
HAL Id: hal-03848730
https://amu.hal.science/hal-03848730

Submitted on 10 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quaternion to Euler angles conversion: a direct, general
and computationally efficient method

Evandro Bernardes, Stéphane Viollet

To cite this version:
Evandro Bernardes, Stéphane Viollet. Quaternion to Euler angles conversion: a direct, general
and computationally efficient method. PLoS ONE, 2022, 17 (11), pp.e0276302. �10.1371/jour-
nal.pone.0276302�. �hal-03848730�

https://amu.hal.science/hal-03848730
https://hal.archives-ouvertes.fr

Quaternion to Euler angles conversion: a direct, general and
computationally efficient method

Evandro Bernardes1, Stéphane Viollet1*

1 Aix-Marseille Université, CNRS, ISM, Marseille cedex 09, France

* stephane.viollet@univ-amu.fr

Abstract

Current methods of the conversion between a rotation quaternion and Euler angles are
either a complicated set of multiple sequence-specific implementations, or a complicated
method relying on multiple matrix multiplications. In this paper a general formula is
presented for extracting the Euler angles in any desired sequence from a unit quaternion.
This is a direct method, in that no intermediate conversion step is required (no
quaternion-to-rotation matrix conversion, for example) and it is general because it
works with all 12 possible sequences of rotations. A closed formula was first developed
for extracting angles in any of the 12 possible sequences, both “Proper Euler angles”
and “Tait-Bryan angles”. The resulting algorithm was compared with a popular
implementation of the matrix-to-Euler angle algorithm, which involves a
quaternion-to-matrix conversion in the first computational step. Lastly, a single-page
pseudo-code implementation of this algorithm is presented, illustrating its conciseness
and straightforward implementation. With an execution speed 30 times faster than the
classical method, our algorithm can be of great interest in every aspect.

1 Introduction 1

When dealing with 3D orientation problems, many different formalisms can be used to 2

describe a given rotation [1], each of which has its own set of advantages and 3

shortcomings. Arguably the most direct representation of a 3D rotation is a matrix 4

R ∈ SO(3), where SO(3) is the group of invertible 3× 3 matrices such that det(R) = 1 5

and RRT = RTR = I, where I is the identity matrix. These rotation matrices represent 6

direct linear transformations such that, with vvv ∈ R3: 7

vvvrotated = Rvvv (1)

Apart from being simple to use, a rotation matrix also has the advantage of being 8

continuous, and a simple matrix multiplication can be used to compose rotations: 9

R = R2 R1 is the rotation matrix corresponding to a rotation by R1 followed by a 10

rotation by R2. 3D rotation matrices have some numerical shortcomings, however. For 11

example, as many as 9 numbers (and 6 constraints) are required to represent a 3 degree 12

of freedom rotation, and it can be difficult and computationally costly to orthogonalize 13

a rotation matrix numerically [2] (i.e., to check that the matrix has its determinant 14

equal to 1 and its inverse equal to its transpose, which is necessary to compensate for 15

the accumulated floating point errors). 16

However, it is possible to parametrize this rotation matrix with a smaller set of 17

numbers [3]. One of the most usual set of parameters are the Euler angles. The 18

September 27, 2022 1/11

approach consists in decomposing the 3D rotation matrix into the product of three 19

rotations: 20

R = Rθ3 eee3 Rθ2 eee2 Rθ1 eee1 (2)

Where Rθ eee is a rotation by the angle θ around the axis eee, and the consecutive axes are 21

orthogonal (eee1 · eee2 = eee2 · eee3 = 0). The advantages of using Euler angles include the fact 22

that only three numbers have to be stored, and due to their familiarity, they can be 23

more easily understood, which explains why they are still being so widely used, even in 24

cases where other forms of representation may be more appropriate. The use of Euler 25

angles also has several disadvantages. For example, they are discontinuous and it is 26

difficult to directly compose two 3D rotations expressed in Euler angles. Euler angles 27

are also affected by the phenomenon commonly called “gymbal lock”: when two axes 28

become aligned, making the system underdetermined, special care has to be taken. In 29

addition, since there are 12 possible axis sequences (24, when considering the difference 30

between “intrinsic” and “extrinsic” rotations), the correct sequence has to be checked in 31

the case of each application. An arguably preferable parametrization are quaternions. A 32

quaternion is a hypercomplex number defined by one real part and three distinct 33

imaginary parts (which can also be regarded as the vector part). When the norm of a 34

quaternion is equal to 1, quaternions are a useful and efficient representation of 3D 35

orientation: they can be composed as easily as rotation matrices, they are continuous, 36

and they are easily constructed from the axis-angle representation. In addition, 37

quaternions can be normalized trivially, which is much more efficient than having to 38

cope with the corresponding matrix orthogonalization problem. For these reasons, most 39

