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On homogeneous Sobolev and Besov spaces on the whole and the half space

In this paper, we propose an elementary construction of homogeneous Sobolev spaces of fractional order on R n and R n + in the scope of the treatment of non-linear partial differential equations. This construction extends the construction of homogeneous Besov spaces on S ′ h (R n ) started by Bahouri, Chemin and Danchin on R n . We will also extend the treatment done by Danchin and Mucha on R n + , and the construction of homogeneous Sobolev spaces of integer orders started by Danchin, Hieber, Mucha and Tolksdorf on R n and R n + . Properties of real and complex interpolation, duality, and density are discussed. Trace results are also reviewed. Our approach relies mostly on interpolation theory and yields simpler proofs of some already known results in the case of Besov spaces.

The lack of completeness on the whole scale will lead to consideration of the intersection spaces with decoupled estimates to circumvent this issue.

As standard and simple applications, we treat the problems of Dirichlet and Neumann Laplacians in these homogeneous functions spaces.

Introduction

Motivations and interests

We want to give an appropriate construction of homogeneous Sobolev spaces as subspaces of tempered distributions instead of a quotient space of distributions by polynomials. This construction is motivated by the fact that one would make sense of (para-)products laws, stability under global diffeomorphism, or to look at boundary conditions, and therefore traces, when one restrict those spaces on a domain. This could be somewhat difficult if we work with tempered distributions up to polynomials. Indeed, it is not clear that one can perform previous operations in a way that does not depend on a choice of a representative u

+ P ∈ S ′ (R n ) of [u] ∈ S ′ (R n ) C[x]
. This is inconvenient when it comes to study non-linear partial differential equations, or partial differential equations on a domain with boundary conditions (moreover, applying an extension operator to a polynomial does not give back a polynomial). However, the interested reader could consult, for instance [BL76, Chapter 6, Section 6.3], [START_REF] Triebel | Theory of Function Spaces[END_REF]Chapter 5], or [Saw18, Chapter 2, Section 2.4] for such a construction on the whole space.

Bourdaud and Triebel have highlighted such problems in the choice of such constructions, see their respective work [START_REF] Bourdaud | Réalisations des espaces de Besov homogènes. (Realization of homogeneous Besov spaces)[END_REF][START_REF] Bourdaud | Realizations of homogeneous Besov and Lizorkin-Triebel spaces[END_REF] and [START_REF] Triebel | Tempered homogeneous function spaces[END_REF] Chapter 2, Section 2.4].

In the case of the common realization in the quotient structure, for

[u], [v] ∈ S ′ (R n ) C[x]
, and

u + P, v + Q, u + P , v + Q ∈ S ′ (R n ) two representatives of [u] and [v], we have (u + P )(v + Q) -(u + P )(v + Q) =(P -P )v + (Q -Q)u + P Q -P Q.
Therefore, subject to a (para-)product law that makes sense (in terms of suitable bilinear estimates), although P Q -P Q is a polynomial, this is not the case for (P -P )v + (Q -Q)u so that the product depends on the choice of representatives! Another possibility to build homogeneous function spaces would be to naively complete the Schwartz class with respect to the homogeneous norm we want to consider. This construction has the disadvantage of producing elements that may no longer be distributions. For example, one can check that

C ∞ c (R n ) ⊂ Ḣ-n 2 (R n ).
This prevents us, a priori, from identifying elements of Ḣ n 2 (R n ) (as a completion) as distributions. This phenomenon is known as infrared divergence and relates to convergence problems for the sum of low frequencies in the sense of Fourier.

Thus, for a consistent realization of homogeneous function spaces, we can only choose two out of the following three properties:

(i) functions spaces whose elements are distributions, in a reasonable sense;

(ii) well-defined product laws;

(iii) all spaces are complete.

The idea of Bahouri, Chemin and Danchin in [BCD11, Chapter 2] was to accept the loss of point (iii) and to introduce a subspace of S ′ (R n ) such that we get rid of polynomials, see [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF]Examples,p.23]. The aforementioned subspace of S ′ (R n ) is

S ′ h (R n ) := u ∈ S ′ (R n ) ∀Θ ∈ C ∞ c (R n ), Θ(λD)u L ∞ (R n ) -----→ λ→+∞ 0 , (1.1) 
where for λ > 0 , Θ(λD)u := F -1 Θ(λ•)Fu , F being the Fourier transform. The condition of uniform convergence for low frequencies in the above definition ensures that for u ∈ S ′ h (R n ), the series j 0 ∆j u converges in L ∞ (R n ), and then, by [BCD11, Proposition 2.14], the following equality holds in

S ′ (R n ) u = j∈Z ∆j u,
where ( ∆j ) j∈Z is the homogeneous Littlewood-Paley decomposition on R n . With S ′ h (R n ) as an ambient space, Bahouri, Chemin and Danchin gave a construction of homogeneous Besov spaces Ḃs p,q (R n ) which are complete whenever (s, p, q) ∈ R × (1, +∞) × [1, +∞] satisfies s < n p or q = 1 and s n p .

