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Distinct metabolic states guide maturation
of inflammatory and tolerogenic
dendritic cells

Juraj Adamik1, Paul V. Munson1, Felix J. Hartmann2, Alexis J. Combes 3,4,5,
Philippe Pierre 6,7,8, Matthew F. Krummel 3,4, Sean C. Bendall 9,
Rafael J. Argüello 6 & Lisa H. Butterfield 1,10

Cellular metabolism underpins immune cell functionality, yet our under-
standing of metabolic influences in human dendritic cell biology and their
ability to orchestrate immune responses is poorly developed. Here, we map
single-cell metabolic states and immune profiles of inflammatory and tolero-
genic monocytic dendritic cells using recently developed multiparametric
approaches. Single-cell metabolic pathway activation scores reveal simulta-
neous engagement of multiple metabolic pathways in distinct monocytic
dendritic cell differentiation stages. GM-CSF/IL4-induce rapid reprogramming
of glycolyticmonocytes and transient co-activationofmitochondrial pathways
followed by TLR4-dependent maturation of dendritic cells. Skewing of the
mTOR:AMPK phosphorylation balance and upregulation of OXPHOS, glyco-
lytic and fatty acid oxidation metabolism underpin metabolic hyperactivity
and an immunosuppressive phenotype of tolerogenic dendritic cells, which
exhibit maturation-resistance and a de-differentiated immune phenotype
marked by unique immunoregulatory receptor signatures. This single-cell
dataset provides important insights into metabolic pathways impacting the
immune profiles of human dendritic cells.

Dendritic cells (DC) bridge innate and adaptive immunity through
recognition and processing of pathogen and danger-associated
signals for orchestrating cytokine-mediated inflammatory respon-
ses and priming antigen-specific T cell activation1. DC activation
and maturation is a highly coordinated response associated with
phenotypic and morphologic changes, which enable functional
specialization for mounting protective immunity or tolerance to
self-antigens2. The DC maturation process results in upregulation

of major histocompatibility complexes (MHC), costimulatory
molecules (CD86, CD80, CD40, ICOSL) trafficking receptors
(CCR7) and secretion of proinflammatory cytokines3. Emerging
research has identified adaptations in cellular metabolism that are
central to accommodate energy demands associated with func-
tional changes in transcriptional and biosynthetic pathways
necessary for DC survival, migration and effective T cell priming
capacity4.
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Similar to theWarburg effect in cancer cells, a profound shift from
oxidative phosphorylation (OXPHOS) to aerobic glycolysis upon Toll-
like receptor (TLR) activation was shown to be central metabolic
rewiring in murine bone marrow-derived DCs (BMDCs)5. This
immediate-early glycolytic increase within minutes of TLR-stimulus, is
controlled by the TBK1-IKKε-Akt signaling axis to activate the rate-
limiting glycolytic enzyme hexokinase 2 (HK2), which is essential for
supporting de novo synthesis of fatty acids for ER andGolgi expansion6.
While TLR-activated DCs become more dependent on extracellular
glucose, it was demonstrated that intracellular glycogen stores support
the early glycolytic flux and immune functions7. While the early stages
of BMDC activation maintained increased OXPHOS, the onset of sus-
tained glycolytic reprogramming induced iNOS-dependent generation
of nitric oxide (NO) from arginine, which blocksmitochondrial electron
transport and respiration items8,9. BMDC switch to glycolysis and lactic
acid fermentation as a rapid source of ATP and further engage pentose
phosphate pathway (PPP) for increased nucleotide biosynthesis and
NADPH for generation of reactive oxygen species (ROS)10. Together
these complex pathways program murine DC’s ability to process and
present antigens for proper activation of adaptive immune branches.

While glycolytic metabolism is a hallmark of murine BMDC acti-
vation, this phenomenon does not directly translate to human DC10–13

and recent evidence suggests that context-specific metabolic repro-
gramming governs changes in immature, steady-state, inflammatory
activation and initiation of immune tolerance in different micro-
environmental and pathophysiological settings4,13. Furthermore,
diverse metabolic programs and mitochondrial reprogramming
underlie cellular fate and function of distinct DC subtypes14. Metabolic
differences associated with deregulated OXPHOS, glycolysis and fatty
acid oxidation (FAO) programs were also shown to influence anti-
inflammatory phenotype of tolerogenic DCs (tol-DC)15, whichmaintain
immune tolerance by inhibiting effector and autoreactive T cells, and
polarizing development of regulatory T cell (Treg) responses16.

The mammalian target of rapamycin (mTOR) and AMP-activated
protein kinase (AMPK) are critical signaling factors regulating cellular
metabolism, but their regulation in the context of human monocyte-
deriveddevelopment is notwell understood. As a downstream target of
the PI3k/Akt pathway, mTOR is an important upstream activator of
glycolytic reprogramming driving high metabolic demands of TLR-
activated murine macrophages and DCs17. As a critical cellular nutrient
sensor controlling an array of cellular responses, growth and survival,
mTOR concurrently supports de novo biosynthesis of lipids, proteins,
and amino acids11,18. Activation of AMPK opposes mTOR dependent
glycolytic reprogramming, skewing cellularmetabolism towards energy
conservation driving mitochondrial biogenesis via peroxisome
proliferator-activated receptor-γ (PPARγ) co-activator-1α (PGC1α) sig-
naling axis to increase activity of mitochondrial enzymes and OXPHOS.
AMPK also upregulates carnitine palmitoyltransferase 1α (CPT1α)
favoring catabolic FAO11,18,19. The PI3K/Akt/mTOR pathway20 along with
the p38MAPK, ERK1/2 and STAT3 signaling axis21 have been implicated
in controlling glycolytic phenotypes of the tol-DC, but the role for
AMPK in both immunologic and tol-DC biology is largely understudied,
and the precise role of mTOR/AMPK balance is controversial4,13.

While providing invaluable insights to the field of immuno-meta-
bolism, the technical limitations of bulk cellular measurements often
used tomeasuremetabolic respiration bymeans ofmetabolite tracing
and/or oxygen consumption (OCR) and extracellular flux analyses
(ECAR), are not able to adequately capture the newly-appreciated
phenotypic and functional and diversity associated with the hetero-
geneous nature of in vitro DC culture systems22,23. As key regulators of
immune homeostasis, monocytic DC have been critical resource for
diverse cell therapy applications including priming anti-tumor T-cell
responses as cancer vaccines24, or in the opposing role as tolerogenic
promoting immune suppression for organ transplantation and auto-
immune disease treatment25.

Emergence of single-cells approaches using RNA sequencing and
high-dimensional mass (cytometry by time of flight, CyTOF) and
fluorescent cytometry-based techniques paralleled with histology-
based multiplexed imaging (MIBI-TOF) enables robust estimation of
immuno-metabolic states of individual cells in the context of hetero-
geneous cell populations as well as spatial organization in tissues26–30.

In this study, we coupled single-cell energetic metabolism by
profiling translation inhibition (SCENITH)27 and CyTOF-based single-
cell metabolic regulome profiling (scMEP)29 to integrate functional
measurements with quantifying metabolite transporters and enzymes
across major cellular metabolic axes. We show previously obscured
coordinate activation of multiple metabolic pathways along distinct
stages of monocytic DC differentiation and maturation. Our mapping
of functional metabolic states and the underlying metabolic protein
regulome further showed that elevatedmTOR:AMPK phosphorylation
ratio with upregulation of OXPHOS, glycolytic and fatty acid oxidation
metabolism underlies the metabolic hyperactivity of the immuno-
suppressive phenotype of tolerogenic DC.

Results
Immuno-metabolic profiling of monocyte to DC differentiation
reveals extensive reprogramming from glycolytic to pre-
dominantly mitochondrial metabolism
To evaluate the impact of metabolic pathway inhibition during
monocytic DC differentiation, we employed SCENITH coupled with a
multi-parametric panel encompassing DC surface and signaling mar-
kers (Fig. 1A). This enabled us to employ both manual gating and
unsupervised clustering approaches to profile immune-phenotypes
and metabolic activity of CD14 +monocytes, DC precursors (mono
24 h/48 h), immature DC (day 5 iDC), DC after 4 h LPS + IFN-γ (actDC),
and DC after 24 h of LPS + IFN-γ'' (mDC) at single-cell level. Dimen-
sionality reduction based on nine immunemarkers identified 5 distinct
clusters of differentiation states with iDC and actDC co-occupying the
same cluster (Fig. 1B). Monocyte differentiation induced rapid loss of
CD14, which was paralleled by maturation upregulation of MHC
receptor HLA-DR, co-stimulatory molecules CD86, CD206, including
acquisition of the conventional DC 2 (cDC2) marker CD1c (BDCA-1),
checkpoint regulator programmed cell death ligand-1 (PD-L1/CD274)
(Fig. 1B) andmodest increase in co-inhibitory Ig-like transcript 3 (ILT3/
CD85) (Fig. 1B). The DC SCENITH panel and gating strategies for pre-
cursors and DC populations are shown in Supplementary information
(Supplementary Table 1, Supplementary. Fig. 1A).