3D graphical applications and rotation engines carry quaternions under the hood. 40

Besides these advantages, Euler angles are still being preferred by many authors: Euler 41

angles are the most familiar concept to most engineers and researchers. In addition, in 42

the case of many problems in which there exists only one degree of freedom, angles can 43

suffice. 44

To be able to perform fast calculations with quaternions and at the same time 45

analyze rotations using angles, it might be necessary to have an efficient method of 46

converting the one set of parameters to the other. Calculating the corresponding 47

quaternion (or rotation matrix) for a given set of Euler angles is trivial. Extracting the 48

Euler angles is much harder, however. One of the following two methods has generally 49

been used up to now. The first method consists in adopting a different set of formulas 50

for each possible angle sequence [4], which is difficult to implement and debug. The 51

second method is that described in [5]. SciPy [7], for example, a widely used scientific 52

library for the Python programming language, implements this method. It converts 53

rotation matrices into Euler angles and involves many different matrix multiplications, 54

including the inverse trigonometric functions required, which are naturally 55

computationally costly. In addition, if rotations are stored in the form of quaternions (as 56

is usually the case in many of the 3D rendering software tools dealing with rotations), 57

an additional conversion step from quaternions to rotation matrices is necessary. 58

Since many robotic, graphic and other high-level applications involve the use of 59

quaternions (even if they are hidden from the user), it can be necessary to have a 60

concise, efficient method for the conversion between quaternions and Euler angles. The 61

direct conversion formula from quaternions to Euler angles presented here requires fewer 62

computational steps and less expensive computational resources. Moreover, this 63

conversion formula is much simpler to implement and debug, making it a great option 64

for any new applications needing to implement this kind of conversions. 65

September 27, 2022 2/11

2 Quaternion algebra summary 66

In this section, the key properties of quaternions are summarized. It is assumed in this 67

work that we are dealing with the classical Hamilton quaternions. Since the definitions 68

concerning quaternion algebra are not perfectly consistent in the literature [8], some of 69

the main notations and definitions used in this study are then presented. Quaternions 70

form a non-commutative division algebra denoted by H, which extends the complex 71

numbers. A quaternion q ∈ H consists of four components: 72

q = qr + qxi+ qyj + qzk (3)

Where qr, qx, qy, qz ∈ R. All the properties of quaternions can be obtained using its 73

fundamental property, as given by Hamilton: 74

i2 = j2 = k2 = ijk = −1 (4)

Using the above properties, the product of two quaternions q and p can be expressed by
the Hamilton product:

q p = (prqr − pxqx − pyqy − pzqz) + (prqx + pxqr − pyqz + pzqy) i (5)

+ (prqy + pxqz + pyqr − pzqx) j + (prqz − pxqy + pyqx + pzqr)k

For the sake of simplicity, quaternions will be written here as 4× 1 vectors (with the 75

scalar qr as the first element): 76

q =


qr
qx
qy
qz

 =

[
qr
qqq

]
(6)

Where qqq =
[
qx qy qz

]T
is the the imaginary/vector part of q. The Hamilton product 77

between two quaternions in 4-vector form will be denoted by: 78

q ⊙ p =

[
qr
qqq

]
⊙
[
pr
p

]
=

[
qrpr − qqq · p

qrp+ prqqq + qqq × p

]
(7)

Defining the conjugate q∗ =

[
qr
−qqq

]
and the absolute value as |q| =

√
q2r + q2x + q2y + q2z , 79

the inverse q−1 of q is given by: 80

q−1 =
q∗

|q|2
(8)

And for any quaternion q: 81

q ⊙ q−1 = q−1 ⊙ q =

[
1
000

]
(9)

If q is a unit quaternion, which means that |q| = 1 and q−1 = q∗, it can be used to 82

represent the rotation between two reference frames. Denoting vA and vB a vector v in 83

frames A and B, respectively, and q = qBA the unit quaternion corresponding to the 84

rotation from A to B: 85[
0
vB

]
= qBA ⊙

[
0
vA

]
⊙ (qBA)∗ (10)

The equivalent rotation matrix is given by:

RB
A =

[
q2r + q2x − q2y − q2z −2qrqz + 2qxqy 2qrqy + 2qxqz
2qrqz + 2qxqy q2r − q2x + q2y − q2z −2qrqx + 2qyqz
−2qrqy + 2qxqz 2qrqx + 2qyqz q2r − q2x − q2y + q2z

]
(11)

September 27, 2022 3/11

And the equivalent quaternion for a rotation of an angle θ around an axis eee is given by: 86

qθeee =

[
cos(θ/2)
sin(θ/2)eee

]
(12)

3 Formula development 87

In the section, the formula for the conversion between a quaternion and any of the 6 88

proper Euler angle sequences is derived, and then an adaptation for the 6 remaining 89

Tait-Bryan sequences is demonstrated. 90

3.1 Case 1: Proper Euler angles 91

Assuming q = [qr, qqq
T]T is unit an known, it can be decomposed as follows:

q =

[
c3
s3eee

]
⊙
[
c2
s2eee

′

]
⊙
[
c1
s1eee

]
(13)

In which (for 0 ≤ θ2 ≤ π):

s1 ≡ sin (θ1/2), c1 ≡ cos (θ1/2)

s2 ≡ sin (θ2/2), c2 ≡ cos (θ2/2)

s3 ≡ sin (θ3/2), c3 ≡ cos (θ3/2) (14)

Where s2 ≥ 0, c2 ≥ 0. Taking eee and eee′ to be orthogonal unit vectors (eee · eee′ = 0), there is 92

a third unit vector which is orthogonal to the other two such that: 93

eee′′ ≡ εeee× eee′ (15)

Where ε = (eee× eee′) · eee′′ = ±1. Together, eee,eee′ and eee′′ form an orthonormal basis. We also
define:

θ+ =
θ1 + θ3

2

θ− =
θ1 − θ3

2
(16)

And:

s+ ≡ sin (θ+) = s1c3 + c1s3

s− ≡ sin (θ−) = s1c3 − c1s3

c+ ≡ cos (θ+) = s1s3 − c1c3

c− ≡ cos (θ−) = s1s3 + c1c3 (17)

Analyzing Eq. 13:

q =

[
c3
s3eee

]
⊙
[
c2
s2eee

′

]
⊙
[
c1
s1eee

]
= c2

[
c3
s3eee

]
⊙
[
c1
s1eee

]
+ s2

[
c3
s3eee

]
⊙
[
0
eee′

]
⊙
[
c1
s1eee

]
= c2

[
c+
s+eee

]
+ s2

[
0

c−eee
′ + s−eee× eee′

]
(18)

September 27, 2022 4/11

And noting that eee× eee′ = εeee′′:

q =

[
c2c+

c2s+eee+ s2c−eee
′ + s2s−εeee

′′

]
(19)

Defining the following four components:
a
b
c
d

 ≡


qr
qqq · eee
qqq · eee′
ε qqq · eee′′

 (20)

We obtain: 
a
b
c
d

 =


c2c+
c2s+
s2c−
s2s−

 (21)

Alternatively, we can see that
[
b c d

]T
is simply a permutation of the components of

qqq: bc
d

 =
[
eee eee′ eee× eee′

]T
qqq (22)

3.1.1 Extraction of angles 94

Using complex numbers, we can define:

z+ ≡ a+ ib = c2(c+ + is+)

z− ≡ c+ id = s2(c− + is−)

(23)

Since c2, s2 ≥ 0, we know that |z+| = c2, arg(z+) = θ+, |z−| = s2 and arg(z−) = θ−.
We can then rewrite:

z+ = a+ ib = c2 exp (iθ+)

z− = c+ id = s2 exp (iθ−) (24)

And we know that:

θ+ =
θ3 + θ1

2
= arg{a+ ib} = atan2(b, a)

θ− =
θ3 − θ1

2
= arg{c+ id} = atan2(d, c) (25)

3.1.2 Singularities 95

There are two different singularities in these expressions. When θ2 = 0, we have s2 = 0 96

and θ− is undefined. When θ2 = π, we have c2 = 0 and θ+ is undefined. In both cases, 97

one degree of freedom is lost and we can argue that θ1 (or alternatively, θ3) loses its 98

geometrical meaning. We can then either set θ1 to zero, or keep it fixed in its latest 99

value (for example, when updating an estimator, for the sake of continuity). Defining: 100

θ1 ≡ θ̂1 , if θ2 = 0 or θ2 = π (26)

Taking θ̂1 to be some constant (zero or otherwise), we can calculate: 101{
θ3 = 2atan2(b, a)− θ̂1 , when θ2 = 0