(1.2)

Later, this has also led Danchin and Mucha to consider homogeneous Besov spaces on R n + and on exterior domains, see [START_REF] Danchin | A critical functional framework for the inhomogeneous Navier-Stokes equations in the half-space[END_REF][START_REF] Danchin | Critical functional framework and maximal regularity in action on systems of incompressible flows[END_REF], and Danchin, Hieber, Mucha and Tolksdorf [START_REF] Danchin | Free Boundary Problems via Da Prato-Grisvard Theory[END_REF] to consider homogeneous Sobolev spaces Ḣm,p on R n and R n + , for m ∈ N, p ∈ (1, +∞). Each iteration led to various important applications in fluid dynamics, such as Navier-Stokes equations with variable density in [START_REF] Danchin | A critical functional framework for the inhomogeneous Navier-Stokes equations in the half-space[END_REF][START_REF] Danchin | Critical functional framework and maximal regularity in action on systems of incompressible flows[END_REF], or free boundary problems as in [START_REF] Danchin | Free Boundary Problems via Da Prato-Grisvard Theory[END_REF]. This highlights the needs of stability under global diffeomorphism, and (para)product laws that do not rely on a choice of a representative up to a polynomial.

The main purpose of this paper is TO NOT use the canonical embedding of S ′ h (R n ) in tempered distributions modulo polynomials S ′ (R n ) C[x] . We want to preserve consistency in the realization of our scales of homogeneous function spaces.

We mention that several attempts to define (homogeneous) Besov spaces on have been made over the last years. See for instance the work Auscher and Amenta [START_REF] Amenta | Elliptic Boundary Value Problems with Fractional Regularity Data: The First Order Approach[END_REF] for complete operator-adapted realizations over Tent and Z -spaces on R n , and the work of Iwabuchi, Matsuyama and Taniguchi [START_REF] Iwabuchi | Besov spaces on open sets[END_REF] for an operator-adapted-construction based on the spectral theory of Schrödinger operators on a general openset Ω ⊂ R n . See also the references therein for more historical background about Besov spaces and their operator-adapted counterparts. However, such kind of construction is either constrained to the pure linear theory, and is not compatible with standard distribution theory.

We want to summarize, complete and extend the given construction of homogeneous Besov spaces in [BCD11, Chapter 2] and the one of homogeneous Sobolev spaces started in [START_REF] Danchin | Free Boundary Problems via Da Prato-Grisvard Theory[END_REF]Chapter 3]. We are going to discuss in Section 2 their construction and usual and expected properties, and especially their behavior through complex and real interpolation. The whole space case is treated first, then the case of the half-space will follow.

To be clearer, firstly, in the case of the whole space R n , we want to check that the real interpolation identity like ( Ḣs0,p (R n ), Ḣs1,p (R n )) θ,q = Ḃ(1-θ)s0+θs1 p,q (R n )

(1.3) still makes sense for our S ′ h -realization of homogeneous function spaces, for s 0 , s 1 ∈ R, θ ∈ (0, 1), p ∈ (1, +∞), q ∈ [1, +∞]. This is done in Theorem 2.6. This is the first key result of this paper. We will also check that expected duality results still hold in this framework.

Secondly, we show via some extension-restriction operators, few duality arguments, and interpolation theory, that we still have:

• Expected density results: Propositions 3.9, Lemma 3.16 and Corollaries 3.12 and 3.18.

For p ∈ (1, +∞), q ∈ [1, +∞), s > -1 + 1 p , when (1.2) is satisfied, Ḣs,p

0 (R n + ) = C ∞ c (R n + )
• Ḣs,p (R n ) , and Ḃs p,q,0 (R n + ) = C ∞ c (R n + )

• Ḃs p,q (R n ) ;

(1.4)

We need to make clear now that this is not a definition but a consequence from the definition written at the beginning of Section 3.

