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A B S T R A C T

In clinical applications, using erroneous segmentations of medical images can
have dramatic consequences. Current approaches dedicated to medical image
segmentation automatic quality control do not predict segmentation quality at
slice-level (2D), resulting in sub-optimal evaluations. Our 2D-based deep learn-
ing method simultaneously performs quality control at 2D-level and 3D-level for
cardiovascular MR image segmentations. We compared it with 3D approaches
by training both on 36540 (2D) / 3842 (3D) samples to predict Dice Similarity
Coefficients (DSC) for 4 different structures from the left ventricle, i.e., trabecu-
lations (LVT), myocardium (LVM), papillary muscles (LVPM) and blood (LVC).
addReviewerThe 2D-based method outperformed the 3D method. At the 2D-
level, the mean absolute errors (MAEs) of the DSC predictions for 3823 samples,
were 0.02, 0.02, 0.05 and 0.02 for LVM, LVC, LVT and LVPM, respectively. At
the 3D-level, for 402 samples, the corresponding MAEs were 0.02, 0.01, 0.02 and
0.04. The method was validated in a clinical practice evaluation against semi-
qualitative scores provided by expert cardiologists for 1016 subjects of the UK
BioBank. Finally, we provided evidence that a multi-level QC could be used to
enhance clinical measurements derived from image segmentations.

© 2021 Elsevier B. V. All rights reserved.

1. Introduction

Manual segmentation of medical images is time consum-
ing and subject to inherent between- and within-operator
variabilities. Artificial intelligence (AI)-based methods

e-mail: jorisfournell@gmail.com (Joris Fournel)

have been developed with the aim of reducing the amount
of time dedicated to the segmentation task and speeding
up the segmentation process without compromising the
segmentation accuracy (Litjens et al., 2017).

In clinical practice, quantification derived from image
segmentation is often used for diagnostic and prognostic
purposes. In clinical research, image segmentation is a pri-
mary tool used to validate clinical hypotheses. The quality
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control (QC) of segmentations is thus critical in order to
validate the robustness of the corresponding methods.

On that basis, Medical Image Segmentation Automatic
Quality Control (MISAQC) methods have been growingly
developed over the last few years. MISAQC methods in-
tend to automatically evaluate the quality of a given seg-
mentation and to track and potentially discard the seg-
mentations which do not fulfill the quality criteria.

The quality of AI-based segmentation can be assessed
using various metrics such as Dice Similarity Coefficient
(DSC), Hausdorff distance, volume/mass error, etc ... This
quality is considered to be good if these indices lie within
a commonly acceptable range in the corresponding field.
The computation of those metrics is based on a compara-
tive analysis between the predicted segmentation and the
ground truth manual segmentation. On the contrary, MIS-
AQC methods aim at predicting a quality metric (e.g.
DSC) for a given image and its predicted segmentation,
and thus do not use the ground truth manual segmenta-
tion.

So far, very few approaches have been reported regard-
ing MISAQC ((Albà et al., 2017; Audelan and Delingette,
2019; Kohlberger et al., 2012; Valindria et al., 2017)). A
regression model was used to assess the quality for auto-
mated segmentation of lung and liver images (Kohlberger
et al., 2012). The DSC was used as a QC index and vari-
able correlations between the predicted and real DSCs for
the lung (r=0.85) and the liver (r=0.54) have been re-
ported. (Audelan and Delingette, 2019) used an unsuper-
vised bayesian approach and reported good correlations
between the real and predicted DSC scores for brain tu-
mors (r=0.69) and the left ventricle myocardium (r=0.78).

Furthermore, (Robinson et al., 2019) showed that the
reverse classification accuracy (RCA, (Valindria et al.,
2017)) approach could provide good DSC predictions with-
out the need of a large annotated dataset. However, the
time required for the RCA analysis of a single segmenta-
tion (11 min) was considered prohibitive for real-time ap-
plications (Robinson et al., 2018). For the segmentation of
cardiac magnetic resonance images, (Robinson et al., 2018)
used a 3D convolutional neural network (CNN) in order to
predict the DSC values of 3D segmentations. The corre-
sponding results were very promising in terms of predictive
accuracy, with mean absolute errors (MAEs) between the
real and predicted DSCs of 0.03 ± 0.04 for the whole heart
and a very short processing time (less than a second).

However, the segmentation quality assessment was
based on the 3D DSC and this approach can actually be
questioned. The 3D DSC is a volume-related information
that is very useful to evaluate the global quality of a seg-
mentation but it does not contain any specific informa-
tion related to the individual segmented slices which are
part of the volume of interest. In other words, errors can-
not be accurately localized using a 3D DSC-based method.
Significant segmentation errors can occur at the 2D level
and be fully ignored at a 3D level thereby overestimating
the segmentation quality. The localization of segmenta-

Fig. 1. First row: a CMR image from our testset and related
manual segmentation; the four left ventricle structures are
depicted illustrating the difference in size and shape for the
left ventricle trabeculations (LVT) and left venctricle papil-
lary muscles (LVPM) structures compared to left ventricle
myocardium (LVM) and left venctricle cavity (LVC). Sec-
ond row: a related automated segmentation to evaluate;
the displayed scores represent for each class the real DSC
on the left and the predicted DSC with our method on the
right.

tion errors at a slice-level could offer the opportunity for
corrective processes thereby providing more accurate volu-
metric measurements and potentially improved diagnosis.
On that basis, we hypothesized that a MISAQC tool would
largely benefit from both 3D and 2D evaluations.

In the present paper, our goal was to present a new
MISAQC tool having the following properties:

• Easily trainable using only 2D CNNs.

• Provides quality assessment at 2D-level, thus localizes
slices where the segmentation is erroneous.

• Helps to automatically correct clinical measurements
biases induced by erroneous segmentations.

• Provides quality assessment at 3D-level from a math-
ematical combination of 2D-level predictions.

2. Materials and Methods

2.1. Study design
This multicenter retrospective study was approved by

the local institutional review board (N ° IRB CRM -1907-
02è) in accordance with the guidelines outlined in the Dec-
laration of Helsinki.