In agreement with Argüello et al.27, monocytes relied primarily on
glucose oxidation having the highest glycolytic capacity and minimal
dependencyonmitochondrial energy production (Fig. 1C).Within 24 h
of GM-CSF/IL4 stimulus, monocytes precursors increased mitochon-
drial dependence from 18% to 72%, which was accompanied with
decreased glycolytic capacity from 82% to 28%. Day 5 iDC exhibited
further increase in mitochondrial dependence to 79% along with
increased protein synthesis which peaked 4 h post LPS/IFNγ-induced
DC maturation along with transient increase in glycolytic capacity in
actDC (Fig. 1C). FullymaturedmDC exhibited lowest protein synthesis,
and 86% mitochondrial dependence with moderate FAAO capacity
(24%) and low glycolytic capacity (14%) (Fig. 1C). Etomoxir and CB-839
inhibitors were used to further separate contributions of fatty acids
(long-chain) and glutamine, respectively, towards fueling protein
synthesis in iDC and mDC. These inhibitors did not alter DC markers’
expression and allowed us to reveal that while iDC showed similar 19%
Glutaminolysis and FAO dependence, mDC had lower, 7% FAO
dependency and increased 41% Glutaminolysis dependence (P < 0.05;
Fig. 1D, Supplementary Fig. 1B, C).

To determine if the metabolic changes observed during differ-
entiation of cells in cell culture media in-vitro correlate with ex-vivo
data, we derived SCENITH parameters for monocytes and CD123+

plasmacytoid (pDC) and CD141+CD1c- cDC1 sub-populations in freshly
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isolated PBMCs (Fig. 1E). Similar to in vitro conditions, ex vivo mono-
cytes had highest glucose dependence (72%) and 71% glycolytic capa-
city. In contrast, cDC1 exhibited highest mitochondrial dependence
(79%) and unlike inflammatory in vitro matured DC, both cDC1 and
pDC exhibited highest FAAO capacity (65%). This suggests that high
levels of glucose in culture media is potentially skewing a preference
for glucose as an energy source for in vitro derived DC.

Temporal changes in the metabolic regulome reflect functional
reprogramming of mitochondrial respiration and axillary
pathway activation in DC
To further map the metabolic rewiring underlying functional spe-
cialization of antigen presenting DC we utilized scMEP to quantify
the expression of phenotypic markers in conjunction with rate-
limiting metabolic enzymes, metabolite transporters and signaling
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factors encompassing several metabolic pathways depicted in
Fig. 2A. Kinetic profiles for multiple DC-lineage surface markers
recapitulated SCENITH immune-profiling. Along with the loss of
CD14, there was a maturation-specific upregulation in HLA-DR,
CD86, PD-L1 and CD1c, while CD206, CD11c, CD11b peaked in actDC
(Fig. 2B, C, Supplementary Fig. 2A). Dimensionality reduction of
scMEP metabolic parameters using tSNE maps enabled visual
separation of DC differentiation states as characterized by immune
marker overly expression (Fig. 2B). The increase in mitochondrial
dependence measured by SCENITH was complemented by scMEP,
in which GM-CSF/IL4 treatment triggered robust upregulation of
components of the tricarboxylic acid (TCA) cycle (IDH2, CS) and
electron transport chain (ETC) complexes (SDHA, ATP5A) (Fig. 2C,
Supplementary Fig. 2B). Glycolytic enzymes ENO1, GAPDH and
LDHA were highly expressed in monocytes and their expression
decreased following differentiation, which consistent with the
reduced glycolytic capacity of maturing DC (Figs. 1C, 2C). However,
we also observed that Glucose and lactate transporters GLUT1 and
MCT1 respectively, together with low expression levels of PFKFB4
were upregulated during DC differentiation (Fig. 2C, Supplemen-
tary Fig. 2B). scMEP identified concurrent upregulation ofmetabolic
markers regulating fatty acid oxidation (HADHA) together with AA
transporters (ASCT2, CD98) and glutaminase (GLS). This further
complements the Etomoxir and CD-839 SCENITH inhibitor data,
and suggests that in addition to glucose, DC also utilize fatty acids
and AA over the course of differentiation (Fig. 2C, Supplementary
Fig. 1C). Of note FA transporter CD36 and enzyme CPT1A exhibited
moderate decrease followed by constitutive expression across
maturation. Intracellular glutathione redox status plays important
role in differentiation and Th1 and Th2 responses of DCs31,32. Glu-
tathione synthase (GSS) functions in glutathione (GSH) biosynthesis
to protect cells from oxidative damage33. GSS exhibited increased
expression towards iDC stage and remained constant following DC
maturation. The pentose phosphate pathway (PPP) represents a
branch of glucose metabolism, which regulates redox homeostasis,
production of reactive oxygen species (ROS), nitric oxide (NO) and
fatty acid synthesis by producing the vital intermediate NADPH as
well as nucleic acid building block ribose 5-phosphate (R5P)34. The
effects of PPP on DC activation have been only studied in context of
murine DC differentiation to date. The study by Everts et al.6,
showed that inhibition of PPP enzyme glucose-6-phosphae dehy-
drogenase (G6PD) diminished LPS-mediated proinflammatory
cytokine production and lipid accumulation, which resulted in
preventing murine BMDC maturation. PPP was elevated in iDC and
mDC stages with significant decrease in actDC (Supplementary
Fig. 2B). Mitochondrial biogenesis and dynamics were monitored
using PPARγ co-activator-1α (PGC1α) and translocase of outer
mitochondrial membrane 20 (TOMM20), which were both upre-
gulated through DC differentiation (Fig. 2, Supplementary Fig. 2B).
We note that the expression changes of scMEP metabolic enzymes
were normalized to the observed 4-fold increase in cell volume from
monocyte to mDC.

scMEP-based co-expression patterns define single-cell DC
immune diversity
We integrated the SCENITH functional parameters with scMEP co-
expression patterns to calculate metabolic pathway scores across DC
differentiation. A limitation in SCENITH calculation output is that it
cannot distinguish between wells that have different magnitudes of
protein synthesis levels even though the overall metabolism may be
different. Because protein translation was demonstrated to be a highly
energy-dependent metabolic process and a reliable and highly stable
readout of cellular ATP production27, it is used as a surrogate readout
for inhibitor-induced changes in cellularmetabolic ATP output by flow
cytometry. To reflect the contribution of each SCENITH pathway
percentual measurements with respect to total protein synthesis over
time, we multiplied each SCENITH parameter by gMFI of puromycin
MFI accounting for the changes in background levels according to the
following formula: [(SCENITH parameter)*(C-DGO)] (Fig. 2D, Supple-
mentary Fig. 3A). We tested correlations between protein synthesis-
adjusted SCENITHmetabolic profiles and scMEPmarker co-expression
and used a previously described approach29 to derive in silico scores,
used to represent metabolic pathway activation. Using scMEP scores
we were able to map temporal changes in OXPHOS, glycolysis, FAO,
AA, PPP, GSH and mitochondrial dynamics (MITO) remodeling across
DC differentiation timeline (Fig. 2E) with statistical significance
depicted in Supplementary Fig. 3B. Due to more complex co-
expression patterns of glycolytic markers, we also calculated sepa-
rate scMEP scores for upregulated (GLYC-UP) and constitutive (GLYC-
CON) arms of the DC glycolytic pathway (Fig. 2E).

Temporal changes and engagement of multiple metabolic
pathways underlies heterogeneity of DC immune phenotypes
Collectively, metabolic changes in SCENITH and scMEP pathway ana-
lyses suggested simultaneous increase ofmitochondrial and glycolytic
pathways at specific stages of DC differentiation (Fig. 2D, E). Because
the SCENITH profiling used to derive scMEP scores represents a bulk
metabolic measurement encompassing whole well cultures, it
remainedunclearwhether there are distinctOXPHOS and/or glycolytic
DC sub-populations contributing to the final metabolic output. Inde-
pendently calculated single-cell scMEP scores revealed that differ-
entiating DC populations simultaneously upregulate both OXPHOS
and FAO pathways with homogenous distribution throughout differ-
entiation with peak expression at the iDC and actDC activation stages
(Fig. 2F). The AA metabolism followed a similar but less correlative
upregulation pattern as FAO and exhibited the highest heterogeneity
in mDC (Fig. 2F). Positive correlations and unified distribution with
mitochondrial dependence were also observed for GSH pathway and
mitochondrial dynamics scores arguing for the importance of glu-
tathione redox status and mitochondrial biosynthesis during DC
maturation (Supplementary Fig. 3C). Coordinate engagement of both
OXPHOS and glycolysis, which resembled metabolic remodeling of
activated CD8 T cells26,29 was observed. However, our single-cell
approach revealed that cells span a wide spectrum of possible glyco-
lytic and respiratory scMEP scores, indicating a range of metabolic

