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Abstract Understanding how cellular signalling is flowing from the molecular to the cellu-
lar level is a key step to identify requlators of different diseases and revisit the development
of new potential drug targets. For years, biological approaches of signalling did not allow
to probe and control signalling at the sub-cellular level with enough accuracy in space and
time to directly witness transfer of information in biological network. To analyze datasets
where signaling is controlled spatio-temporally by optogenetic, we have developed a method
which traverses the space of Random Walks with Restart (RWR) models, searching for the
optimally biased walk in a given context. It will allow to integrate data of differentially
phosphorylated proteins obtained from longitudinal phospho-proteomics assay, in response
to two different mode of optogenetic activation of the kinase Src, in order to reconstruct
potential functional paths in the Protein-Protein interaction (PPI) network.

Keywords Random Walk with Restart, optimization, PPI network, path finding, sig-
nalling

1 Introduction

Activation of a single intracellular signaling element can induce a decision making event: different
mode of activation of the same cell can have very different phenotypic responses. This suggests
that some mechanism downstream of the stimulus drives the signalling processes into two signalling
directions, inducing two different cellular responses. In an optogenetic engineered system, Kerjouan
et al. [I] show such phenomenon at play. They successfully construct a functioning photo-activable
version of the Src tyrosine kinase. By either being able to restrict the kinase movements to the
membrane surface (2D diffusion) or being able to let it diffuse freely inside the cytosol (3D diffusion),
they manage to activate the same level of Src in seemingly similar situations. They show that slightly
modulating diffusion of these signals in the same site of action is sufficient to induce very distinct
cellular phenotypes. In the case of membrane diffusion the cells exhibit lamellipodia, whereas they
exhibit invadosome structures when the kinase is not restrained.

In order to understand the mechanisms at play, we need to be able to reconstruct the signal
transduction after the activation of the Src kinase. Since our ability in monitoring the phosphorylation
statuses of all proteins in a cell is fairly limited, the phospho-proteomics approaches are costly and their
ability to be precisely quantitative is questionable, our hope is to be able to reconstruct some potential
transduction paths from a coarse time-resolved phospho-proteomic assay, leveraging the information
contained in the topology of the PPI network. We develop our method in order to decipher the events
occurring between the time of the optogenetic Src activation and the cellular responses observed. A
visual overview of the method is given in Figure 1.

2 Methods

To reconstruct potential functional paths, we observe the change in phosphorylation levels of a
wide range of proteins following the activation of the optoSrc (OS-sensitive proteins). We use the RWR
paradigm (see section 2.1) to analytically compute how much the Src kinase is able to influence the
rest of the PPI network. The ordinary RWR makes a strong assumption on the possible interactions
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Fig. 1. (left) Inputs of the algorithm: phosphorylation intensities, topology of the PPI network and the protein
of interest (center) Formulation of the RWR problem as a linear program (right) Output of the algorithm: the
biases of the optimal RWR model which we will analyse in downstream workflow.

a protein might have at a given time : it supposes that a given protein has uniform probability of
interacting with any of its partners, leading to a sphere of influence which is not context dependent. In
our setting we have the information that, after a certain time, the activation of our initial kinase led to
specific changes in phosphorylation levels. We will use this knowledge to guide our random walk and
deduce some potential contextual affinities between protein partners. By exactly describing the space
of RWR models using linear constraints on both the edge weights and the asymptotic distribution
(see section 2.2), as was done in [2] for random walks, we are able to use cutting-edge optimization
software [3] to find the mathematically optimal edge weights for a given objective function. The
objective function we will be interested in is the quantitative matching of the RWR’s asymptotic
distribution to the experimental observation (see section 2.4). We therefore retrieve the edge weights
corresponding to a stable distribution which matches best our observations of phosphorylation levels.

2.1 Random Walk with Restart

Given a graph G = (V, E), where V is the set of vertices (nodes) of the graph and E the set of
edges, a set of initial nodes Z with associated vector R (Vi € I, R; = zwand Vi€ Vi ¢ T — R; =0).
We can define A the adjacency matrix of the graph. We will start Ly defining the set of matrices we
are interested in :

DEFINITION 2.1 (STOCHASTIC MATRICES WITH SUPPORT A).

Sa = {M € Muy(R) st Vj,» Mjj=1andVi,j,Ai; =0 = M;; = 0} (1)
i

We define Sz the set of stochastic matrices which have A as a support. These matrices are stochastic

because they represent a Markovian process : the random walk. This random walk is restricted to the

edges of our underlying graph that is why the matrices should have the same support as A. This is a

description of the space of parameters for our random walks.

For any matrix W € S4 , the Random Walk with Restart using the weights W is defined as the
process:
P =BR+(1-B)WP,

Ergodic theory (using the Perron-Frobenius theorem) shows that such a process converges. We will
call the asymptotic distribution of the process RWRg(W). If II = RWRg(W) then it satisfies :

M=pBR+(1-BWI and =) B(1-p)FWFR
k=0
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In most cases, when there is no information on the weights, W is chosen to be uniform at each nodes
i.e W = ATD~! where D is the diagonal matrix of degrees, we will be referring to this choice as the
ordinary RWR.