A CNN-based method was developed for the automated
assessment of segmentation quality for the LV in the end-
diastolic (ED) phase from CMR images (Bartoli et al.,
2020).
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The initial dataset included 4290 images from 449 differ-
ent subjects. Patients were classified as healthy, dilated,
hypertrophic, hypertrabeculation by the most experienced
investigator (A.J. – 20 years of experience). Healthy refers
to a normal cardiovascular examinations. Dilated indi-
cated a dilated cardiomyopathy (DCM) as previoulsy de-
scribed (Japp et al., 2016). Hypertrophic refers to hyper-
trophic cardiomyopathy (HCM) which was defined based
on the myocardial thickness on the ED short-axis (El-
liott et al., 2014). Excessive trabeculation cardiomyopathy
(ETCM) was defined according to (Petersen et al., 2005)
criteria i.e. a double-layer myocardium aspect and a non-
compacted layer to compacted layer thickness > 2.3 on ED
long-axis. In our dataset, 259 subjects were healthy sub-
jects, 39 were DCM, 92 were HCM and 59 were ETCM.
In Table 1 are displayed the patient characteristics for this
initial dataset.

2.2. CMR Data
The CMR examinations were performed at 1.5T using

2 different scanners i.e. Ingenia ® (Philips Health System,
Best, the Netherlands) and Avanto ® (Siemens Healthcare,
Erlangen, Germany). Patients were positioned supine in
the scanner with a multi-channel body array coil posi-
tioned on the top and a spine array coil positioned on the
bottom. MR acquisition was gated to ECG and occurred
during an inspiratory breath hold. A balanced turbo field-
echo sequence and a balanced steady-state-free precession
sequence was used with the Ingenia and Avanto scanners
respectively. In both cases, images were acquired in the
short-axis view in order to cover the LV from base to apex.
The following parameters were used : in-plane resolution
: 1.5 mm2 (Ingenia) and 2.35 mm2,(Avanto) slice thick-
ness : 7-8 mm, gap between slices :10 mm, flip angle : 30.
The short-axis image stack consisted in 8 to 17 slices de-
pending on the scanner, patient height, cardiac anatomy
and morphology. The ED frame at each imaging level was
retained for further image analysis. Data of each patient
was de-identified before the analysis.

2.3. Manual segmentation and reference measures
Manual image segmentation was undertaken by a

trained observer (A.B., who has 5 years of experience)
using a post-processing software previously validated by
Bricq et al. (Bentatou et al., 2018; Bricq et al., 2015; Fran-
don et al., 2018). The LV structures were manually seg-
mented so as to obtain four labels i.e: blood cavity (LVC),
myocardium (LVM), papillary muscles (LVPM) and tra-
beculations (LVT). The non segmented part of each im-
age was assigned to a fifth label: background (BG). The
corresponding results (Manual) were used as the reference
standard.

3. Methods

The aim of a MISAQC approach is to learn to predict the
quality of a segmentation. In order to train a supervised

Fig. 2. Illustration of MISAQC dataset construction. First,
4290 cardiac MR images were segmented by an expert and
used to train segmentation models in order to produce seg-
mentations of varying quality of the 4290 MR images. Then,
the DSC values were computed for those segmentations
based on the ground truth manual segmentations. Finally,
LVT DSC-based subsampling was applied before splitting
the data into training/validation and test sets.

model for that purpose, we first need to build a dataset
containing couples of images/segmentations with varying
qualities for the segmentations as shown in figure 2. Once
this dataset is built, different CNN models are trained and
compared for the 2D and 3D DSC prediction. Our ap-
proach (illustrated in figure 3) consists of two steps. First,
we predict 2D indices of quality for each segmented slice.
Second, we use the 3D DSC formula to estimate its com-
ponents using the 2D indices predicted in the first step.
We compare our approach to a direct 3D approach.

3.1. MISAQC dataset construction
To generate the MISAQC dataset, we used an approach

similar to the one proposed by Robinson et al. (Robin-
son et al., 2018) illustrated in figure 2. Twelve versions of
a same CNN model (see (Bartoli et al., 2020) for details
about the architecture) differing by the number of feature
maps per convolutional layer, the proportion of the orig-
inal dataset used for training, and the number of train-
ing epochs are implemented. The three hyperparameters
of the CNNs were selected randomly, resulting in models
producing segmentations of variable qualities. To train the
CNNs we used the 4290 2D CMR images for which manu-
ally segmented masks were available. Each of these models
was then used in inference to generate segmentations for
the whole original dataset. The corresponding 2D and
3D DSC scores were computed for all the segmentations.
Thus for each original 2D image, twelve segmentations are
available together with their corresponding DSC. This re-
sulted in a total of 5388 3D segmentations, corresponding
to 51480 2D segmentations.

The next step guarantees that the obtained dataset is
balanced with respect to the quality of the segmentations.
Therefore, we sample from this artificial dataset triplets
(image, mask, DSC) stratifying over LVT 3D DSC distri-
bution, using the following bins: [0, 0.2], [0.2, 0.3], [0.3,
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Table 1. Baseline Patient Characteristics for the initial dataset.
Characteristics

Parameter HCM DCM ETCM Healthy Overall
Total no. 92 39 59 259 449
Age (y) 53 ± 15 54 ± 12 44 ± 16 40 ± 17 45 ± 17
No. men 59 21 37 147 264

LVEDV (mL) 151.5 ± 38.1 226.5 ± 86.7 189.0 ± 90.3 146.4 ± 42.3 160.0 ± 60.3
LVEDV-to-BSA (mL/m2) 80.0 ± 17.4 118.8 ± 41.0 101.4 ± 39.0 80.5 ± 19.7 86.5 ± 27.8

LVMM (g) 169.8 ± 53.8 163.9 ± 48.1 124.3 ± 66.8 113.9 ± 34.3 131.0 ± 51.2
LVMM-to-BSA (g/m2) 89.6 ± 26.2 86.2 ± 22.4 66.6 ± 29.2 62.3 ± 14.7 70.5 ± 23.5
Trabeculation mass (g) 11.3 ± 5.8 17.0 ± 10.0 18.9 ± 13.3 9.5 ± 4.7 11.7 ± 7.9

Trabeculation mass-to-BSA (g/m2) 6.0 ± 3.0 8.8 ± 4.7 10.1 ± 6.3 5.2 ± 2.4 6.3 ± 3.9
Trabeculation mass-to-TMM (%) 6.0 ± 2.4 8.6 ± 3.8 12.7 ± 5.2 7.1 ± 2.6 7.6 ± 3.7

0.4], [0.4, 0.5], [0.5, 0.6], and [0.7, 1]. The number of
samples taken from each interval is the minimum number
observed within these intervals. Hence, 708 3D segmen-
tations were randomly selected in each bin, resulting in a
total of 4248 3D segmentations, corresponding to 40 363
2D segmentations. The final dataset was randomly split
into training/validation (90%) and testing (10%) samples,
stratifying over the LVT 3D DSC for both.