Fig. 1 | Distinct metabolic profiles regulate in vitro DC-lineage differentiation
and blood DC. A Conceptual overview of in vitro culture conditions and experi-
mental setup for scMEP and SCENITH functional metabolic profiling and immune
characterization ofDCdifferentiation states.B Expression of immunemarkers over
the course of DC generation is illustrated in flow-cytometry histograms. UMAP
clustering based on DC immune markers (CD14, HLA-DR, CD86, CD206, CD1c, PD-
L1, ILT3, CD11c, CD276) across DC differentiation stages. Heatmap overlays depict
immune marker expression. C Overview of kinetic changes in percentual SCENITH
parameters and protein synthesis measurements across DC differentiation time-
line. Lines represent average SCENITH profiles (precursor stages 0 h and 24h
represent three independent donors), iDC and mDC represent six independent
donors, precursor 4 h timepoint is only a referencepoint for visualizationpurposes

and represents 1 donor.D Percentual SCENITHcomparisons between iDCandmDC
including Etomoxir and CD-839-derived parameters are shown (bar graphs repre-
sent 3 independent replicates from 1 donor with mean± SE). PyrO abbreviates
proteins synthesis due to pyruvate oxidation. E Shown are gating strategies for
immune characterization and percentual SCENITH profiles for freshly isolated
bloodmonocytes and DC populations from 3 independent donors with mean± SE.
Statistical significance inA, Ewas calculated via one-way ANOVAwith Tukey’s post-
hoc test,D using two-sided Student’s t-test. For all panels, P-values are represented
as *p ≤0.05, **p ≤0.01, ***p ≤0.001, ****p ≤0.0001. p-values < 0.05 were considered
statistically significant (ns). Box plots indicate second and third quantile (box),
median (horizontal line) and 1.5× the interquartile range (whiskers). Source data are
provided as a source data file.
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heterogeneity within each differentiation time point (Fig. 2F). To bet-
ter capture this previously unrecognized metabolic diversity, we
mapped heatmap overlays of DC-lineage marker expression on the
single-cell scMEP pathway score co-expression plots. Analysis of mDC
revealed that a range of OXPHOS and glycolytic co-expression profiles
underlies distinct DC immune phenotypes. Specifically, we saw that
while HLA-DR and PD-L1 distribution showed wide glycolytic and
OXPHOS potential, CD1cHi cells exhibited the highest OXPHOS and

glycolytic phenotype and the CD86Hi populations were preferentially
skewed toward OXPHOS (Fig. 3A).

Differential coactivation of mitochondrial vs glycolytic path-
ways underlies DC immune phenotypes and separates CD1cHi

CD86Hi DC populations
To further determine metabolic properties associated with CD1c+ vs
CD86+ phenotypic polarization (Fig. 3B), we divided our single-cell
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data sets into 4quantiles,whichwere determined fromCD1c andCD86
expression ranges (Supplementary Fig. 4A). Quantile visualization of
single-cell correlation scMEP scores further confirmed that while
CD1chi phenotype associates with both glycolytic and OXPHOS path-
ways, CD86+ polarization skews predominantly towards aerobic
OXPHOS metabolism (Supplementary Fig. 4B). Apart from slightly
enhanced mitochondrial dynamics, distribution of scMEP population
scores for constitutive glycolytic enzymes or additional pathways did
not show significant changes between the top CD1chi and CD86hi

quantiles (Fig. 3C, Supplementary Fig. 4C). Additional analysis of dif-
ferential scMEP marker expression between the CD1chi (quantile 4) vs
CD1clow (quantile 1) cells confirmed that inducible factorsGLUT1,MCT1
and PFKFB4 are significantly elevated in CD1chi populations (Fig. 3D,
Supplementary Fig. 4D). Expression of these molecules was sig-
nificantly downregulated (MCT1) or unchanged (GLUT1, PFKFB4) in
CD86hi vs CD86low populations. PDK1 was also significantly increased in
the (CD1chi) quantile 4, which was not observed in CD86 quantiles
comparisons (Fig. 3D, Supplementary Fig. 4D). PDK1 participates in
inhibiting phosphorylation of the pyruvate dehydrogenase complex,
thereby preventing conversion of pyruvate produced by glycolysis to
acetyl-CoA and its entry to the TCA cycle, as diagramed in Fig. 3D35. Its
critical role in glucose homeostasis was demonstrated in a study by
Tan et al.36 in which PDK1-knockdown reduced glycolysis, glucose
oxidation and enhancedmitochondrial respiration causing attenuated
inflammatory response in M1 macrophages. Therefore, we postulate
that elevated PDK1 prevents pyruvate entry into mitochondria and
supports the increased glycolytic capacity of CD1chi DC. To function-
ally validate our phenotypic mass cytometry data, we analyzed SCE-
NITH parameters of manually gated CD1chi and CD86hi populations
(Fig. 3E). Indeed,CD86hi iDCexhibitedhighmitochondrial dependence
(81%), which increased in the mDC stage reaching 90% together with
low glycolytic capacity (10%). In contrast, CD1chi iDC showed lower
mitochondrial dependence (65%)with 35%glycolytic capacity (Fig. 3F).
While glycolysis of CD1chi cells reaches maximal glycolytic capacity in
actDC (50%), we observed convergence of the metabolic pathways
towards predominantlymitochondrial respiration as cells acquire both
immune markers and advance in maturation (Fig. 3C, E). Immune
molecules HLA-DR, CD206, PD-L1, CD276 (B7-H3), CCR7 and CD11c
were elevated onCD86hi, while CD80 and ILT3were enriched onCD1chi

populations (Fig. 3F, Supplementary Fig. 4F).

A proportional shift from glucose dependence to FAAO utiliza-
tion and simultaneous upregulation of several metabolic path-
ways underly immune-suppressive phenotypes tol-DC
We next applied single-cell approaches to investigate DC skewed to be
tolerogenic to identify critical metabolic features and potential bio-
markers defining the major modes of in vitro tolerogenic DC genera-
tion. Tol-DC were generated using 1α,25-dihydroxyvitamin D3 (vitd3)
alone (vitd3-tolDC) or in sequential combination with dexamethasone
(vitd3-dexa-tolDC) as depicted in Fig. 4A and their immuno-metabolic
profiles were monitored along with inflammatory DC across the

maturation timeline. Tol-DCs exhibited classical changes with elon-
gated spindle-like characteristics37 along with reduced HLA-DR and
CD86 with retention of CD14 surface expression, respectively (Sup-
plementary Fig. 5A) with statistical analysis denoted in Supple-
mentarySupplementary. Fig. 5C. HLA-DR+CD86+ populations were
used for all downstream analyses to ensure that our comparisons are
representative of DC-cell linages and not undifferentiated CD14 +
monocyte contaminations.

Differential expression analysis of the full spectrum of SCENITH
markers showed that both tolerogenic signals significantly decreased
HLA-DR at the iDC stage and reduced maturation increase of numer-
ous costimulatory molecules including HLA-DR, CD86, and CD1c
(Supplementary Fig. 5B, C). CD276 (B7-H3) was specifically down-
regulated in vitd3-tolDC and expression of CD206, CCR7, CD11c and
CD80 was overall upregulated but more variable between the tolero-
genic conditions. Neutral amino acid transporter CD98 (LAT1) and
CD36 exhibited upregulated and downregulated expression pattern in
both tolerogenicDC types respectively (SupplementaryFig. 5B).UMAP
visualization using SCENITH immune parameters clustered control
from tolerogenic samples and separated distinct DC stages with iDC
and actDC resembling closest spatial profiles (Fig. 4A). Single-cell
heatmap overlay of selected immune markers demonstrated a pro-
gressive increase of HLA-DR and CD86 with maturation in control
wells, which was reduced in both tolerogenic counterparts. Consistent
with previous reports12,38, tol-DC exhibited a robust increase in CD14,
CD141, and ILT3, and PD-L1 across all maturation stages (Fig. 4A,
Supplementary Fig. 5B, C).

Based on SCENITH parameters, vitd3-tol-DC at the iDC and actDC
stages significantly increased global rate of protein synthesis (Fig. 4B).
Percentual SCENITH profiles revealed a significant decrease in mito-
chondrial dependence and a 25% increase in glycolytic capacity in the
GM-CSF/IL4 24h-vitd3 precursors (Fig. 4C left panel). While the per-
centual glycolytic reprogramming was not apparent across later
maturation stages, we observed a significant shift from glucose
dependencewith a 15% increase in FAAO capacity in vid3-dexa-tol-iDC.
Protein synthesis-adjusted SCENITH parameters revealed a significant
transient increase in glucose dependence and glycolytic capacity
predominantly in the vitd3- treated tol-DC with mitochondrial
dependance and FAAOcapacity significantly increased in both types of
tol-DC (Fig. 4C right panel, Supplementary Fig. 4B right panel).