• Expected duality results: Propositions 3.11 and 3.23. For all p ∈ (1, +∞), q ∈ (1, +∞], s > -1 + 1 p , when (1.2) is satisfied, it holds ( Ḣs,p (R n + )) ′ = Ḣ-s,p ′ 0 (R n + ), ( Ḃ-s p ′ ,q ′ (R n + )) ′ = Ḃs p,q,0 (R n + ), (1.5) ( Ḣs,p 0 (R n + )) ′ = Ḣ-s,p ′ (R n + ), ( Ḃ-s p ′ ,q ′ ,0 (R n + )) ′ = Ḃs p,q (R n + ).

(1.6)

• Expected interpolation results: Propositions 3.22 and 3.17. If ( ḣ, ḃ) ∈ {( Ḣ, Ḃ), ( Ḣ0 , Ḃ•,•,0 )} , with (p 0 , q 0 ), (p 1 , q 1 ), (p, q) ∈ (1, +∞) × [1, +∞], θ ∈ (0, 1), s j , s > -1 + 1/p j , j ∈ {0, 1} , with s > -1 + 1/p, where s 0 , s 1 , s are three real numbers, so that one can set s,

1 p θ , 1 q θ := (1 -θ) s 0 , 1 p 0 , 1 q 0 + θ s 1 , 1 p 1 , 1 q 1 , such that (1.2) is satisfied. Then, one has [ ḣs0,p0 (R n + ), ḣs1,p1 (R n + )] θ = ḣs,p θ (R n + ), ( ḃs0 p,q0 (R n + ), ḃs1 p,q1 (R n + )) θ,q = ḃs p,q (R n + ), (1.7) ( ḣs0,p (R n + ), ḣs1,p (R n + )) θ,q = ḃs p,q (R n + ), [ ḃs0 p0,q0 (R n + ), ḃs1 p1,q1 (R n + )] θ = ḃs p θ ,q θ (R n + ). (1.8)
Note that Proposition 2.9, telling that ½ R n + yields a bounded multiplication operator on Ḣs,p (R n ) for all p ∈ (1, +∞), s ∈ (-1 + 1 p , 1 p ), is the second key point of this paper in order to obtain the expected results. In particular, this will imply the following equalities of homogeneous Sobolev and Besov spaces with equivalent norms Ḣs,p (R n

+ ) = Ḣs,p 0 (R n + ), Ḃs p,q (R n + ) = Ḃs p,q,0 (R n + ).
(1.9) Some already existing density and boundedness results in Besov spaces presented here are already known, but redone here in a different manner giving some minor improvements with regard to [DHMT21, Chapter 3], allowing sometimes to deal sometimes with s > -1 + 1 p or q = +∞. Some other results, despite being well known in the construction of usual Sobolev and Besov spaces, are quite new due to the ambiant framework. This leads to some new proofs in a different spirit than the ones already available in the literature.

Due to the lack of completeness for homogeneous Sobolev (and Besov) spaces with high regularity exponents, one will need to consider intersection spaces Ḣs0,p0 ∩ Ḣs1,p1 , with either, Ḣs0,p0 or Ḣs1,p1 known to be complete (i.e. s j < n/p j ). Therefore, one will have to check boundedness of operators with decoupled estimates.

In Section 4, we will review the meaning of traces on the boundary. As an application, in Section 6, we treat the well-posedness of Neumann and Dirichlet Laplacians on the half-space with fine enough behavior of solutions. The "fine enough behavior" have to be understood in the sense that the decay to 0 at infinity is given a very precise sense.

Notation, definition and usual concepts

Throughout this paper the dimension will be n 2 , and N will be the set of non-negative integers. For a, b ∈ R with a b , we write a, b := [a, b] ∩ Z.

For x ∈ R n , the (open) ball centered in x of radius r > 0 is given by 

B(x, r) := { y ∈ R n | |x -y| < r }.

Spaces of measurable or smooth functions.

Denote by S(R n , C) the space of complex valued Schwartz functions, and S ′ (R n , C) its dual called the space of tempered distributions. The Fourier transform on S ′ (R n , C) is written F , and is pointwise defined for any

f ∈ L 1 (R n , C) by Ff (ξ) := R n f (x) e -ix•ξ dx, ξ ∈ R n .
Additionnally, for p ∈ [1 + ∞], we write p ′ = p p-1 its Hölder conjugate. For any m ∈ N, the map

∇ m : S ′ (R n , C) -→ S ′ (R n , C n m ) is defined as ∇ m u := (∂ α u) |α|=m .
We denote by (e -t(-∆) 1 2 ) t 0 the Poisson semigroup on R n . We also introduce operators ∇ ′ and ∆ ′ which are respectively the gradient and the Laplacian on R n-1 identified with the n -1 first variables of R n , i.e.