For each segmentation, 5 one-hot-encoded masks were
generated, one for each class (BG, LVM, LVC, LVT and
LVMP), and concatenated with the CMR input. Segmen-
tations and CMR inputs were previously cropped around
the LV (see (Bartoli et al., 2020) for more details) and
the CMR inputs were pre-processed with Contrast Lim-
ited Adaptive Histogram Equalization (CLAHE). The 2D
inputs size was 128x128x6 while the 3D inputs were resized
to a 128x128x8x6 using nearest neighbour interpolation in
order to account for the variable number of slices per sub-
ject. The 2D inputs are used for our method and the 3D
inputs for the other approaches for comparative purposes.
This process resulted in a total of 36540 2D and 3840 3D
samples for training and validation. The testing phase was
performed on 3823 2D and 402 3D samples.

3.2. 3D DSC as a function of 2D indices
We will show how the 3D DSC may be recovered from

the 2D DSC and the mean volume similarity fraction
(MVSF). Let Y and Z be two 3D regions (Y the ground-
truth 3D segmentation and Z the corresponding auto-
mated segmentation) composed of n 2D stacks, or equiva-
lently:

Y = (yi)i∈~1,n�

and:
Z = (zi)i∈~1,n�

where yi and zi are 2D regions. The 3D DSC and MVSF
between Y and Z are defined as:

DSC(Y, Z) = 2|Y ∩ Z|
|Y |+ |Z| (1)

MV SF (Y, Z) = 2(|Y | − |Z|)
|Y |+ |Z| (2)

Fig. 3. Illustration of the methodology at inference time.
For a given segmented MRI to evaluate, the inference is
done slice-wise by sequentially providing the segmentation
and related image as the input of the two models. The
predicted 2D DSCs are stored and provide a quality evalu-
ation for all slices and classes. When slice-wise inference is
over, the stored predictions are combined to compute the
3D DSC prediction for all classes. Errors can be detected
at every scale.

Similarly, let DSC(yi,zi) and MVSF(yi,zi) be the DSC
and MVSF between the 2D slices yi and zi. DSC(Y ,Z)
is used as the quality index of the subject-level automated
segmentation Z, while DSC(yi,zi) serves the same purpose
for the slice-level segmentation zi. The goal is to predict
these metrics in the absence of the ground truth, Y .

Each example from the learning sample was composed
of an MR image (xi), the corresponding automated (zi)
and ground-truth segmentation (yi). In order to evaluate
the quality of Z, we wish to predict both scores (DSC and
MSVF) relative to each pair (yi, zi)i∈~1,n�.

A model, denoted by M , is trained such that:

M(xi, zi) = [ ̂DSC(yi, zi), ̂MV SF (yi, zi)]

This model can be used to predict, for each new pair con-
sisting of an MR image and its automated segmentation,
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a value for both scores without requiring the ground-truth
segmentation. We will now see how the recovery of the 3D
DSC can be achieved. Considering the expression for the
2D DSC:

DSC(yi, zi) = 2|yi ∩ zi|
|yi|+ |zi|

(3)

we obtain the following estimation:

̂|yi ∩ zi| =
1
2

̂DSC(yi, zi)((|̂yi|+ |zi|) (4)

And considering the 2D MVSF expression:

MV SF (yi, zi) = 2(|yi| − |zi|)
|yi|+ |zi|

(5)

we can estimate |yi|:

|̂yi| = |zi|
2 + ̂MV SF (yi, zi)
2− ̂MV SF (yi, zi)

(6)

The 3D DSC predictions can be recovered as follows:

̂DSC(Y, Z) = 2 ̂|Y ∩ Z|
|̂Y |+ |Z|

(7)

Where |̂Y | =
∑

i∈~1,n� |̂yi|, |Z| =
∑

i∈~1,n� |zi| and
̂|Y ∩ Z| =

∑
i∈~1,n�

̂|yi ∩ zi|.

3.3. CNN architectures for DSC prediction
To implement our approach, we suggest a CNN archi-

tecture for the prediction of both 2D DSC and MVSF.
We use then the formulas from the previous section to
obtain the 3D DSC values. In order to show that the
performance of our approach is not dependant on a spe-
cific architecture, two types of backbone architectures were
used i.e QC ResNet and QC U-Net (figure 4). The ratio-
nale behind the QC U-Net backbone type was to build
an architecture that would implicitly reproduce the steps
performed by a human expert to produce a DSC for a
given segmentation and related medical image. The ex-
pert would (1) segment the image manually and then (2)
compute the DSC between his segmentation (considered as
ground truth) and the segmentation to evaluate. Hence,
we considered the image segmentation task as a necessary
step in the process of a DSC computation task for a hu-
man expert. Having this in mind, the QC U-Net backbone
architecture was designed as a two-stages process, i.e., a
U-Net encoder-decoder block (originally designed for im-
age segmentation) augmented with two layers aiming at
directly predicting the DSC values. Based on empirical
preliminary measurements, the QC ResNet version was de-
signed with a fewer number of features maps than in the
original ResNet-50 (He et al., 2016). Finally, to compare
our approach to methods directly predicting the 3D DSC
(Robinson et al., 2018), we used similar networks adapted
for 3D data structure.
The 2D-based method was identified as 2DR, where R

stands for reconstruction given that the 3D DSCs were
reconstructed from 2D indices. For each class, the 2DR

method performed a multi-level quality control: it pre-
dicted a 2D DSC for each segmented slice together with a
reconstructed 3D DSC for the whole volume.
For each implementation of our 2DR method, 2D images
and the corresponding segmentations were taken as inputs
while a 2D CNN was trained to predict both the 2D DSC
and the 2D MVSF scores for each class (BG, LVM, LVC,
LVT and LVPM). On that basis, the last layer was com-
posed of ten units: five for the 2D DSC scores and five
for the 2D MVSF scores. For the 3D direct approach, tak-
ing 3D images and their segmentations as inputs, networks
were trained to predict the five 3D DSC resulting in five
units for the last layer. As indicated in figure 4, the re-
maining differences between the 2D and 3D networks for
a given backbone architecture type were the kernel size of
the convolutional layers, the pooling size in pooling layers
and the input shape.