In parallel with SCENITH profiling, dynamic changes in scMEP
pathways validate metabolic hyper-activation of tol-DC. Unsupervised
clustering analysis of median of scMEP metabolic proteins across 3
donors robustly separated inflammatory from tol-DCs while preser-
ving expression differences within each differentiation/maturation
stage (Fig. 4D). Differential expression analysis of scMEP markers
showed significant and sustained upregulation of TCA/ETC regulators
(CS, CytC, SDHA, ATP5A) together with dramatic and transient
increase multiple glycolytic markers (LDHA, MCT1, PFKFB4, ENO1)
with the highest degree of differences at the iDC and actDC stages of
both types of tol-DCs (Supplementary Fig. 5D). Among robustly

Fig. 2 | Dynamic changes inmetabolic regulome and co-expression ofmultiple
metabolic pathways governs the immune reprogramming of DC. A Graphical
overview of the scMEP approach depicting metabolic enzymes, signaling factors
andmetabolite receptors spanningmultiplemetabolic pathways aswell DC-lineage
markers profiled by CyTOF. B tSNE visualization of DC stages using scMEP meta-
bolic markers. Heatmap overlay of single-cell CD14, HLA-DR, CD86 and CD1c
(arcsinh transformed) expression highlights associations between DC stages and
immunemarker expression. Data showone representative experiment (out ofN = 3
donors). C Shown are (arcsinh transformed) expression values for selected scMEP
immune markers across DC differentiation states. Black dots represent population
medians and the dotted line separates early precursors from iDC, actDC, and mDC
stages. Violin plots are representative of 1 donor (out ofN = 3). On the right side are
represented summary (mean) kinetic expression profiles for all measured immune

and metabolic scMEP parameters across DC differentiation. D Kinetic profiles of
protein synthesis-adjusted SCENITH parameters (calculated as described in mate-
rials andmethods) to obtainmetabolicpathway-dependent changes accounting for
ATP production. Lines highlight mean SCENITH profiles (precursor stages repre-
sent 3 independent donors, iDC, actDC, and mDC represent six independent
donors). E Kinetic profiles for calculated mean scMEP pathways scores are illu-
strated. Connecting lines visualize mean pathway changes (N = 3 donors).
F Correlations between median SCENITH parameters and respective calculated
median scMEP pathway scores with Spearman correlation coefficient (R), p-value
and grey shading denoting 95% confidence interval (CI). Middle and multi-panel
graphs depict single-cell scMEPscores for combined and individualDCsample time
points respectively. Subsampled single-cell data points for the individual donor
(out of N = 3) are shown. Source data are provided as a Source Data file.
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upregulated factors were components of mitochondrial dynamics
(GSS, TOMM20), amino acid transporter CD98 along with signaling
mTOR downstream target pS6K, which validates SCENITH panel
measurements (Supplementary Fig. 5D). The CD36 (downregulated in
tol-DC) was the most robust predictor of tol-DC phenotypes based on
single-cell random forest permutation analysis (Supplementary
Fig. 5E). Kinetic analysis of scMEP pathway scores further showed the

transient nature of metabolic pathway upregulation in both types of
vid3-dexa-tol-DC and in a sense agreed with previous study12 showing
that glycolytic capacity returns close to normal immunogenic DCs
levels following long term (24–48h) LPS treatment of vid3-dexa-tol-
DCs (Fig. 4E). Furthermore, we uncover dynamic changes associated
with elevated OXPHOS, FAO and AA metabolism, PPP and increase in
GSH activation consistent with increased redox state and production
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of reactive oxygen species by tol-DC12,37. Of note, constitutive and
inducible glycolytic scMEP pathway scores were upregulated sig-
nificantly in vitd3-tol-iDC and actDC as compared to immunogenic
counterparts (Supplementary Fig. 5F). In agreement with persistent
protein synthesis-adjusted increase in glucose dependence (Fig. 4C
right panel) and high glycolytic scMEP scores (Fig. 4E) with upregu-
lated lactate transporterMCT1 expression (Supplementary Fig. 5D), we
detected decreased glucose levels with parallel increase in secreted
lactate in tol-DC culture supernatants (Fig. 4F).

mTOR and AMPK phosphorylation states reflect mitochondrial
vs glycolytic metabolic programs in DC and increased
pmTOR:pAMPK ratio impacts metabolic alterations of tol-DCs
To gain additional insights into signaling cascades regulating inflam-
matory and tolerogenic DC metabolism, we employed antibodies
recognizing the total and phosphorylated forms of AMPK (Thr-183/
172) and p-mTOR (Ser-2448) (Supplementary Fig. 6A). We also mon-
itored changes in PPARγ and a downstreammTORC1 target ribosomal
protein S6 kinase 1 (pS6K) along with immune markers during DC
differentiation (Fig. 5A). Both p-mTOR and p-AMPK were modestly
upregulated 24 h following GM-CSF/IL4 induction, but p-AMPK con-
tinued to increase from 24 h precursor stage towards iDC, while
p-mTOR did not significantly change. P-mTOR transiently increased
following4 h LPS/IFNγ, whichparalleled transient increase in glycolytic
and FAAO capacity (Figs. 1C, 5A). p-AMPK was transiently down-
regulated and increased inmDC. The opposing phosphorylation states
were further reflected in significant increase in p-mTOR:p-AMPK ratio
(Fig. 5A) in actDC (Fig. 5B). Expression of PPARγ also exhibited tran-
sient expression in actDC, whichmirrored a transient increase in FAAO
and pS6K levels significantly correlated with p-mTOR (Fig. 5A, Sup-
plementary Fig. 6B). In agreement with previous reports20, we
demonstrate that p-mTOR is significantly enhanced at distinct DC
stages in both tolerogenic conditions while p-AMPK was not sig-
nificantly altered from controls. The resulting p-mTOR:p-AMPK ratio
revealed persistent and significant skewing towards higher p-mTOR
dominance in both tolerogenic DC types (Fig. 5D). In addition, pS6K
showed similar trend as p-mTOR and iNOS was significantly upregu-
lated in both tol-DC at iDC and in vitd3-tol-DC in act-DC stage. PPARγ
was elevated in all DC stages with striking increase in vitd3-dexa-
treated samples in mDC (Supplementary Fig. 6C).

Next, we used Rapamycin and Dorsomorphin concentrations to
functionally inhibit mTOR and AMPK signaling during maturation
phase in control and tolerogenic DC respectively minimal effects on
cell viability (Fig. 5E, Supplementary Fig. 6D). Rapamycin inhibition of

p-mTOR was confirmed during early (30min) LPS/IFNγ activation
phase (Supplementary Fig. 6E) of iDC. Rapamycin treatment reduced
HLA-DR, with near significant decrease in CD86, PD-L1 in control cells
and significantly reduced expression of tolerogenic marker ILT3 in
vitd3-mDC samples (Fig. 5E). Dorsomorphin dramatically down-
regulated immune activation markers, FA transporter CD36 and sig-
nificantly reduced ILT3 and CD141 in both control and vitd3-tol-DC
(Fig. 5E). We also noticed that in addition to p-AMPK, Dorsomorphin
also reduced total mTOR levels in both ctrl and vitd3-DC, which was
previously observed in malignant cells39 and poses a limitation to
precise interpretation of its effects in our system. Both inhibitors
exhibited effects on cellular metabolism by reducing glucose con-
sumption and lactate production. This effect appears to be more
pronounced in vitd3-tol-DC as compared to inflammatory DC (Fig. 5F).
These results collectively suggest that mTOR and AMPK play critical
functional role and exhibit opposing regulation primarily at the actDC
maturation stage. Furthermore, tolerogenic cells are more sensitive to
mTOR and/or AMPK signaling inhibition.

Blockade of lactate transport via MCT1 reduces tolerogenic
phenotype of vitd3-tol-DC
Consistent with enhanced glycolytic metabolism, increased lactate
production by tol-DC has been implicated in immuno-regulatory
effects on T cell proliferation40. Since transporter MCT1 was sig-
nificantly upregulated in tol-DC (Supplementary Fig. 5D) we used
selective inhibitor BAY8002 to determine consequences of MCT1
inhibition on vitd3-tol-DC. BAY8002 treatment of both ctrl and vitd3-
tol-DC treatment dramatically reduced lactate in culture media and
affected glucose consumption by vitd3-tol-DC (Fig. 5F). While not
affecting immune markers on control cells, BAY8002 significantly
reduced expression of tolerogenic markers ILT3, CD141 including PD-
L1 vitd3-tol-DC (Fig. 5E).

Vitd3 and dexamethasone impacts population-specific func-
tional metabolic states and alters dynamics of immune
phenotypes
To visualize population-specific metabolic heterogeneity of inflamma-
tory vs tol-DC, we used metabolic scMEP markers to construct tSNE
maps, which yielded a continuum of transitional metabolic states,
depicted by a heatmap overlay of scMEP pathway scores (Fig. 6A).
Spatial distribution of metabolic patterns segregated ctrl from tol-DC
with reduced HLA-DR+, CD86+ and CD1c+. However, despite the lack of
full activation of DC maturation markers in tol-DC, here we show
that CD1chi and CD86hi cells still retained their metabolic identity,