∇ ′ = (∂ x1 , . . . , ∂ xn-1 ) and ∆ ′ = ∂ 2 x1 + . . . + ∂ 2 xn-1 . When Ω is an open set of R n , C ∞ c (Ω, C
) is the set of smooth compactly supported functions in Ω, and D ′ (Ω, C) is its topological dual. For p ∈ [1, +∞), L p (Ω, C) is the normed vector space of complex valued (Lebesgue-) measurable functions whose p-th power is integrable with respect to the Lebesgue measure, S(Ω, C) (resp. C ∞ c (Ω, C)) stands for functions which are restrictions on Ω of elements of

S(R n , C) (resp. C ∞ c (R n , C)).
Unless the contrary is explicitly stated, we will always identify

L p (Ω, C) (resp. C ∞ c (Ω, C)) as the subspace of functions in L p (R n , C) (resp. C ∞ c (R n , C
)) supported in Ω through the extension by 0 outside Ω. L ∞ (Ω, C) stands for the space of essentially bounded (Lebesgue-) measurable functions.

For s ∈ R, p ∈ [1, +∞), ℓ p s (Z, C), stands for the normed vector space of p-summable sequences of complexes numbers with respect to the counting measure 2 ksp dk ; ℓ ∞ s (Z, C) stands for sequences (x k ) k∈Z such that (2 ks x k ) k∈Z is bounded. More generally, when X is a Banach space, for p ∈ [1, +∞], one may also consider L p (Ω, X) which stands for the space of (Bochner-)measurable functions u : Ω -→ X , such that t → u(t) X ∈ L p (Ω, R), similarly one may consider ℓ p s (Z, X). Finally, C 0 (Ω, X) stands for the space of continuous functions on Ω ⊂ R n with values in X . The subspace C 0 b (R, X) is made of uniformly bounded continuous functions and C 0 0 (R, X) is the set of continuous functions that vanish at infinity. For C ∈ {C 0 , C 0 b , C 0 0 } , we set C(Ω, X) to be the set of continuous functions on Ω which are restrictions of elements that belongs to C(R n , X).

Interpolation of normed vector spaces

Let (X, • X ) and (Y, • Y ) be two normed vector spaces. We write X ֒→ Y to say that X embeds continuously into Y . Now let us recall briefly basics of interpolation theory. If there exists a Hausdorff topological vector space Z , such that X, Y ⊂ Z , then X ∩ Y and X + Y are normed vector spaces with their canonical norms, and one can define the K -functional of z ∈ X + Y , for any t > 0 by

K(t, z, X, Y ) := inf (x,y)∈X×Y, z=x+y ( x X + t y Y ) .
This allows us to construct, for any θ ∈ (0, 1), q ∈ [1, +∞], the real interpolation spaces between X and Y with indexes θ, q as

(X, Y ) θ,q := x ∈ X + Y t -→ t -θ K(t, x, X, Y ) ∈ L q * (R + ) ,
where L q * (R + ) := L q ((0, +∞), dt/t). The interested reader could check [Lun18, Chapter 1], [BL76, Chapter 3] for more informations about real interpolation and its applications.

If moreover we assume that X and Y are complex Banach spaces, one can consider F(X, Y ) the set of all continuous functions f : S -→ X + Y , S being the strip of complex numbers whose real part is between 0 and 1 , with f holomorphic in S , and such that

t -→ f (it) ∈ C 0 b (R, X) and t -→ f (1 + it) ∈ C 0 b (R, Y ). We can endow the space F(X, Y ) with the norm f F(X,Y ) := max sup t∈R f (it) X , sup t∈R f (1 + it) Y ,
which makes F(X, Y ) a Banach space since it is a closed subspace of C 0 (S, X + Y ). Hence for θ ∈ (0, 1), the normed vector space given by

[X, Y ] θ := f (θ) f ∈ F(X, Y ) , x [X,Y ] θ := inf f ∈F(X,Y ), f (θ)=x f F(X,Y ) ,
is a Banach space called the complex interpolation space between X and Y associated with θ . Again, the interested reader could check [Lun18, Chapter 2], [BL76, Chapter 4] for more informations about complex interpolation and its applications.

