiltonian mechanics to discover flavonoids that

could serve as potential therapeutic agent against SARS-CoV-

2 therapeutic targets 3CLpro, PLpro, spike glycoprotein, and

RdRp. Following the virtual screening, three lead compounds

(lonchocarpol A, diplacol, and broussonol E) were identified as

novel inhibitors of 3CLpro among the selected targets of SARS-

CoV-2 by evaluating binding energy and interaction poses, drug

likeness, toxicity, and dynamic stability in comparison to a reference

compound (dexamethasone). Molecular docking shows that the

compounds have high binding energy, resulting in strong molecular

complex formation with the molecular SARS-CoV-2 targets. An

atomistic study of the protein–ligand interaction via the dynamics

simulations shows that deviation in dynamic stability falls within an

acceptable range. Therefore, the docked complexes can be

considered stable based on intermolecular interactions. The semi-

empirical Hamiltonian mechanics elucidated the lead compound

polarizability and the high chemical reactivity toward the target

receptors. As a result, we propose that the hit compound could serve

as a benchmark for developing phytodrugs against COVID-19.

However, we recommend further experiments via in vitro

pharmacological inhibition and neutralization studies to be

carried out to validate our claim to develop these compounds as

inhibitors of the SARS-CoV-2 therapeutic targets.
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