3.4. Implementation details
Each 2D network was trained for 80 epochs (until no

significant gain was observed on the validation set) using
Adam optimizer at a learning rate of 0.001. Similarly,
each 3D network was trained for 50 epochs using Adam
optimizer at a learning rate of 0.001. For each network
the loss function was the mean squared error (MSE). No
data augmentation was used.

3.5. Evaluation
3.5.1. Slice-level evaluation

The performances of the 2DR method implemented with
each backbone (QC ResNet and QC U-Net) were initially
assessed at the slice-level using 3823 segmented 2D images
of the test dataset. For each class, the evaluation was car-
ried out on the basis of the mean absolute error (MAE)
which was calculated between the predicted 2D DSCs and
the ground-truth values.
For each class, the accuracy indicated the discriminative
capacity of a given method to distinguish ”bad quality”
from ”good quality” 2D segmentations based on the pre-
dicted 2D DSC values. To compute the accuracy, predicted
and observed DSC values were encoded as ”bad quality” or
”good quality” according to the following thresholds: 0.7
for LVM and LVC according to (Robinson et al., 2018).
Considering that LVPM and LVT (as illustrated in figure
5) are prone to lower DSC values (Bartoli et al., 2020) (as
illustrated in figure 5), a lower threshold was used, i.e.,
0.45 for LVPM and 0.35 for LVT.
Pearson correlation coefficients were also computed in or-
der to further evaluate the performances at the slice-level.

3.5.2. Subject-level evaluation
The performance of the 2DR method was similarly eval-

uated for each backbone at a 3D-level using the 402 seg-
mented 3D images of the testing dataset. The correspond-
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Fig. 4. Display of the 4 used architectures, for each backbone type the numbers in red are only present for the 3D version.
Downsampling was always performed with a max pooling layer while the upsampling (only in QC U-Net) was performed
with transposed convolutions. The pooling size can be deduced from the difference in dimensions between consecutive
layers. Transposed convolution kernels were always 2x2 (2x2x1 in 3D version). QC ResNet 2D and 3D had 2 and 3 million
parameters respectively, while QC Unet 2D and 3D had 19 and 21 million parameters respectively.

Fig. 5. Each row displays an CMR image and a pair of re-
lated segmentations produced (with a delay of one month
between each segmentation) by the same human operator
(Bartoli et al., 2020), the 2D DSC between the two segmen-
tations is displayed for left ventricle trabeculations (LVT)
and left ventricle papillary muscles (LVPM). The nature of
those anatomical regions and appearance on a CMR image
justify a lower quality DSC threshold than for LVM and
LVC.

ing results were compared to those obtained with a 3D
direct approach.

3.5.3. Clinical practice evaluation
Our trained 2DR QC U-Net model was communicated

to the research team of Steffen Petersen that used it
to control the quality of 1016 segmented subjects from
the UK BioBank. For this dataset, trained cardiologists
also assigned a semi-qualitative quality control score (QC
1=Good, QC 2=Sub-optimal but still usable, QC 3=Poor)
for each class and slice. At the 3D level, QC 2 and QC 3

are merged and patient is classified as QC 2/3 if at least
one slice belongs to either QC 2 or QC 3. The agreement
between these human scores and our model predictions was
assessed.

3.6. Statistical tests
Statistical comparison were performed (for mean differ-

ences) using Wilcoxon signed-rank tests for paired sam-
ples, unpaired t-test for unpaired samples. Two-sample
Kolmogorov-Smirnov test was used for testing whether two
independent samples are drawn from the same continuous
distribution. Differences were considered as significant for
p-values lower than 0.05.

4. Results

4.1. Slice-level results
The comparative analysis between the different back-

bones is summarized in Table 2. As illustrated in Table 2,
regardless of the backbone and for the whole set of classes
but LVT, the MAEs computed at the slice-level i.e. 2D
were systematically lower than 0.023. The MAE related
to the LVT class was slightly larger i.e. 0.047.

For the QC U-Net backbone, the MAE associated with
the 2DR method was 0.005 for the BG 2D DSC prediction,
0.023 for LVM, 0.019 for LVC, 0.047 for LVT and 0.020 for
LVPM. Of note the largest error was found for a small and
scattered class i.e. LVT.

When comparing backbones, MAEs values were found
significantly smaller for the QC U-Net 2DR for all the
classes but LVT.

Accuracies in distinguishing bad from good quality slice-
level segmentations were larger than 96.1% for 6 out of the
8 tested classes and larger than 92.7% for the LVT class.
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Table 2. DSC MAEs, accuracies and correlation coefficients at slice-level for each 2DR version.
MAE

Method LVM LVC LVT LVPM
QC ResNet 2DR 0.025 ± 0.027 0.021 ± 0.025 0.047 ± 0.048 0.023 ± 0.044
QC U-Net 2DR 0.023 ± 0.024 0.019 ± 0.022 0.047 ± 0.051 0.020 ± 0.040

p-values 3.62e-05 2.18e-07 0.47 6.01e-30
Accuracy and correlation

LVM LVC LVT LVPM
Method Acc. Corr. Acc. Corr. Acc. Corr. Acc. Corr.

QC ResNet 2DR 96.1 % 0.991 97.3% 0.992 92.8% 0.960 98.5% 0.991
QC U-Net 2DR 96.6 % 0.993 97.4 % 0.994 92.7 % 0.957 98.8 % 0.993

Table 3. DSC MAEs at subject-level for each backbone and method. Regardless of the backbone the 2DR method consis-
tently outperforms the equivalent 3D direct approach.

QC ResNet backbone
Method BG LVM LVC LVT LVPM

3D 0.011 ± 0.022 0.037 ± 0.035 0.029 ± 0.039 0.044 ± 0.038 0.055 ± 0.049
2DR 0.004 ± 0.005 0.016 ± 0.028 0.011 ± 0.016 0.022 ± 0.022 0.042 ± 0.053

p-values 9.96e-30 2.47e-34 3.02e-31 5.55e-25 5.12e-07
QC U-Net backbone

Method BG LVM LVC LVT LVPM
3D 0.010 ± 0.018 0.036 ± 0.035 0.026 ± 0.031 0.045 ± 0.041 0.042 ± 0.039

2DR 0.004 ± 0.006 0.016 ± 0.028 0.012 ± 0.017 0.023 ± 0.023 0.040 ± 0.054
p-values 2.42e-24 6.67e-34 7.57e-26 2.08e-21 0.02

Fig. 6. Boxplots of the 3D DSC absolute errors (AE) for each class and method.