θ3 = 2atan2(d, c) + θ̂1 , when θ2 = π
(27)

September 27, 2022 5/11

3.1.3 General formula for θ1 and θ3 in the absence of singularities 102

If θ2 ̸= 0 and θ2 ̸= π/2, multiplying z+ and z− yields:

z+ z− = (a+ ib)(c+ id)

= c2s2 exp

(
i
θ3 + θ1 + θ3 − θ1

2

)
= c2s2 exp(iθ3) (28)

On similar lines, multiplying z+ and the conjugate of z− yields:

z+ z∗− = (a+ ib)(c− id)

= c2s2 exp(iθ1) (29)

The angles can then be obtained using:

θ1 = arg(z+ z∗−) = arg((a+ ib)(c− id))

θ3 = arg(z+ z−) = arg((a+ ib)(c+ id))

(30)

Or, more simply, from Eq. 25:

θ1 = arg(a+ ib)− arg(c+ id)

θ3 = arg(a+ ib) + arg(c+ id) (31)

Or:

θ1 = θ+ − θ−

θ3 = θ+ + θ−

(32)

It is worth noting that Eq. 32 requires fewer operations than Eq. 30: only 2 calls to 103

atan2, one addition and one subtraction, but a final wrapping step may be required in 104

order to either keep the angles either in (−π, π] or [0, 2π). 105

3.1.4 General formulas for calculating θ2 106

From Eq. 24, we know that:

c2 = cos (θ2/2) = |z+| =
√
a2 + b2

s2 = sin (θ2/2) = |z−| =
√
c2 + d2 (33)

And we can use any of the following equivalent formulas obtained directly from the
definition:

θ2 = 2asin

(√
c2 + d2

n2

)
= 2acos

(√
a2 + b2

n2

)
= 2atan

(√
c2 + d2

a2 + b2

)
(34)

Where the factor n2 = a2 + b2 + c2 + d2 = |q|2 can be ignored if the quaternion is 107

already normalized. Using the properties of inverse trigonometric functions, we can also 108

find the following formula, which avoids the need for a square root: 109

θ2 = acos

(
2
a2 + b2

n2
− 1

)
(35)

September 27, 2022 6/11

3.2 Case 2: Tait-Bryan angles 110

We now define:

q =

[
c3

s3eee
′′

]
⊙
[
c2
s2eee

′

]
⊙
[
c1
s1eee

]
(36)

Where −π/2 < ϕ2 < π/2. Again assuming that eee, eee′ and eee′′ are orthogonal unit vectors 111

and eee′′ = εeee× eee′, where ε = (eee× eee′) · eee′′ = ±1, we define: 112

λ ≡
[
cos(π/4)
sin(π/4)eee′

]
=

1√
2

[
1
eee′

]
(37)

We note that:

λ∗ ⊙
[

c3
s3εeee

]
⊙ λ =

[
c3

s3εeee× eee′

]
=

[
c3

s3eee
′′

]
(38)

Which gives:

q =

[
c3

s3eee
′′

]
⊙
[
c2
s2eee

′

]
⊙
[
c1
s1eee

]
q = λ∗ ⊙

[
c3
s3εeee

]
⊙ λ⊙

[
c2
s2eee

′

]
⊙
[
c1
s1eee

]
q′ =

[
c′3
s′3eee

]
⊙
[
c′2
s′2eee

′

]
⊙
[
c1
s1eee

]
(39)

Where:

s′2 ≡ sin θ′2/2 (≥ 0)

c′2 ≡ cos θ′2/2 (≥ 0)

s′3 ≡ sin θ′3/2

c′3 ≡ cos θ′3/2

(40)

Where θ′2 = θ2 + π/2 and θ′3 = εθ3, and:

q′ ≡ λ⊙ q

=
1√
2

[
1
eee′

]
⊙
[

a
beee+ ceee′ + deee′′

]
=

1√
2

[
a− c

(b+ d)eee+ (c+ a)eee′ + (d− b)eee′′

]
(41)

3.2.1 General formula 113

Using Eq. 41, we can define: 
a′

b′

c′

d′

 =
1√
2


a− c
b+ d
c+ a
d− b

 (42)

September 27, 2022 7/11

And then calculate θ1, θ
′
2 and θ′3 using the formulas obtained in the proper case. Using

the acos formula for θ2, we have:

θ2 = θ′2 − π/2

= acos

(
2
a′2 + b′2

n′2 − 1

)
− π/2 (43)

Which results in singularities when θ′2 = 0 or θ′2 = π, which is equivalent to θ2 = −π/2
or θ2 = π/2, as was to be expected. In addition, we know that when no singularities are
present:

θ1 = atan2(b′, a′)− atan2(d′, c′)

θ3 = ε (atan2 (b′, a′) + atan2 (d′, c′))

(44)

3.3 Example of a proper sequence: the sequence ZYZ 114

If we decide to use the sequence ZYZ, then eee = eeez, eee
′ = eeey and eee′′ = eeez × eeey = −eeex.