The Random Walk with Restart (i.e Network Diffusion, Personalized PageRank) is a classical
procedure which computes similarity scores between nodes in a graph. It is often used in network
biology, and network science in general, to either : determine proximity between pairs of nodes in
biological networks [1] and more complex networks [5], assess quality of general clustering methods [(]
and to predict directionality in undirected PPI networks [7].

The PPI network constructed from Y2H high throughput experiments does not contain information
about affinity of interactions nor context dependent competition between proteins. Although the RWR
can leverage edge weights in weighted networks, due to the lack of information, the choice is often
made to use uniform weights but it is a strong assumption. We have devised a procedure to optimize
the weights in order to match some observations on the network. The choice of the network that
we will actually use in the context of the Src signalling will not be discussed here but we can point
out that it is one of the educated choices which has to be made in order to have the best possible
predictions.

2.2 Optimally biased RWR

If we have some observations on a subset O C V' of the vertices at two different time points {t¢, 1}
(i.e we have a function obs : O x {tg,t1} — RT). We then are interested in finding the optimal
parameters which explain the change in the observations.

DEFINITION 2.2 (SET OF PAIRS OF MATRICES WITH THEIR ASSOCIATED ASYMPTOTIC DISTRIBU-
TION). To every matriz we can associate a unique asymptotic distribution under the biased random
walk with restart with parameters € and (3.

RWR, 5 := {(S, RWRg((1 — €)Wy +€S)), S €8} (2)

Instead of searching the whole space of stochastic matrices which have A as a support Sy (see
Equation 1), which could give very unpractical results because it would not take into account diffusion
at all, we will search the space of parameters around an a priori set of parameters Wy. The choices
of Wy could be one of the following: uniform probabilities, maximum entropy probabilities, optimized
probabilities to match the initial observation (the actual choice will not be discussed here but is a
crucial point to be studied in the future). To summarize, we will be considering, for a given e, all
matrices of the form (1 — €)Wy + €S for S in Sy, those are the biased random walks around W (see
Equation 2). Out of all of these matrices we will try to find the one which best explains the changes
in the observations. If we have a function f to compare the asymptotic distribution of the RWR to
the observations then we are interested in :

S* € argmin f (II, obs) (3)
STIERWR, 5

REMARK 2.3. In our case, the observations will be the phosphorylation intensities measured for each
protein for which we actually have a value, before and after Src activation. We will discuss the actual
choice of f in section 2.4, but first let us describe the space of all possible RWRs.

REMARK 2.4. These optimization problems are hard in general, except when the problem can be
formulated in certain ways. This is the theory of convex optimization. We will not address the math-
ematics underlying the optimization procedures but we will show that our problem can be formulated
as a Linear Program. Linear Programs are a kind of well studied optimization problems for which we
have good enough optimizers for problems of the size we are interested in.
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2.3 Specifying the convex search space

We want to describe the set RWR, 5, the stochastic matrices with support matrix A as well as
their associated asymptotic distribution for the Random Walk with Restart. We will give the linear
constraints which describe this set as a subspace of RIVE x RIVI,

Let us start with Su:

\4
SeSs < Vj, Y Sij=1landVij, 0<S;< A, (4)
=0

Now let us describe RWRg((1 — €)Wy + €S5) :
I =RWRs((1 - eWo+eS) = > ;=1 (5)
J
and Vj, 0<II (6
and II=pR+ (1—¢)(1—B)Woll+¢(1—B)SII (7)

Here Equation 7 is not linear, the problem is solved by a simple change of variables E := S x diag(II)
and rewriting the equations subsequently (similarly to what is done in [2]):

|4
\V/j, ZE” = Hj and \V/lj, 0 S Eij S Aji (4bIS)
1=0
=B8R+ (1—¢)(1—B)Woll+e(1—pB)E (7bis)

2.4 Objective function

Let us discuss the choice of f, in order for the problem to be a Linear Program, we need f to be
linear in both F and II. Since our goal is to match the observations, it actually will not depend on
E (although we could later add some regularization term to our objective which could depend on E).
In fact we already hinted that way in Equation 3, by not having F be an argument of f.