The correlation coefficients between the ground-truth and
the predicted 2D DSC values were larger than 0.957, with

the lowest value for QC U-Net LVT (0.957) and the largest
for QC U-Net LVC (0.994).
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Table 4. Accuracies and correlation coefficients at subject-level for backbone and method.
QC ResNet backbone

LVM LVC LVT LVPM
Method Acc. Corr. Acc. Corr. Acc. Corr. Acc. Corr.

3D 92.7 % 0.983 94.7 % 0.977 90.7 % 0.955 96.5 % 0.961
2DR 97.7% 0.992 97.0% 0.996 97.2% 0.987 97.2% 0.965

QC U-Net backbone
LVM LVC LVT LVPM

Method Acc. Corr. Acc. Corr. Acc. Corr. Acc. Corr.
3D 94.4 % 0.982 96.0 % 0.986 89.7 % 0.951 97.7 % 0.971

2DR 97.5 % 0.992 97.0 % 0.996 96.5 % 0.987 97.7 % 0.965

Fig. 7. Scatter plots of the true 3D DSC values against the predicted values for all classes except BG. The R2 scores and
red lines are derived from a fitted regression model. The model used here is QC U-Net 2DR.

Table 5. MAE of the predicted 3D DSC with the QC U-Net 2DR method with regard to the patient classification.
MAE

Group LVM LVC LVT LVPM
DCM (n=30) 0.014 ± 0.016 0.010 ± 0.008 0.032 ± 0.032 0.056 ± 0.064
HCM (n=68) 0.019 ± 0.025 0.019 ± 0.025 0.022 ± 0.023 0.046 ± 0.060

ETCM (n=53) 0.024 ± 0.036 0.016 ± 0.029 0.026 ± 0.025 0.050 ± 0.090
Healthy (n=250) 0.015 ± 0.028 0.010 ± 0.010 0.022 ± 0.020 0.034 ± 0.036

Non-Healthy (n=152) 0.020 ± 0.029 0.016 ± 0.025 0.026 ± 0.026 0.049 ± 0.072
p-values Healthy/Non-Healthy 0.08 7.51e-4 0.16 8.64e-3

Overall, the segmentation quality predictions at the
slice-level were characterized by low MAEs values regard-
less of the backbone and the class.

4.2. Subject-level results
As illustrated in Table 3 and figure 6, the MAEs com-

puted from the ground-truth and the predicted DSC val-

ues were systematically and significantly lower for the 2DR

variant and so regardless of the backbone used. A high
level of predictive accuracy was consistently achieved for
the whole set of classes. Regarding the QC ResNet back-
bone, the 2DR (3D) method provided a MAE of 0.004
(0.011) for the BG 3D DSC prediction, 0.016 (0.028) for
LVM, 0.011 (0.016) for LVC, 0.022 (0.022) for LVT and
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Table 6. Mean processing time for each network at subject-level and at slice-level additionally for 2DR versions.
Inference time

Method Subject-wise Slice-wise
QC ResNet 3D 100 ms ∅
QC U-Net 3D 120 ms ∅

QC ResNet 2DR 314 ms 32 ms
QC U-Net 2DR 312 ms 31 ms

0.042 (0.053) for LVPM. Regardless of the backbone, er-
rors of the 2DR method were at least twice smaller than
those from the 3D direct approach and so for the whole set
of classes but LVPM. The results of the corresponding sta-
tistical analysis are summarized in (Table 3). For the QC
ResNet backbone, all the MAEs values were significantly
smaller for the 2DR version. For the QC U-Net backbone
it was the case for the whole set of class but LVPM.

Accuracy values and pearson correlation coefficients for
each backbone and method are summarized in Table 4.
Considering the QC ResNet backbone, the accuracy val-
ues ranged from 90.7% (LVT) to 96.5% (LVPM) for the
3D method, while they ranged from 97.0% (LVC) to 97.7%
(LVM) for the 2DR method. The correlation coefficients
ranged from 0.955 (LVT) to 0.983 (LVM) for the 3D
method while they ranged from 0.965 (LVPM) to 0.996
(LVC) for the 2DR method. These values were systemati-
cally superior for the 2DR version as compared to the 3D
(Table 4). As a matter of example, for the LVM class the
accuracy related to the 2DR method was 97.7% i.e. 5.0%
larger than the corresponding 3D method’s value (92.7%).

Similar results were found for the QC U-Net backbone
and for the whole set of structures but LVPM (Table 4).
The accuracy values from the two implementations of the
2DR method were larger than 96.5% regardless of the eval-
uated class while 6 out of 8 values were lower than 96.5%
for the two implementations of the 3D direct approach.

MAEs at the 3D-level were generally inferior to the cor-
responding values at the slice-level for the 2DR method.
As an example, the MAE value for the LVC class was
0.012 at the 3D-level for QC U-Net 2DR and 0.019 at the
2D-level. Of note, this was not the case for the 3D direct
approach for which MAEs at the 3D-level were generally
inferior than those at the 2D-level. As an illustration, the
MAE for the LVM (LVC) class was 0.037 (0.029) at the
3D-level for QC U-Net 3D whereas it was 0.023 (0.024) at
the 2D-level for QC U-Net 2DR.

Scatter plots, fitted regression line and R2 scores of the
true 3D DSC against the predicted values from the QC
U-Net 2DR are illustrated in Figure 7. The scatter plots
illustrate the capacity of the method to predict the 3D
DSC with similar accuracy in the low, middle and high
range DSC values. R2 scores are significantly high for all
classes (from 0.932 for LVPM to 0.989 for LVC).

Table 5 displays the 3D DSC MAE on the test dataset
for the QC U-Net 2DR, for each patient class (DCM,
HCM, ETCM, Healthy, Non-Healthy). The Non-Healthy
group was composed of the patients that were not in the

Healthy group. The predictions for the Healthy group gen-
erally presented smaller MAE values, but the differences
were only significant for the LVC (0.010 for Healthy sub-
jects against 0.016 for Non-Healthy, p=7.51e-4) and LVPM
(0.034 against 0.049, p=8.64e-3). Overall, the method pre-
sented low MAE values for all groups and classes.