This leads to: 
a
b
c
d

 =


qr
qz
qy
−qx

 (45)

And the general formulas for θ1, θ2 and θ3 (when no singularities are present, and
assuming q to have been normalized) are:

θ1 = atan2(qz, qr)− atan2(−qx, qy)
θ2 = acos

(
2
(
q2r + q2z

)
− 1
)

θ3 = atan2(qz, qr) + atan2(−qx, qy)
(46)

3.4 Second example: the sequence XYZ 115

Using the sequence XYZ, equivalent to the common aeronautical angles, then eee = eeex,
eee′ = eeey and eee′′ = eeez. This leads to:

a′

b′

c′

d′

 =
1√
2


qr − qy
qx + qz
qy + qr
qz − qx

 (47)

And the general formulas for θ1, θ2 and θ3 are:

θ1 = atan2(qx + qz, qr − qy)− atan2(qz − qx, qy + qr)

θ2 = acos
(
(qr − qy)

2
+ (qx + qz)

2 − 1
)
− π/2

θ3 = atan2(qx + qz, qr − qy) + atan2(qz − qx, qy + qr)

(48)

September 27, 2022 8/11

4 Complete algorithm 116

Algorithm 1, presented in this section, implements the conversion method from this 117

work. Assuming that our inputs are q ∈ R4, the rotation quaternion and i, j and k ∈ N, 118

an array of integers defining the sequence of angles (for example, [i, j, k] = [323] is 119

equivalent to the sequence ZY Z). A Python implementation can be found on [9].

Input: q ∈ R4, and i, j, k ∈ {1, 2, 3}, where i ̸= j, j ̸= k
Output : θ1, θ2, θ3
if i == k then

not proper ← False
k ← 6− i− j // because i+ j + k = 1 + 2 + 3 = 6

else
not proper ← True

end
ε← (i− j)× (j − k)× (k − i)/2 // equivalent to the Levi-Civita symbol

if not proper then
a← q[0]− q[j]
b← q[i] + q[k]× ε
c← q[j] + q[0]
d← q[k]× ε− q[i]

else
a← q[0]
b← q[i]
c← q[j]
d← q[k]× ε

end

θ2 ← acos
[
2
(

a2+b2

a2+b2+c2+d2

)
− 1
]

θ+ ← atan2(b, a)
θ− ← atan2(d, c)
switch value of θ2 do

case 0 do
θ1 ← 0 // For simplicity, we are setting θ̂1 = 0

θ3 ← 2× θ+ − θ1
case π/2 do

θ1 ← 0
θ3 ← 2× θ− + θ1

otherwise do
θ1 ← θ+ − θ−

θ3 ← θ+ + θ−

end

end
if not proper then

θ3 ← ε× θ3
θ2 ← θ2 − π/2

end
θ1, θ3 ← wrap(θ1, θ3) // ‘‘wrap’’ assures θ1, θ3 ∈ (−π, π] or θ1, θ3 ∈ [0, 2π)

Algorithm 1: Complete implementation of conversion between a rotation quater-
nion and Euler angles in any sequence, setting θ1 = 0 in case of singularity.

120

Many operations are required to convert a quaternion into a rotation matrix. Using 121

September 27, 2022 9/11

the homogeneous formula from Eq. 11, for example, if special care is taken in order not 122

to repeat any operations, we have to perform at least 42 = 16 floating point 123

multiplications (all the possible products between two different components of the 124

quaternion, plus all the squares of each component), 4× 3 = 12 multiplications by 2 and 125

3× 3 + 6 = 15 additions/subtractions. This conversion step alone is more than enough 126

to make an algorithm based on [5] much slower than the proposed method. In addition, 127

multiple matrix multiplications also have to be computed. By comparison, our 128

algorithm replaces all the conversions and matrix multiplications by a simple 129

permutation of the quaternion elements and in the case of Tait-Bryan angles, only 5 130

additional additions/subtractions and possibly a sign change are required. 131

5 Results 132

In this section, a performance comparison between our method and the Shuster method 133

is presented. We adapted the SciPy library in order to compile the algorithm as 134

described in Section 4. A real data set comprising the orientation of a spinning object 135

with 3284 data points was used to compare the efficiency of the two algorithms. The 136

full implementation and data set can be downloaded from [9]. First we noted that both 137

methods give the same results: adding the absolute value of the differences between the 138

two methods in a whole data set gives an error of the order of 10−12. The execution 139

times required in our tests for each sequence (and their ratios) are presented in the 140

Table 1. From this test, it can be clearly seen that the method presented here is about 141

30 times faster.