Homogeneous function spaces on the whole space

All the function spaces considered here are scalar complex valued. Hence, to alleviate the notations during this whole section we will write L p (Ω) instead of L p (Ω, C), and similarly for any other function spaces: we drop the arrival space C.

Definition, usual properties

To deal with Besov spaces on the whole space, we need to introduce the Littlewood-Paley decomposition given by φ ∈ C ∞ c (R n ), radial, real-valued, non-negative, such that • supp φ ⊂ B(0, 4/3);

• φ | B(0,3/4) = 1 ;
so we define the following functions for any j ∈ Z for all ξ ∈ R n ,

φ j (ξ) := φ(2 -j ξ), ψ j (ξ) := φ j (ξ/2) -φ j (ξ),
and the family (ψ j ) j∈Z has the following properties

• supp(ψ j ) ⊂ { ξ ∈ R n | 3 • 2 j-2 |ξ| 2 j+3 /3 } ; • ∀ξ ∈ R n \ {0} , N j=-M ψ j (ξ) -------→ N,M→+∞ 1 .
Such a family (φ, (ψ j ) j∈Z ) is called a Littlewood-Paley family. Now, we consider the two following families of operators associated with their Fourier multipliers:

• The homogeneous family of Littlewood-Paley dyadic decomposition operators ( ∆j ) j∈Z , where ∆j := F -1 ψ j F,

• The inhomogeneous family of Littlewood-Paley dyadic decomposition operators (∆ k ) k∈Z , where

∆ -1 := F -1 φF,
∆ k := ∆k for any k 0 , and ∆ k := 0 for any k -2 .

• The j -th frequency cut-off operators given for all j ∈ Z by Ṡj := F -1 φ j F.

One may notice, as a direct application of Young's inequality for the convolution, that they are all uniformly bounded families of operators on L

p (R n ), p ∈ [1, +∞].
Both family of operators lead for s ∈ R, p, q ∈ [1, +∞], u ∈ S ′ (R n ) to the following quantities,

u B s p,q (R n ) = (2 ks ∆ k u L p (R n ) ) k∈Z ℓ q (Z) and u Ḃs p,q (R n ) = (2 js ∆j u L p (R n ) ) j∈Z ℓ q (Z)
, respectively named the inhomogeneous and homogeneous Besov norms, but the homogeneous norm is not really a norm since u Ḃs p,q (R n ) = 0 does not imply that u = 0 . Thus, following [BCD11,

Chapter 2] and [DHMT21, Chapter 3], we introduce a subspace of tempered distributions such that

• Ḃs p,q (R n ) is point-separating, say S ′ h (R n ) := u ∈ S ′ (R n ) ∀Θ ∈ C ∞ c (R n ), Θ(λD)u L ∞ (R n ) -----→ λ→+∞ 0 ,
where for λ > 0 , Θ(λD)u = F -1 Θ(λ•)Fu . Notice that S ′ h (R n ) does not contain any polynomials, and for any p ∈ [1, +∞), L p (R n ) ⊂ S ′ h (R n ). One can also define the following quantities called the inhomogeneous and homogeneous Sobolev spaces' potential norms

u H s,p (R n ) := (I -∆) s 2 u L p (R n ) and u Ḣs,p (R n ) := j∈Z (-∆) s 2 ∆j u L p (R n ) , where (-∆) s 2 is understood on u ∈ S ′ h (R n
) by the action on its dyadic decomposition, i.e. (-∆)

s 2 ∆j u := F -1 (| • | s F ∆j u),
which gives a family of C ∞ functions with at most polynomial growth. Thanks to [DHMT21, Lemma 3.3, Definition 3.4], j∈Z (-∆)

s 2 ∆j u ∈ S ′ h (R n ) holds for all u ∈ S ′ h (R n ), whenever s ∈ [0, +∞). When u ∈ S ′ h (R n ) and j∈Z (-∆) s 2 ∆j u ∈ S ′ h (R n ), for s ∈ R, one will simply write without distinction, (-∆) s 2 u = j∈Z (-∆) s 2 ∆j u ∈ S ′ h (R n ),
which is somewhat consistent in this case with the fact that (-∆)

s 2 ∆j u = ∆j (-∆) s 2 u , j ∈ Z. Hence for any p, q ∈ [1, +∞], s ∈ R, we define
• the inhomogeneous and homogeneous Sobolev (Bessel and Riesz potential) spaces,

H s,p (R n ) = u ∈ S ′ (R n ) u H s,p (R n ) < +∞ , Ḣs,p (R n ) = u ∈ S ′ h (R n ) u Ḣs,p (R n ) < +∞ ;
• and the inhomogeneous and homogeneous Besov spaces,