Fig. 4 | Vitd3 and dexamethasone alters metabolic and signaling networks in
immune-suppressive phenotypes of tol-DC. A Schematic diagram of tolerogenic
DC treatment conditions. Control (black), vitd3+dexa (purple) and vitd3 (orange)
cells sampled at iDC, actDC, and mDC were subjected to dimensionality reduction
using UMAP. Single-cell heatmaps were overlayed on concatenated (iDC, actDC,
and mDC) samples to depict immune marker expression changes between
maturation stages in control and tolerogenic cell clusters. B Boxplots represent
changes in SCENITH puromycin protein synthesis (gMFI puromycin) levels across
DC stages and treatment conditions (N = 3 donors). C Overview of kinetic changes
and differences in percentual (left panel) and protein synthesis-adjusted (right
panel) SCENITH metabolic parameters between control, vitd3+dexa (purple) and
vitd3-treated (orange) DC across differentiation timeline. Connecting lines visua-
lize average pathway changes (precursor stages represent 3 independent donors,
iDC, actDC, andmDC represent SIX independent donors). Statistical significance of
pairwise comparisons between control and vitd3-dexa-tol (purple asterisk) and
control and vitd3-tol samples (orange asterisk) analyses are depicted.D Integrated
clustering heatmap of DC activation stages based on median arcsinh transformed
expression values for scMEP metabolic regulators (N = 3). Bottom heatmap anno-
tations include donor labels, treatment conditions and DC differentiation stages.
Fluorescent quantitation of mitochondrial size (Mitotracker Deep Red) along with

protein translation/ATP levels are annotated in the form of a heatmap. Point
annotations representing lactate and glucose supernatant measurements were
determined in iDC, actDC, and mDC. Heatmap annotation for DC immune sig-
natures are located at the top of the clustering matrix. scMEP markers are colored
according to their metabolic pathway activity. E Kinetic profiles for calculated
median scMEP pathways scores for control (black), vitd3+dexa (purple) and vitd3
(orange)-treated DC across DC maturation timeline. Connecting lines visualize
mean pathway changes (N = 3). Statistical significance of pairwise comparisons
between control and vitd3-dexa-tol (purple asterisk) and control and vitd3-tol
samples (orange asterisk) analyses are depicted. F Glucose and lactate measure-
ments in control and tolerogenic DC culture supernatants are shown. Of note
glucose level measurement increase in the media between d3 and iDC stage is due
to media change at day 3. Three technical replicates from three donors are pre-
sented with error bars indicating standard deviation. Multiple comparisons statis-
tical significance in B, C, E, F was calculated via one-way ANOVA with Tukey’s post-
hoc test. For all panels, P-values are represented as *p ≤0.05, **p ≤0.01, ***p ≤0.001,
****p ≤0.0001. p-values < 0.05 were considered statistically significant (ns). Box
plots indicate second and thirdquantile (box),median (horizontal line) and 1.5× the
interquartile range (whiskers). Source data are provided as a Source Data file.
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in which CD1chi cells resided in glycolytic space, while CD86hi skewed
towards OXPHOS phenotype. With reduced CD1chi and CD86hi cell fre-
quency, the spatial differentials persisted at later 24h-stage of matura-
tion (Supplementary Fig. 6F). Furthermore, expression of hallmark
maturation markers HLA-DR and CD86 associated with higher mito-
chondrial/OXPHOS regions (Fig. 6A, B) and exhibited significant inverse
relationship with glycolytic metabolism (Supplementary Fig. 7A).

Next, we analyzed individual wells from concurrently processed
oligomycin-treated SCENITH samples (Supplementary Fig. 7B). As
previously reported27 cells at the higher spectrum of translation in the
presence of oligomycin are able sustain protein synthesis independent
of mitochondrial respiration are cells with high glycolytic capacity
(“glycolytic”; Fig. 6B). Cells which are unable to utilize or switch
effectively to glycolysis are “mitochondrial-dependent” (Fig. 6B).
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Dimensionality reduction of oligomycin actDC using immune para-
meters showed polarization of mitochondrial and glycolytic cell
populations in control and tol-DC (Fig. 6B).

We observed the subset of DC with the most advanced matura-
tion phenotype, (exhibiting highest levels of HLA-DR and CD86
expression) are primarily dependent on mitochondrial respiration,
while glycolytic populations were enriched for CD1c (Fig. 6C, Sup-
plementary Fig. 7C). Importantly, cells cultured under tolerogenic
conditions express only moderate levels of differentiation markers
with elevated CD14, PD-L1 and CD141 irrespective of their metabolic
profile. While p-AMPK was largely unaltered, both iNOS and p-mTOR
levels were upregulated in glycolytic cells irrespective of treatment
(Fig. 6C, Supplementary Fig. 7C). Integrative heatmap of gMFI further
depicts the underlying co-expression patterns of immune and sig-
naling markers that differentiate mitochondrial from glycolytic cell
populations with respect to inflammatory or tolerogenic DC pheno-
type (Fig. 6D, E). Lastly, we wanted to determine the status of mTOR
and AMPK phosphorylation levels in mitochondrial and glycolytic
cell populations, thus we subdivided oligomycin treated data sets
into 3 quantiles encompassing low, medium, and high puromycin
expression as diagramed (Fig. 6E). Importantly, p-mTOR:pAMPK
ratio was significantly increased in glycolytic quantile 3 DC popula-
tions at all maturation stages and treatments (Fig. 6D, E) as well as
increased in tol-DC (Supplementary Fig. 7D).

Elevated glycolytic capacity confers maturation resistance and
de-differentiated immunosuppressive phenotype of tol-DC
Next, we wanted to reflect the metabolic heterogeneity associated
with natural differentiation stochasticity of in vitro differentiating
control DC cultures and compare these to maturation-deficiencies
and deregulated metabolism of vitd3 and dexamethasone-induced
tol-DC. Thus, we classified the maturation stages of both control
and tol-DC into high, mid, and low quantiles based on their HLA-DR
expression range (Fig. 7A, Supplementary Fig. 7E) and analyzed
their SCENITH parameters. Tolerogenic conditions reduced fre-
quencies of high-DC populations (Supplementary Fig. 7F), and we
found using SCENITH that high-DC with the best differentiation
quality exhibit a statistically significant increase in mitochondrial
dependence and lowest glycolytic capacity irrespective of control
or tolerogenic culture conditions (Fig. 7B). Clustering heatmap of
immune marker expression demonstrated that tolerogenic DC do
not just represent stochastically delayed DC maturation lineage
(Fig. 6C). Although with diminished frequencies, tol-DC in the
highest DC class are not equivalent to the inflammatory counter-
parts. Despite their close to equivalent levels of HLA-DR and CD86
expression, high-DC class tol-DC are marked by unique immunor-
egulatory receptor signatures. Furthermore, high-DC class tol-DC
exhibit elevated scMEP scores particularly for OXPHOS, glycolytic
and FAO pathways (Supplementary Fig. 6G). Our results suggest
that metabolic reprogramming of tol-DC is not just due to a pro-
portional switch in metabolic pathways, but rather due to overall
enhancement of metabolic pathway activity.

Discussion
Metabolism has a critical impact on DC activation, and differences in
metabolic wiring have been attributed to distinct DC subtypes14,41,42,
differentiation stimuli43 and T-cell priming stages (Patente et al.,
2019a)44, murine vs human origin11, immunotolerance15, mechanical
stiffness45 and microenvironmental influence in various pathophysio-
logical settings46. Precise understanding of immunometabolic net-
works has been limited due to low abundance of DC subsets in the
blood as well as challenges associated with bulk metabolic measure-
ment which may not reflect natural temporal stochasticity and more
recently recognized heterogeneity of ex-vivo cell cultures22,23. To date,
multiparametric platforms have provided an excellent tool for identi-
fication of metabolic diversity in various aspects of T cell activation
states and subtypes26,29,30. Furthermore, quantification of key meta-
bolic proteins in the OXPHOS and glycolytic pathways predicted
respective metabolic activity when combined with functional ECAR/
OCR seahorse measurements26,29,30.

By combining SCENITH27 and scMEP-based quantifying metabolic
enzymes, transporters and signaling factors29 we show that changes in
the metabolic regulome and coordinate activation of multiple meta-
bolic pathways across distinct stages of DC differentiation and
maturation are at play (Fig. 8). Upregulation of critical lineagemarkers
associated with change from glycolytic CD14+ precursors to mito-
chondrialmetabolismduring initial 24hofGM-CSF/IL4differentiation,
which persisted across DC stages reaching 86% in mDC. Contrary to
TLR-induced activation of murine BMDCs, characterized by a maximal
upregulation of glycolysis with repressed OXPHOS and collapsed
mitochondrial activity5,8, maturation of humanmonocytic DC undergo
only moderate and transient increase in glycolytic metabolism, which
similarly observed in a study by Malinarich et al.12. Fully matured DC
had lowest glycolytic capacity (14%) and exhibited increased glutami-
nolysis dependence (41%) compared to FA oxidation (7%).

Analysis of SCENITH metabolic profiles were complemented by
coordinate activation of multiple measured components of the TCA/
ETC pathway, FAO markers CPT1A, HADHA together with AA trans-
porters ASCT2, CD98 and glutaminolysis enzyme GLS. In support of
active mitochondrial biogenesis and elevated respiratory complex-
dependent ROS formation during DC differentiation47,48, we observed
elevated expression of PGC1α, TOMM20 and antioxidant GSS persist-
ing through maturation.