Table 6 gathers the mean processing time of each
method at both 3D and 2D-levels for the 2DR version.
The 2DR method had a 300 ms inference time while the
3D direct approach took about 100ms per inference.

Finally, in order to assess the impact of the training
sample size, our 2DR QC-UNet approach was trained with
10%, 33%, 66% and 100% of the total training dataset.
The corresponding 3D DSC MAE for LVM, LVC, LVT
and LVPM are illustrated in figure 8. One can observe
a substantial 3D DSC MAE reduction when the learning
dataset size increases.

4.3. Clinical practice results

Figure 9 overlays the density plots of the predicted 2D
DSCs for the three semi-qualitative groups (QC 1, QC 2
and QC 3) provided by the expert for each class.

First, the distribution of the predicted 2D DSCs for QC
1 always significantly (according to Kolmogorov-Smirnov
test, p-values < 0.05) differed from those of the lower qual-
ity groups (QC 2 and QC 3) and so for all classes. This
was especially the case for LVM and LVC which are classes
that are generally present in all slices contrarily to LVT
and LVPM. When a class is absent in a segmented slice,
the predicted 2D DSC is zero for that slice: this explains
the small mode in zero appearing for QC 1, much more
present for LVT and LVPM. Secondly, the shift between
the distributions of the different groups was in the same
order as the scores given by the human expert (QC 3 at
the left, QC 2 in the middle and QC 1 at the right in the
DSC range of values) except for the LVT class for which
the QC 2 and QC 3 groups had a comparable distribution
shape. Moreover, all the distributions significantly differed
(QC 1 vs QC 2, QC 1 vs QC 3 and QC 2 vs QC 3) except
for LVT and LVPM (for QC 2 vs QC 3) where p-values
were of 0.99 and 0.64 respectively.

Figure 10 shows the corresponding density plots of the
predicted 3D DSC for each class. As expected, the differ-
ences between the distributions were less important than
those of 2D DSCs. However, regardless of the class, the 3D
DSC distribution of the QC 2/3 group was always found to
be significantly different, more shifted to the left and with
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Fig. 8. 3D DSC MAE (averaged over all LV classes) as a function of the percentage of total training data used during
training. The model used here is QC U-Net 2DR.

larger standard deviation compared to the distribution of
the QC 1 group.

5. Automatic correction of segmentation model
failure

We conducted an additional analysis in order to
understand how erroneous segmentations in the mid-
slice section could affect the 3D DSC values and the
derived volumetric measurements. A simple approach
is then suggested to correct the measurements in this case.

We consider the scenario of a single short-axis slice seg-
mentation with a very poor quality in the mid-slice section.
In this particular scenario, the 3D DSC value might be ac-
ceptable whereas the 3D volumetric measurement would
not. In fact, measurements derived from mid-slices, where
the largest section of the LV is commonly located, are likely
to contribute the most to the overall volumetric quantifi-
cation.
In an attempt to address this issue, we used of the CNN-
predicted segmentations for the test dataset reported in
(Bartoli et al., 2020), which was composed of 150 sub-
jects. These segmentations were of high quality and the
corresponding clinical quality metrics were accessible in
(Bartoli et al., 2020). For each subject, the original 3D
predicted segmentation was corrupted based on a random
replacement of the mid-slice segmentation by another seg-
mentation from our MISAQC dataset. As a result, we put
together two sets of 150 3D segmentations : the original
dataset without deterioration (w/o D), and the dataset

with deteriorations (D), for which the mid-slices were sys-
tematically erroneous. The comparative analysis between
the two datasets in terms of 3D DSC values and relative
volume errors (RVE) allowed to quantify the effect of mid-
slice segmentation errors on those two metrics and to check
if the metrics were divergently affected.

Furthermore, this study provided an opportunity to in-
vestigate whether our 2D-based QC model could be used
to correct the overall volume measurement. In order to
do so, we used our 2DR QC U-Net model to predict the
2D DSC and 3D DSC for every segmented slice and sub-
ject, respectively. Each segmented slice was classified as
”good” or ”wrong” based on the predicted 2D DSC: seg-
mented slices with a predicted 2D DSC lower than 0.3 for
the BG or LVM or LVC class were classified as “wrong”.
We chose these classes as they were most likely present
in all slices as opposed to the LVT and LVPM classes.
The most basal and apical slices were also excluded. We
then replaced the associated volume measurements in the
segmented slices identified as ”wrong” by the mean of mea-
surements in the two adjacent slices identified as ”good”
and so for the whole set of classes. The corresponding mea-
surements were referred to as deteriorated and corrected
(D + C). Hence, by comparing the RVE values computed
with and without correction, we could verify if this ap-
proach could rectify the overall volume measurements.

Averaged real 3D DSC values and mean relative volume
errors (RVE) are reported in Table 7 for each dataset and
each class. The density plots of the predicted 2D DSC
for the mid-slice from the original and corrupted datasets
are displayed in figure 11. The density plots of the 150
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Fig. 9. Density plots of the predicted 2D DSC for the QC 1 and QC 2 and QC 3 groups in clinical evaluation. Within each
class, all distributions were significantly different except QC 2 vs QC 3 for LVT and LVPM.

Fig. 10. Density plots of the predicted 3D DSC for the QC 1 and QC 2/3 groups in clinical evaluation. Within each class,
all distributions were significantly different.

predicted 3D DSC, for each dataset are displayed in figure 12 while the density plot of the RVEs for our three set-
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Table 7. Additional analyses: cases with and without deteriorated mid-slice segmentation.
3D DSC and RVE

Class 3D DSC w/o D 3D DSC D RVE w/o D RVE D RVE D + C
LVM 0.89 ± 0.26 0.73 ± 0.07 0.07 ± 0.05 0.19 ± 0.14 0.07 ± 0.05
LVC 0.92 ± 0.02 0.81 ± 0.09 0.05 ± 0.05 0.32 ± 0.29 0.05 ± 0.05
LVT 0.62 ± 0.08 0.45 ± 0.11 0.23 ± 0.16 0.65 ± 1.06 0.23 ± 0.15