Our goal is to find the edge weights which bias the random walk’s asymptotic distribution towards
the activated nodes and away from the inactivated nodes. Thus our first approach was to consider
the sets of nodes O := {i € O, o0bs(t1) — obs(tg) > 0} and O~ == {i € O, o0bs(t1) — obs(ty) < 0}.
Trying to maximize probabilities of ending on nodes in OF which have a positive variation of the
observed quantity and minimize probabilities of ending on nodes in O~ which have negative variation
of observed quantity :

fl(H,ObS) = — Z Hz - Z Hl

By not taking into account the actual structure of RWR (i.e correlation between distance from
the source and the probability of ending on the node), this tends to try and optimize the probabilities
on nodes that are closest to the initial nodes. We solved this issue by looking at the fold change in
probability from the initial condition RWR(Wj):

HZ' HZ
I = — E Soon o E : RWR(W-):
f2(I1, obs) ' RWR(Wp); RWR(Wp);
€Ot i€0”

Now this was satisfactory in practice, but it didn’t leverage the whole information of the observa-
tions: we only considered the trend of the observed quantity, not the actual values. We would rather
be matching the actual fold change in the observed quantity :

Hi _ obs(i, tl)
RWR(W())Z ObS(i, to)

f3(I1, 0bs) = Z

€O
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The absolute values are not linear, but there exists a trick which introduces new variables in the
Linear Program to transform absolute values in the objective function into constraints :

Minimizing f3 <=  Minimizing f; = ZXi

€O
I1; obs(i,t1)
d X;> - 22
an = RWR(W,); _ obs(i, to)
II; obs(i, t1)
d X;,>-— : — ’
an = <RWR(W0)i obs(i,t0)>

2.5 Solving

Run time of the method
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Fig.2. Run times of the method on synthetic data. We have generated networks of different sizes, using

Watts—Strogatz model. We have kept the ratio of number of edges and number of vertices fixed in all generated
graphs. We consistently used a single source and % target nodes.

Now that we have specified our problem as a Linear Program in a satisfactory way, we can compute
the optimal solution i.e the optimal deviation from the initial condition to match our observations.
If we come back to our biological question, we have a description of those interactions which are
potentially favored or unfavored, in the context of our observations.

We are using the gurobi optimizer in python, through the gurobipy package. We have an academic
license, but the software is proprietary. In order to support open source ecosystems, we might use the
CLP software [3] in the future.

REMARK 2.5 (SCALABILITY). Scalability does not seem to be an issue, see Figure 2, although
restricting the network to functional modules will definitely run faster than on the whole PPI network.

3 Results

As for now, we have tested our method on synthetic data. A visual representation of the output
of the method on a 6 x 6 grid with single source and two positive targets is given in Figure 3.

From the output of our method we are capable of extracting paths from sources to targets, either
from the probability landscape (Figure 3.4) or from the bias of our optimal RWR (Figure 3.B). In
the actual workflow on the Src activation problem, we will develop some further downstream analysis
to study the paths. In the Src context we will actually get a couple of paths we will need to compare
in order to determine proteins/interactions which are potentially responsible for the decision making.
We will also discuss validation of the method on gold standard data in section 4.
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Fig.3. (A & B) Green node is the source node, both red targets have a positive variation in the observed
quantity (A) Probability landscape as a log, fold-change between RWR(Wy) and RWR((1 — €)Wy + €S™*)

(B) Representation of S* as a directed graph, we visualize the biases i.e the directions favored in order to
optimize the probabilities on the target nodes.

4 Discussion

We have presented our method, some technical details and some choices we have made based on
our understanding of both the mathematical tool we are using and the biological context in which we
want to apply the method. This being a work in progress, a substantial amount of leeway remains.
One could question the biological relevance of the paths we find, and would be legitimate in doing
so. We do not pretend to be providing a model of signalling, the potential functional path we are
discovering will help us guide new experiments and question the roles of specific proteins, but should
not be seen as predicted signalling pathways. In order to reinforce our trust that there is biological
significance in the paths we discover, we will have to validate our method and adapt it to integrate
other sources of biological information.

There are a couple of instances where we can, and will, try to validate our approach. The first
case is in trying to reproduce directionality information as was done in [7]: we can try to predict the
direction of interactions and confront our predictions to the ground truth since some interactions are
known to be directed. Another idea is in trying to retrieve signalling pathways, from an obfuscated
version of said pathways. Indeed, we could consider a signalling pathway, forget the directionality of
the interactions, add some partner proteins which are not part of the pathway (obfuscating the original
pathway) and then see if our method is capable of retrieving some parts of the pathway. Seeing how
the method fares in controllable settings, will define how relevant we consider the paths discovered de
novo.

A criticism regarding the interpretability of the RWR in the context of the PPI network comes
from the fact that the PPI is constituted of binary interactions which are tested in conditions very
different from the condition in which the interactions actually occur. The ”real” network represen-
tation of the protein interaction at a given time in a given cell has to differ from the PPI network
(some interactions might be context-dependant). This observation drives our work in the direction of
integrating other sources of information into the RWR, paradigm. We are currently working on dif-
ferent ways of integrating orthogonal data to the Random Walk with Restart (proteomics, functional
annotation). We have already mentioned that the choice of the underlying network is crucial, we have
already built sub-networks of the PPI from proteins extracted from the literature, and are thinking
about integrating data from Phosphosite+ [9]. We have developed our method in order to be able to
integrate cause-to-effect contextual information, adding even more biological information should bring
more specific results.
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