To establish relationships between enzyme and metabolite
transporter expression and metabolic pathway dependence we
benchmarked co-expression patterns of selected scMEP markers with
protein synthesis-adjusted SCENITH parameters. The highest correla-
tive metabolic analytes were used to define scMEP metabolic scores.
While quantification of metabolic proteins robustly indicated cellular
capacity for respective metabolic pathways in our study and multi-
dimensional analyses of whole blood PBMC and T cells26,29, we noted
that not all measured regulators correlated with SCENITH functional
measurements. Out of 5 measured ETC/TCA regulators, CytC was the
least correlative with mitochondrial dependence, and beta-oxidation
pathway enzyme HADHA and AA metabolism components ASCT2,

Fig. 5 | AMPK:mTOR signaling axis and lactate transporter MCT1 are critical
regulators of tolerogenic DC. A Heatmap and clustering analysis of gMFI
expression profiles for DC-lineage markers over time. Average expression from
three donors is represented. Protein synthesis levels, Percentual SCENITH para-
meters, donor label, and DC differentiation stages are annotated along with
expression profiles for signaling factors and calculated mTOR:AMPK phosphor-
ylation ratio. B Kinetic phosphorylation levels for p-AMPK and p-mTOR across DC
differentiation and their trajectory overlaps are depicted. Barplots with mean± SE
represent changes in calculated p-mTOR:p-AMPK ratios (N = 3). C gMFI expression
values of p-AMPK and p-mTOR in control (black), vitd3+dexa (purple) and vitd3
(orange)-treatedDCacrossmaturation stages are shown (N = 4). Lines connect data
points from an individual donor. D Boxplots represent changes in calculated p-

mTOR:p-AMPK ratios between control (black), vitd3+dexa (purple) and vitd3
(orange)-treated DC (N = 5 donors) across maturation timeline. Lines connect data
points from an individual donor. E Bar graphs with mean ± SE represent gMFI
expression values and F box plots represent Glucose and lactatemeasurements for
control and vitd3-tol mDC treated with Vehicle (DMSO), Rapamycin (1μM), Dor-
somorphin (3.75μM) and BAY8002 (80μM) (N = 3). Diagrams of pathway inhibitor
targets and timeline for inhibitor treatment are depicted. Multiple comparisons
statistical significance inB–Fwas calculated via one-way ANOVAwith Tukey’s post-
hoc test. For all panels, P-values are represented as *p ≤0.05, **p ≤0.01, ***p ≤0.001,
****P ≤0.0001. p-values < 0.05 were considered statistically significant (ns). Box
plots indicate second and thirdquantile (box),median (horizontal line) and 1.5× the
interquartile range (whiskers). Source data are provided as a Source Data file.
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CD98 and GLS were the highest correlating enzymes with FAAO
capacity. We observed dichotomous pattern of glycolytic enzymes
with both, constitutive and inducible expression profiles out of which,
MCT1 and PFKFB4 were highest correlating enzymes with glycolytic
capacity across DC differentiation.

Monocytes maintained their glycolytic metabolism ex-vivo49 and
exhibited high expression of ENO1, GAPDH and LDHA, which

decreased during DC differentiation. In contrast, glycolytic scMEP
markers regulating glucose import (GLUT1), phosphorylation
(PFKFB4) and lactate export (MCT1) increasedwith DCmaturation and
have been previously defined as primary drivers of flux through
glycolysis50.

While our scMEP analysis provides insights into the metabolic
regulome of inflammatory and tolerogenic DC differentiation, our
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scMEP panel contained only a subset of metabolic regulators. The
discrepancy between expression of certain scMEP factors and SCE-
NITH functional measurements suggests that additional isoenzymes,
metabolite transporters and/or post-translational modifications are at
play and should be further evaluated in future studies.

An important factor to consider is that metabolism of in vitro
cultured cells may not properly reflect cellular metabolism in vivo,
given the high concentration of glucose in media. Our comparative
SCENITHanalysis revealed in vitro cultured inflammatoryDCexhibited
highest glucose dependence (90%) as compared to total DC popula-
tions, pDC and cDC1 from freshly isolated PBMCs. While these differ-
ences may be due to inherent differences in metabolic reprograming
of specific DC subsets14, we did observe that DC populations from
PBMCs exhibited higher FAAO capacity (65%), suggesting their
heightened utilization of FAO and Glutaminolysis as an energy source
in vivo. Our results are consistent with a study by Patente et al.51,
demonstrating that TLR-stimulation causes increased mitochondrial
content with high OXPHOS fueled by glutamine metabolism in pDC.

Single-cell metabolic score profiling enabled us to monitor
dynamics of multiple pathways in cell populations across differentia-
tion timeline. In contrast to homogenous co-activation of OXPHOS,
AA, FAO, mitochondrial dynamics and glutathione synthesis pathways
following LPS/IFNγ activation glycolysis scMEP scores spanned awider
range of metabolic heterogeneity. This was directly related to diver-
gent immune phenotypes of maturing DC with CD86Hi and CD1cHi

populations exhibiting preferential enrichment toward OXPHOS and
glycolytic metabolism, respectively. Phenotypically, CD86hi DC exhib-
ited higher expression of DC markers HLA-DR, CD206, PD-L1 and
CD276. Our results demonstrating that glycolytic metabolisms
underlies polarization of CD1c expression in ex vivo differentiating DC
is consistent with a recent study by Basit et al.14, demonstrating that
TLR7/8-stimulation of circulating CD1c+ DC induced mitophagy-
dependent shift towards glycolysis with reduced expression of
OXPHOS-related genes and mitochondrial content. We further show
that elevated glycolytic capacity in CD1chi DC is associated with
increased abundance of GLUT1,MCT1 and PFKFB4, and elevated PDK1,
which skews glucose homeostasis35 by preventing pyruvate shuttling
into TCA into mitochondria.

Regulation of activation states of p-AMPK in the context of human
inflammatory DC is largely unknown and its associations with imma-
ture and tolerogenic DC phenotype are primarily based on AMPK1α
mRNA12,20 and the useof pharmacological activatorAICARdidnot yield
conclusive results20, whichmaypartly by due to its AMPK-independent
effects including blockade of NF-κB transactivation52,53. AMPK activa-
tion was shown to antagonize mTORC1 signaling and glycolytic switch
in murine BMDC5 and its inactivation fostered inflammatory function
and maturation of murine macrophages and myeloid APC54.

Kratchmarov et al.55, showed that APMK modulated Flt3L-induced
progenitor development into cDC1/cDC2 cell fate and AMPK/TRV
activation was reported to mediate the suppressive effects of oleoy-
lethanolamide on TLR4/NF-κB-dependent BDMC maturation56. In a
recent study, CCR7-engagement blocked the pro-apoptotic role of
AMPK and promoted survival of mDC57. Contrary to the anti-
inflammatory role in murine DC, activation of AMPK was recently
shown to support OXPHOS reprogramming and interferon type I & III
production in TLR7/9 activated human pDC58. Therefore, we profiled
kinetic phosphorylation changes for mTOR and AMPK across DC dif-
ferentiation. AMPK phosphorylation which correlated with increased
mitochondrial dependence in mDC opposed p-mTOR levels, which
paralleled LPS/IFNγ-induced transient increase in glycolytic capacity
and FAAO in actDC. The opposing phosphorylation patterns were
reflected in significant changes in p-mTOR:p-AMPK ratio across
maturation stages. Inhibition of mTOR and AMPK signaling at the time
of LPS/IFNγ-induced maturation reduced inhibited lactate production
and prevented upregulation of critical immune surface markers HLA-
DR, CD86 and PD-L1 on DC. While recent studies now demonstrate
possible concurrent activation of AMPK and mTOR by amino acids59,
we propose that time-specific regulation of mTOR and AMPK phos-
phorylation underlies metabolic reprogramming across distinct dif-
ferentiation stages of human DC.

Tolerogenic DC have been evaluated as cellular products for
treatment of multiple autoimmune diseases25. However, reports using
a variety of protocols used to generate tol-DC in vitro60 indicated that
metabolic plasticity and the heterogeneous nature associated with
inherent epigenetic and transcriptional reprogramming is a cofound-
ing factor in precise understanding of tol-DC38,61. Along with increased
glucose consumption and lactate production, our SCENITH analysis
confirmed persistent in increase glycolytic capacity, glucose depen-
dence as well as transient increase in mitochondrial dependence and
FAAO capacity in tol-DC. Elevated glucose consumption was shown to
fuel glycolysis and TCA cycle25,62,63 and maintain tolerogenic pheno-
type of vitd3-tol-DC20. scMEP analysis further revealed simultaneous
upregulation of TCA/ETC, glycolysis and AA metabolic scores parti-
cularly in the vitd3-tol-DC. This recapitulated previous studies12,37,62,63

and further showed that specific metabolic pathways are already ele-
vated at the iDC stage and transient in nature following tol-DC
maturation, which was not previously described. In fact, tol-iDC and
4h-activated tol-mDC exhibited the highest diversity in metabolic
pathway markers including upregulation of FAO (CPT1α, HADHA),
mitochondrial dynamics and components of glutamine metabolism
regulating its transport (ASCT2) and conversion to TCA cycle inter-
mediate α-ketoglutarate (GLS)64.