LVPM 0.79 ± 0.11 0.51 ± 0.12 0.15 ± 0.13 0.51 ± 0.40 0.16 ± 0.14

Fig. 11. Density plots of the predicted 2D DSC for the mid-slice segmentation, before and after deterioration, on 150
subjects in synthetic data. Within each class, all distributions were significantly different.

tings are displayed in figure 13. Regarding the impact of
a poor quality segmentation in mid-slices on the 3D DSC
values, we observed (Table 7) a substantial and signifi-
cant 3D DSC reduction i.e. -18% for LVM (from 0.89 to
0.73), -12% for LVC, -27% for LVT and -35% for LVPM.
Changes regarding the relative volume errors were much
larger (and all significant) i.e. +171% for LVM (from 0.07
to 0.19), +540% for LVC, +182% for LVT and +240% for
LVPM. These results strongly supported that a relatively
small 3D DSC change e.g. from 0.92 to 0.81 (0.7 has been
proposed in the litterature as a good quality threshold for
LVC) might correspond to a very large change in relative
volume errors e.g. from 0.05 to 0.32 for LVC. The capacity
of our 2D-based QC model to correctly detect the mid-
slice errors was supported by the significant (according to
Kolmogorov-Smirnov test) distributions shifts of both 2D
DSC for each class (figure 11) and 3D DSC (figure 12).
The effect was more pronounced for 2D DSC than for 3D
DSC distributions. Table 7 and figure 13 indicated that
the shift in measurement errors distributions induced by

the mid-slice errors could be almost totally suppressed us-
ing our proposed correction. This was further confirmed
by Kolmogorov-Smirnov test as the RVE w/o D and RVE
D distributions were always found significantly different
while the RVE w/o D and RVE D + C distributions were
not (p-values: 0.99 for LVM, 0.95 for LVC, 0.89 for LVT
and 0.72 for LVPM).

6. Discussion

In the present study, we reported a MISAQC tool de-
signed to jointly predict 2D and 3D DSC values for the seg-
mented structures in cardiac MR images. The tool perfor-
mance was compared with a 3D-direct approach. Regard-
less of the segmented structure and the chosen backbone
architecture and based on the accuracy and errors metrics,
the computation of 3D DSC values based on 2D indices
systematically outperformed the 3D-direct approach.
The main contributions of our work are the following:
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Fig. 12. Density plots of the predicted 3D DSC for 150 3D segmentations, before and after deterioration in synthetic data.
Within each class, all distributions were significantly different.

Fig. 13. Density plots of the relative volume errors (RVE) for 150 3D segmentations, before (w/o D), after (D) deterioration
and after deterioration and correction using the 2DR QC U-Net predictions (D + C) in synthetic data. For each class,
RVE w/o D and RVE D distributions were always significantly different, while RVE w/o D and RVE D+C were not.
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• A mathematical solution allowing to get 3D DSC pre-
dictions from 2D DSC and mean volume similarity
fraction (MVSF) predictions.

• A localization of segmentation errors at a 2D/slice
level with a possibility to correct the effect of segmen-
tation errors on clinical measurements.

• A significant improvement of results obtained from
state of the art approaches (for 3D DSC predictions).

• A general approach, implementable for any MRI or
computed tomography (CT) segmentation task, even
if classes are unbalanced.

6.1. Comparison with existing works

In most of the previous studies which have addressed
the issue of MISAQC with machine-learning-based meth-
ods, evaluations were carried on at the 3D level whereas
the 2D-level was ignored (Albà et al., 2017; Audelan and
Delingette, 2019; Kohlberger et al., 2012; Robinson et al.,
2019, 2018; Valindria et al., 2017). Based on DSC compu-
tation at the 2D level, the present method yielded correla-
tion factors higher than 0.965 regardless of the segmented
structures. In a previous study conducted in lung images,
the correlation between the predicted and the real DSC
values was lower (r = 0.85) (Kohlberger et al., 2012), while
values for liver and brain tumors were much lower (r =
0.54 and r = 0.69, respectively) (Audelan and Delingette,
2019).

In the present study, the segmentation quality assess-
ment was based on the DSC values, DSC being a continu-
ous variable between 0 and 1. The corresponding eval-
uation allowed to score the segmentations quality on a
continuous scale. Using 3D DSC quality thresholds, the
reported accuracies were systematically superior to 96,5%
for both the well represented (LVM and LVC) and the
less represented classes (LVT and LVPM). As a matter
of comparison, using a random forest classifier method
for cardiac images, (Albà et al., 2017) used a 4 mm er-
ror threshold and reported a 96% accuracy for LVM and
LVC, two classes that are very well represented in car-
diac images. The utilization of such a threshold for classes
such as LVT, is highly questionable given their small and
scattered structure. In addition, the 4 mm threshold en-
abled the distinction of only two groups of errors (lower
and higher than 4 mm) which is a critical limitation for
accuracy computations.

The MAE values we reported in the present study are
similar to those reported by (Robinson et al., 2018) who
used a 3D-direct approach and a much larger dataset.
More particularly, the MAE reported by these authors for
LVM was 0.055 ± 0.064 as compared to 0.037 ± 0.035 in
the present study using the QC ResNet 3D. Similarly, a
value of 0.029 ± 0.039 was found in the present study for
the LVC class using the QC ResNet 3D while Robinson
et al reported a slightly larger value, i.e., 0.038 ± 0.040.

On that basis, these results strongly support the similar-
ity between the two 3D-direct approaches. In addition,
our 2DR approach clearly outperformed the 3D direct ap-
proach thereby indicating that a better performance can
be achieved when MISAQC is initially performed at the 2D
level. This new method was also very efficient in terms of
computing time. The mean processing time for a subject
was around 300 ms which permits real-time applications,
on the contrary to other methods such as reverse classi-
fication accuracy where the corresponding reported time
was 11 min (6000-fold larger) (Robinson et al., 2019).
We also addressed a limitation of previous works who used
artificially degraded segmentations for learning and eval-
uation of their QC tools, and never confronted the auto-
matic evaluation to human evaluation. For that we con-
sidered a clinical practice application using a real dataset
having 1016 segmented subjects from the UK BioBank
whose segmentation quality was assessed by a medical ex-
pert. Quality scores from our model were in very good
agreement with those given by human operator, further
supporting not only the robustness of our method but also
it’s ability to generalize to unseen data.