Table 1. Comparison of execution times between the two methods. The Python
module timeit was used to check the execution time required to convert the whole data
set 500 times on an Intel® Core™ i3-4030U CPU with a 1.90GHz clock speed.

seq new method [5] implemented in [7] ratio

ZYZ 0.487 s 13.770 s 28.261
ZXZ 0.384 s 13.361 s 34.805
XYX 0.382 s 13.381 s 34.998
XZX 0.414 s 13.187 s 31.832
YXY 0.359 s 13.029 s 36.262
YZY 0.375 s 13.078 s 34.884
ZYX 0.371 s 13.152 s 35.408
ZXY 0.364 s 13.124 s 36.048
XYZ 0.373 s 13.170 s 35.291
XZY 0.385 s 13.157 s 34.213
YXZ 0.365 s 13.087 s 35.838
YZX 0.425 s 13.122 s 30.844

142

6 Conclusion 143

The Euler angles are still a useful intuitive 3D orientation parametrization. A fast 144

method of conversion to/from any other set of parameters can therefore be of great 145

interest for displaying or analyzing data, for instance. In this study, we therefore 146

developed a general formula for this conversion which is concise, easy to implement and 147

easy to debug. In addition, the fact that our method is about 30 times faster than the 148

method proposed by [5], which required an intermediate conversion into rotation 149

matrices, we believe that our proposed method can be of great interest. This faster 150

September 27, 2022 10/11

execution time also makes this method suitable for use in embedded real time 151

applications such as inertial measurement units (IMUs). We propose that this method 152

could be adopted as the new standard method for converting quaternions into Euler 153

angles, and we are now planning to contributing to several scientific libraries 154

accordingly. Moreover, a possible further development is to generalize this formula for 155

the Davenport angles [6], a generalization of the Euler angles in which any set of 156

distinct non-orthogonal axes are used. 157

Acknowledgments 158

We thank J. Blanc for the English improvement. 159

References

1. Shuster M. Survey of attitude representations. Journal of the Astronautical
Sciences. 1993;41(4):439–517.

2. Sarabandi S, Shabani A, Porta JM, Thomas F. On Closed-Form Formulas for the
3-D Nearest Rotation Matrix Problem. IEEE Transactions on Robotics.
2020;36(4):1333–1339. doi:10.1109/TRO.2020.2973072.

3. Stuelpnagel J. On the Parametrization of the Three-Dimensional Rotation Group.
Siam Review. 1964;6(4):422–430.

4. Henderson D. Euler Angles, Quaternions, and Transformation Matrices. NASA
JSC Report. 1977; p. 42.

5. Shuster M, Markley L. General Formula for Extracting the Euler Angles. Journal
of Guidance Control and Dynamics. 2006;29(1):215–221. doi:10.2514/1.16622.

6. Shuster M, Markley L. Generalization of the Euler Angles. Journal of the
Astronautical Sciences. 2003;51(2):132–123. doi:10.1007/BF03546304.

7. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D,
et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.
Nature Methods. 2020;17:261–272. doi:10.1038/s41592-019-0686-2.

8. Sommer H, Gilitschenski I, Bloesch M, Weiss S, Siegwart R, Nieto J. Why and
how to avoid the flipped quaternion multiplication. Aerospace. 2018;5(3):1–15.
doi:10.3390/aerospace5030072.

9. Quaternion to Euler Scipy implementation; 2022.
https://github.com/evbernardes/quaternion_to_euler.

September 27, 2022 11/11

https://github.com/evbernardes/quaternion_to_euler

	Introduction
	Quaternion algebra summary
	Formula development
	Case 1: Proper Euler angles
	Extraction of angles
	Singularities
	General formula for 1 and 3 in the absence of singularities
	General formulas for calculating 2

	Case 2: Tait-Bryan angles
	General formula

	Example of a proper sequence: the sequence ZYZ
	Second example: the sequence XYZ

	Complete algorithm
	Results
	Conclusion