Importantly, we demonstrate that persistent increase in
mTOR:AMPK phosphorylation ratio activation reflects metabolic

Fig. 6 | Distinct metabolic states of mitochondrial and glycolytic cell popula-
tions exhibit unique immune activation DC profiles in control and tolerogenic
culture conditions.A tSNEmaps basedonmetabolicmarker expressionof control
(black), vitd3+dexa (purple) and vitd3 (orange)-treated DC across threematuration
stages from one donor (out of N = 3 donors) are shown. Heatmap overlay of single-
cell scMEP metabolic pathway scores and expression of DC-lineage markers are
depicted at actDC stage to emphasize both immune and underlying metabolic
heterogeneity including differences between control and tolerogenic DC.
B Schematics of oligomycin-treated SCENITH samples, which separates cells that
can effectively utilize glycolysis (red population) for producing ATP measured by
protein synthesis when mitochondrial respiration is inhibited. Puromycin/ protein
synthesis histograms represent cells isolated from single oligomycin-treated wells.
Control (black), vitd3+dexa (purple) and vitd3 (orange)-cultured samples after
oligomycin treatment exhibit glycolytic (red) and mitochondrial-dependent (blue)
DC subsets in a tSNE clustering based on immune markers. Single-cell heatmap
expression overlays emphasize differences in surface marker expression between
glycolytic and mitochondrial DC subsets. C Flow-cytometry histogram profiles for

differential SCENITH panel markers in glycolytic (red, orange) and mitochondrial
(blue, black) populations in control and vitd3-tol-DC samples. Representative his-
tograms from single donor (out of N = 3 donors) are shown. D Heatmap of gMFI
SCENITH marker profiles in glycolytic and mitochondrial metabolic clusters from
control, vitd3+dexa and vitd3 DC across distinct maturation stages. Mean expres-
sion values from three independent donors are presented. Donor label, treatment
andDCdifferentiation stages are annotated alongwith the calculatedmTOR:AMPK
phosphorylation ratio.Marker colors represent functional categories. E Schematics
of puromycin/protein synthesis quantile levels in oligomycin-treated SCENITH
samples. Dot plots show calculated comparisons of p-mTOR:p-AMPK ratio changes
between individual quantileswithin respective treatment groups acrossmaturation
stages from three independent donors. Lines connect data points from an indivi-
dual donor. Statistical significance was calculated via one-way ANOVAwith Tukey’s
post-hoc test. For all panels, P-values are represented as *p ≤0.05, **p ≤0.01,
***p ≤0.001, ****p ≤0.0001. p-values < 0.05 were considered statistically significant
(ns). Source data are provided as a Source Data file.
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hyperactivation of tol-DC which is consistent with critical role for
PI3K/Akt/mTOR pathway in promoting vitd3-induced glycolytic
reprogramming and tolerogenic effects on DC20. Inhibition of mTOR
and AMPK using Rapamycin and Dorsomorphin respectively, sig-
nificantly decreased tolerogenic marker expression in vitd3-mDC
samples. While the use of Dorsomorphin is more challenging to
interpret because it also reduced total mTOR levels, targeting mTOR
signaling significantly and to greater extend reduced glucose

consumption and lactate production in vitd3-tol-DC as compared to
inflammatoryDC. Because lactate exerts immune-suppressive effects
on T cells40, we asked whether blockade of lactate transporter
MCT1 induces changes in metabolic and tolerogenic immune phe-
notype of DC. Blockade of MCT1 dramatically reduced lactate levels
with modest effects on glucose consumption by DC. While not
affecting immune markers on inflammatory DC, MCT1 inhibition
significantly reduced expression of tolerogenic markers ILT3, CD141
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including PD-L1 vitd3-tol-DC. This data provide evidence that mod-
ulations of cellular metabolism by targeting AMPK:mTOR signaling
axis and/or inhibiting lactate transport influence tolerogenic
phenotype of DC.

In this study, high-dimensional techniques enabled us to simul-
taneous profiling of metabolic and immune phenotypes in inflamma-
tory and tol-DC development at the single-cell level. Using oligomycin-
treated single-cell experiments, we demonstrated that glycolytic

Fig. 7 | High mitochondrial dependence and low glycolytic capacity associates
with increased expression of maturation markers HLA-DR+CD86+ in control
but is imbalanced in tolerogenic DC. A Schematic depiction and gating strategy
for identifying high, mid, and low HLA-DR+CD86+ expressing control, vitd3+dexa
and vitd3-treated DC populations across differentiation stages. B Boxplots repre-
sent changes in percentual SCENITH parameters emphasizing changes between
high, mid, and low HLA-DR+CD86+ populations from control (black), vitd3+dexa
(purple) and vitd3 (orange)-treated DC across maturation stages (N = 5 donors).
Lines connect data points from an individual donor. Frequencies of DC classes
across individual samples are depicted at the top of the panel. Statistical sig-
nificance was calculated via one-way ANOVA with Tukey’s post-hoc test.

C Integrative heatmap and clustering analysis shows gMFI SCENITH immune mar-
ker profiles for high,mid, and lowHLA-DR+CD86+ DC classes in control, vitd3+dexa
and vitd3 samples across distinct DC maturation stages. Red boxes highlight
interesting immuno-phenotypic differences between control and tol-DCs within
the same DC classes. Schematics summary for metabolic and phenotypic differ-
ences between HLA-DR+CD86+ DC classes across maturation stages in control and
tol-DCs. For all panels, P-values are represented as *p ≤0.05, **p ≤0.01, ***p ≤0.001,
****P ≤0.0001. p-values < 0.05 were considered statistically significant (ns). Box
plots indicate second and thirdquantile (box),median (horizontal line) and 1.5× the
interquartile range (whiskers). Source data are provided as a Source Data file.
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Fig. 8 | Summary diagram of immunometabolic reprogramming of inflamma-
tory and tolerogenicDC during differentiation signaling.A schematic depiction

of the metabolic and immune changes of inflammatory and tolerogenic DC is
presented, noting key mechanisms and pathways.
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metabolism underlies transitional and less-well matured immune
phenotypes expressingmoderateHLA-DR andCD86,which resembled
maturation-deficient tol-DC levels. Because we observed that a wide
range of OXPHOS and glycolytic scores represent metabolic hetero-
geneity of single culturing wells, we separated low, mid and high HLA-
DR and CD86 expressing cells and compared their metabolic and
immune features between inflammatory and tolerogenic conditions.
We examinedwhethermaturationdelays and stochastic heterogeneity
in inflammatory DC parallels “maturation resistant” immune pheno-
type of tol-DC. SCENITH profiling HLA-DR and CD86 high cells in
both control and tolerogenic cultures exhibited similar metabolic
pathway percent activation with highest OXPHOS and lowest glycoly-
tic capacity. scMEP analysis further revealed that augmented
OXPHOS, glycolysis and FAO activation is at play in vitd3 and dexa-
vitd3-tol-DC. In addition to augmented metabolism, we revealed
that tol-DC with the highest differentiation quality are marked by
unique immunoregulatory receptor signatures, which do not reflect
maturation delays of in vitro inflammatory DC. Therefore, we propose
that tol-DC are not only locked in a “maturation-resistant” state with
reduced expression of DC-lineage markers, but also resemble a cross-
differentiated phenotype by retention of CD14 and increased
CD141 and immunosuppressive checkpoint receptors PD-L1 and
ILT365,66.

The use of single-cell high-dimensional techniques enabled us to
validate as well as capture previously obscured immune-metabolic
diversity of DC. Our results provide a basis for futuremonitoring of the
metabolic states underlying phenotypic heterogeneity of immuno-
genic and tolerogenic DC physiology for management and improve-
ment of DC-based immunotherapies51.

Methods
In vitro monocytic DC generation
PBMCs from healthy donors were purchased (Trima Residuals RE202,
Vitalant) andpurifiedbyFicoll-hypaquegradient centrifugation (Fisher
Scientific, 45-001-749). Cryopreserved PBMCs were thawed using
RPMI (Gibco-Invitrogen) complete media (1% Pen Strep, 1% L-Gluta-
mine, 10% FBS Heat Inactivated Serum (Gibco-Invitrogen, 16000-044),
and 0.5% DNase (Sigma, DN-25) and washed twice with PBS. CD14+

monocytes were selected using CD14 microbeads (Miltenyi Biotec,
130-050-201) and cultured for 5 days in CellGenix medium (0020801-
0500) supplemented with 800U/mL GM-CSF (Miltenyi Biotec, 130-
095-372) and 500U/mL IL4 (Miltenyi Biotec, 130-095-373) to generate
iDC). At day3, half ofmediawas replaced and supplementedwith fresh
cytokines. iDC were matured on day 5 with 1000U/mL IFN-γ (Pepro-
tech, 300-02) and 250ng/mLLPS (Sigma-Aldrich, L2630). Two types of
tol-DC were generated. To obtain vitd3-tol-DC 100 nM of vitamin D3

(Sigma, D1530) was added to cultures at d0 and day 3. And dexa-vitd3-
tol-DC were generated by adding 100nM of vitamin D3 and 10 nM of
dexamethasone (Sigma, D4902) at day 3 to cultures. Both tol-DC were
matured as described above. Rapamycin (Selleckchem, S1039), Com-
pound C (Selleckchem,7306) and BAY8002 (Selleckchem, S 8747)
were added at iDC stage together with IFN-γ/LPS for 24h.