6.2. Advantages of a 2D-based multi-level MISAQC
method

In the present method, training and inference were
2D-based whereas the quality assessment was performed
at both 2D and 3D levels. In that respect, this MISAQC
approach differs from those in which training, inference
and quality evaluation have been performed at a 3D-level
and provides multiple advantages which are listed below.

6.2.1. Possibilities opened by a multi-level QC
As indicated in section 5, the MISAQC performed at

a slice-level allowed the detection of erroneous segmented
slices (Table 2, figure 9 and 11). In addition, once de-
tected, the corresponding erroneous measurement could
be replaced by measurements from the neighbouring slices.
In that respect volume errors could be drastically reduced
(Table 7, figure 13). As a matter of example, the LVM
mean RVE was 32% before the correction and was reduced
by a factor five (5%) after the correction. This corrective
process would not have been possible using a 3D-only qual-
ity evaluation. Being able to correct in real-time automatic
clinical measurements can have an obvious diagnostic im-
pact. Of interest, the impact of the mid-slice errors was
moderate on the 3D DSC values and much larger on the
volumetric errors (Table 7). This is a very important result
indicating that the 3D DSC metric might not be sufficient
in evaluating the quality of medical image segmentations
and that morphological and/or functional metrics should
be also considered. The additional 2D DSC evaluation at
slice-level represents a clear advantage in that matter. An-
other application of the multi-level quality control would
be to allow the clinicians to be able, in their diagnosis,
to give more credit to the segmentation-derived measure-
ments by being capable of directly visualizing the location
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of the segmentation errors and eventually correct them im-
mediately. Using the feedback brought by our models, the
clinician would also identify more easily and reliably the
profile of data for which the model’s predictions should be
carefully checked.

6.2.2. Enhanced predictive accuracy
We showed that by reconstructing the 3D DSC from

2D indices one could obtain 3D-level and 2D-level quality
evaluation of segmentations with a single method. This
would not be possible in the case of a 3D-direct approach.
This methodology also encourages the robustness of the
3D-level evaluation: since (as illustrated in Table 2) the
2DR versions can predict 2D indices with a very high pre-
dictive accuracy, the likelihood of large 3D DSC errors is
substantially lower than what could be achieved using a
3D-direct approach.

6.2.3. Training and data efficiency
Annotation cost and computational cost are two recog-

nized issues in the field of CNN-based segmentation. In
that respect, using a 2D approach for a given dataset,
the number of training examples is substantially increased
(Baumgartner C.F., 2018), without any additional anno-
tation cost. Indeed, when working in a 3D framework, the
patients segmentations’ quality is expressed by a unique
score for each class, whereas this information is enriched
in the 2D context and multiplied by the number of slices.
Having a higher variability in the training sample is highly
beneficial for the convergence of the stochastic gradient al-
gorithm. As a matter of example, in the promising study
of Robinson et al. (Robinson et al., 2018) the training
dataset was the UK Biobank database with thousand of
available segmented 3D volumes. Such a gigantic database
can be considered as exceptional and not commonly avail-
able. On that basis, a 2D dataset of an hundred segmented
MRIs could be comparable to the UK BioBank database
from the 3D point of view in terms of number of training
examples.
Obviously, computational costs are substantially reduced
as well with our approach. This could be of particular rel-
evance for computed tomography (CT) datasets for which
the number of slices is of several hundreds: 3D approaches
might face computational limits, whereas our approach
will be easily implemented.

6.3. Quality control for small anatomical regions
Of particular interest, in addition to providing a quality

control at both 2D and 3D levels, our method was insen-
sitive to DSC values and size of the segmented structures.
In other words, we were able to predict with the same ac-
curacy both high and low DSC values. The issue of size
structures was also addressed very efficiently. An inter-
esting and challenging issue in the field of medical images
segmentation is related to MISAQC for classes highly and
poorly represented. Previous studies have mainly reported

methods dedicated to the MISAQC of segmentations for
relatively large and connected classes, such as the my-
ocardium and blood cavity (Audelan and Delingette, 2019;
Robinson et al., 2019, 2018). The suitability and perfor-
mance of these methods for small and scattered anatomi-
cal structures such as trabeculations or papillary muscles
(illustrated in figure 1), have not been addressed. The
present results clearly demonstrate that our 2DR method is
suitable for both large and small classes. The correspond-
ing MAEs were similar (QC ResNet 2DR: 0.016 (LVM),
0.011 (LVC), 0.022 (LVT) and 0.042 (LVPM)), illustrat-
ing that the CNNs were able to learn and extract relevant
features for both types of classes. Our method was less
efficient for the LVPM class and so most likely because
papillary muscles do not appear in all slices.

6.4. Limitations
A few limitations should be acknowledged in the present

work. One could wonder about the realistic features of the
synthetic database we generated. The methodology we
used to generate this database was comparable to what
has been previously reported (Robinson et al., 2018).
Actually, we replaced the random forests approach by
CNNs and this slight change is not expected to introduce
major changes. More importantly, the external validation
of our model on the UK BioBank dataset supports the
realistic nature of this synthetic dataset as the model
was able to generalize on a new data source. We used
a single type of network to build the MISAQC dataset
and one could wonder whether other networks could
have produced other ”types” of segmentation errors. We
think that the key issue for this dataset construction is
to generate a sufficient number of segmentations fairly
distributed over the entire range of possible DSCs (from
0 to 1).

The performance of our approach was assessed using a
rather small dataset. However, as it relies on a 2D anal-
ysis, it should be less sensitive to the dataset size than
a 3D-based deep learning approach. This expectation is
supported by the promising comparison between our re-
sults and those from (Robinson et al., 2018) with a smaller
dataset, we reported lower MAE values.

6.5. Conclusion
In the present study, a multi-level (2D and 3D)

deep-learning-based real-time automated quality control
method for cardiovascular MR image segmentations was
designed and the corresponding performance was assessed.
Based on the MAE values and classification accuracy, it
was clearly demonstrated that the proposed method was
equally efficient for large and small cardiac anatomical
structures. The QC provided by our method was shown
to be consistent with scores generated by trained cardiolo-
gists. The 2D-based structure can be trained with a mod-
estly sized dataset while enabling a very accurate real-time
automatic quality prediction at both 2D and 3D levels. We
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highlighted its’ possible applications such as successfully
rectifying erroneous clinical measurements derived from
medical image segmentations.
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