SCENITH cell staining and data acquisition
SCENITH was performed as described in27. SCENITH™ reagents kit
(inhibitors, puromycin and antibodies) were obtained from www.
scenith.com/try-it and used according to the provided protocol for
in-vitro derivedmyeloid cells. Briefly, 1 × 106 PBMC ormonocytic DC
cultures (2 × 105/24-well plate) harvested at desired time points,
were treated for 18min with Control (DMSO), 2-Deoxy-Glucose (2-
DG; 100mM), Oligomycin (O; 1 µM), Etomoxir (4 µM) (Selleckchem,
S8244), CB-839 (3 µM) (Selleckchem, S7655), a combination of 2DG
and Oligomycin (DGO) or Harringtonine (H; 2 µg/mL). Following
metabolic inhibitors, Puromycin (final concentration 10 µg/mL) was
added to cultures for 17min. After puromycin treatment, cells were

detached from wells using TypLE Select (Fisher Scientific,
505914419), washed in cold PBS and stained with a combination of
Human TureStain FcX (Biolegend, 422301) and fluorescent cell
viability dye (Biolegend, 423105) for 10min 4 °C in PBS. Following
PBS wash step, primary antibodies against surface markers were
incubated for 25 min at 4 °C in Brilliant Stain Buffer (BD Biosciences,
563794). Cells were fixed and permeabilized using True-Nuclear
Transcription Factor Buffer Set (Biolegend, 424401) as per manu-
facturer instructions. Intracellular staining of puromycin and pro-
tein targets was performed for 1 h in diluted (10×) permeabilization
buffer at 4 °C. Finally, data acquisition was performed using the
Cytek Aurora flow cytometer. Primary conjugated antibody infor-
mation used in SCENITH panel is listed in supplementary table 1. All
antibodies were titrated to reduce spillover and increase resolution
using single stained DC (generated as described above) samples.
Unstained cell controls used for autofluorescence extraction were
generated for each time point, culture conditions (control, vitd3-
tol-DC and dexa-vitd3-tol-DC) and metabolic inhibitor treatments
(C, 2DG, O, DGO). Samples were unmixed using reference controls
generated in combination with stained Ultracomp beads (Fisher
Scientific, 01-2222-41) and stained cells using the SpectroFlo Soft-
ware v2.2.0.1. The unmixed FCS files were used for data processing
and analysis using FlowJo (BD, version 10.8.1) and CellEngine
(CellCarta). Manually gated CD14-HLA-DR+CD86+ cells were used for
downstream analysis. gMFI expression values were imported into R
environment for correlation and heatmap clustering analyses using
the below described R packages. Calculations used to derive SCE-
NITH parameters:
(1) [C = gMFI of anti-Puro-Fluorochrome upon Control treatment]
(2) [2DG= gMFI of anti-Puro-Fluorochrome upon 2DG treatment]
(3) [O = gMFI of anti-Puro-Fluorochrome upon Oligomycin

treatment]
(4) [Eto = gMFI of anti-Puro-Fluorochromeupon Etomoxir treatment]
(5) [Tele = gMFI of anti-Puro-Fluorochrome upon CB-839 treatment]
(6) [DGO=gMFI of anti-Puro-Fluorochrome upon 2DG+Oligomycin

(DGO) treatment]
(7) [Glucose dependence = 100(C– 2DG)/(C-DGO)]
(8) [Mitochondrial dependence= 100(C –O)/(C-DGO)]
(9) [FAO dependence= 100(C − Eto)/(C-DGO)]
(10) [Glutaminolysis dependence = 100(C–Tele)/(C-DGO)]
(11) [Glycolytic Capacity = 100 −Mitochondrial dependence]
(12) [FAAO= 100 −Glucose dependence]

Single-cell metabolic regulome profiling (scMEP) by mass
cytometry
scMEP analysis was performed as recently described29. In short,
monocytes and DC cultures were plated (2.5 × 106/6-well plate) and
harvested at desired time points. Antibodies targeting metabolic fea-
tures were conjugated in-house using an optimized conjugation
protocol67 and validatedonmultiple sample types. Cellswereprepared
for scMEP analysis by incubation with small molecules to be able to
assessbiosynthesis rates ofDNA,RNAandprotein, cisplatin-based live/
dead staining, PFA-based cell fixation and cryopreservation
(dx.doi.org/10.17504/protocols.io.bkwkkxcw). Next, cells were stained
withmetabolic antibodies in a procedure that includes surface staining
for 30min at RT, PFA-fixation for 10min at RT, MeOH-based permea-
bilization for 10min on ice, intracellular staining for 1 h at RT and DNA
intercalation (dx.doi.org/10.17504/protocols.io.bntnmeme). Finally,
cells were acquired on a CyTOF2 mass cytometer (Fluidigm). Protein
targets and antibody information used in scMEP are listed in supple-
mentary table 2.

Mass cytometry data processing and analysis
Raw mass spectrometry data were pre-processed, de-barcoded and
imported into R environment using the flowCore package (version
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2.0.1)68. Valueswere arcsinh transformed (cofactor 5) and normalized29

for downstream analyses based on previously reported workflow69.
Mean cell radius (forward scatter fromCytek analysis, FSC-A) was used
to calculate changes in cell volume across DC differentiation. Expres-
sion of scMEP factors was normalized to account for increase in cell
volume from precursors to mature DC. All clustering analyses were
performed on subsampled (20–25,000 cells/treatment time point)
HLA-DR+CD86+-gated cell populations with indicated input markers.
Multi-dimensional plots were generated using R package limma (ver-
sion 3.44.) and dimensionality reduction analysis was performed using
Rtsne (version 0.15) Uniform Manifold Approximation and Projection
(UMAP) was performed using FlowJo. For visualization and heatmap
clustering we utilized R packages ggplot2 (version 3.3.3) and Com-
plexHeatmap (version 2.4.3)70, respectively. Differential expression
analysis of marker expression between treatment groups was deter-
mined separately for eachDCmaturation timepoint using linearmixed
effect model accounting for donor variability using the lme4 (version
1.1–26) package. Spearman correlation coefficient correlation matrix
for marker expression profiles was computed and visualized using the
corrr (version 0.4.3), Hmisc (version 4.5.0) and corrplot (version 0.88)
R packages.

Calculation of scMEP pathway scores
To determine OXPHOS, glycolysis, FAO and AA scMEP pathway scores
we applied linear regression analysis between the scMEP median
metabolic marker expression (arcsinh transformed) and log-
transformed median SCENITH parameters (adjusted to protein
synthesis) using the R package lmerTest (version 3.13). For calculating
scMEP scores, the most significant and positively correlated markers
within each metabolic pathway were summarized and divided by the
number of markers within that pathway. Spearman correlations
between scMEP pathway scores and SCENITH parameters were
represented using the ggpubr (version, 0.4.0) R package.

scMEPmarkers used to derive respective scores include: TCA/ETC
score (CS, ATP5A, IDH2), FAO score (HADHA), amino acid score
(ASCT2, CD98, GLS), glycolysis predictive score (MCT1, PFKFB4), gly-
colysis upregulated score (GLUT1, MCT1, PFKFB4), GLYC-CON con-
stitutive score (ENO1, LDHA, GAPDH), glutathione (GSH) biosynthesis
score (GSS), mitochondrial dynamics score (TOMM20, PGC1a), pen-
tose phosphate pathway sore (G6PD).

Mean gini score calculations
Random forests were trained individual cells from on CyTOF dataset
using the package randomForest (version, 4.6–14) by randomly
selecting 80% of the cells in each sample then comparing ctrl vs
vid3+dexa, ctrl vs vid3 and vid3 vs vid3+dexa treatments, at three time
points (iDC, actDC and mDC) in triplicate at different starting seed
values for a total of 27 unique models71. The Gini indices were deter-
mined for each model and a mean of the triplicate was as a repre-
sentative as a “Mean Gini Score”.

Mitochondrial mass analysis
To evaluate mitochondrial mass, live control and tol-DC (2 × 105/24-
well plate), cultured as described above, were stained using Mito-
Tracker™ Deep Red FM (Invitrogen, M22426) together with surface
antibody staining for 20min at 4 C. Mitochondrial staining was mea-
sured in the APC channel, and MFI was used to obtain mitochondrial
content.

Extracellular glucose and lactate measurements
Glucose and lactate levels were analyzed in DC culture supernatants
using the BG1000 Blood Glucose Meter & test strips (Clarity,
75840–796) and Blood Lactate Measuring Meter Version 2 test strips
(Nova Biomedical, Lactate Plus), respectively.

Statistical data analysis
Multiple group statistical comparisons were analyzed using one-
way ANOVA with Tukey’s post-hoc test. P-values are represented
as *p ≤0.05, **p ≤0.01, ***p ≤0.001, ****p ≤0.0001. p-values < 0.05
were considered statistically significant. Numerical labels indicate
near significant values. Box plots indicate second and third quantile
(box), median (horizontal line) and 1.5× the interquartile range
(whiskers).

Differential SCENITH/scMEP marker expression between treat-
ment groups within each DCmaturation stage, was analyzed using the
linearmixed effectmodel with fixed effects for treatment, and random
intercepts per donor. Volcano plots depict the magnitude and adjus-
ted p-values of the treatment effect. Points above the solid gray hor-
izontal line indicate markers that are significant at the p <0.05 level
after multiple-testing adjustment. R (version 4.0.2) was used for sta-
tistical testing utilizing package rstatix (version 0.7.0) and graphs and
significance labels were generated using ggplot2 (version 3.3.3) and
ggpubr (0.4.0) respectively.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data generated in this study are provided in the Supplementary
Source Data files and available from the corresponding authors upon
request. Source data are provided with this paper.

Code availability
Code, data files and workflows generated for these analyses are avail-
able in a GitHub repository at https://github.com/ButterfieldLab/Nat.
Comm.TolDC.project. Source data for scMEP CyTOF analysis are pro-
vided in within the source data file.
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