B s p,q (R n ) = u ∈ S ′ (R n ) u B s p,q (R n ) < +∞ , Ḃs p,q (R n ) = u ∈ S ′ h (R n ) u Ḃs p,q (R n ) < +∞ ,
which are all normed vector spaces. We also introduce the following closures

B s p,∞ (R n ) = S(R n ) • B s p,∞ (R n ) and Ḃs p,∞ (R n ) = S 0 (R n ) • Ḃs p,∞ (R n ) .
Here S 0 (R n ) is defined as

S 0 (R n ) := { u ∈ S(R n ) | 0 / ∈ supp (Ff ) } .
The treatment of homogeneous Besov spaces Ḃs p,q (R n ), s ∈ R, p, q ∈ [1, +∞], defined on S ′ h (R n ) has been done in an extensive manner in [BCD11, Chapter 2]. However, the corresponding construction for homogeneous Sobolev spaces Ḣs,p (R n ), s ∈ R, p ∈ (1, +∞) has only been done in the case (p, s) ∈ ({2}, R) ∪ ((1, +∞), N). See [BCD11, Chapter 1] for the case p = 2 , [DHMT21, Chapter 3] for the case s ∈ N.

The inhomogeneous spaces L p (R n ), H s,p (R n ), and B s p,q (R n ) are all complete for all p, q ∈ [1, +∞], s ∈ R, but in this setting homogenenous function spaces are no longer always complete (see [BCD11, Proposition 1.34, Remark 2.26]).

For homogeneous Besov spaces, we have the following properties:

Proposition 2.1 Let p, q ∈ [1, +∞], s ∈ R. The following assertions hold (i) if (s, p, q) satisfies the condition s < n p or q = 1 and s n p (C s,p,q ) holds then Ḃs p,q (R n ) is a complete normed vector space, (ii) for all m ∈ N, In the case of S ′ h -realizations of homogeneous Sobolev spaces only few properties are explicitly stated in the literature. We repair this injustice here, for which usual proofs can be adapted (almost) straightforwardly and are well known, and therefore omitted here. Several references and comments are given after the next statement.

all u ∈ S ′ h (R n ), n j=1 ∂ m xj u Ḃs p,q (R n ) ∼ s,m,p,n ∇ m u Ḃs p,q (R n ) ∼ s,m,p,n u Ḃs+m p,q (R n ) , (2.1) (iii) if p, q < +∞, the space S 0 (R n ) is dense in Ḃs p,q (R n ), (iv) if 1/q = 1/p -s/n ∈ (0, 1), we have dense Sobolev embeddings, Ḃs p,r (R n ) ֒→ L q (R n ), (p, q < +∞, r ∈ [1, q], s < n/p) Ḃn/p p,1 (R n ) ֒→ C 0 0 (R n ), (p < +∞) (v) when s > 0 , one has B s p,q (R n ) = L p (R n )∩ Ḃs p,q (R n ) with
Proposition 2.2 Let p ∈ (1, +∞), s ∈ R. The following assertions hold:

(i) if s ∈ [0, n/p) and 1/q = 1/ps/n ∈ (0, 1), we have the standard Sobolev embeddings,

Ḣs,p (R n ) ֒→ L q (R n ), L p (R n ) ֒→ Ḣ-s,q (R n ), (ii) if (s, p) is such that it satisfies s < n p (C s,p )
then Ḣs,p (R n ) is a complete normed vector space and

(-∆) s 2 : Ḣs,p (R n ) -→ L p (R n ) is a bijective isometry of Banach spaces, (iii) for all m ∈ N, all u ∈ S ′ h (R n ), n j=1 ∂ m xj u Ḣs,p (R n ) ∼ s,m,p,n ∇ m u Ḣs,p (R n ) ∼ s,m,p,n u Ḣs+m,p (R n ) , (2.2) (iv) the space S 0 (R n ) is dense in Ḣs,p (R n ), (v) for all u ∈ S ′ h (R n ), one has the equivalence of norms u Ḣs,p (R n ) ∼ s,p,n u Ḟs p,2 (R n ) := (2 js ∆j u) j∈Z L p (R n ,ℓ 2 (Z)) , (vi) if s 0 , one has H s,p (R n ) = L p (R n ) ∩ Ḣs,p (R n ) with equivalence of norms and a continuous embedding Ḣ-s,p (R n ) ֒→ H -s,p (R n ), (vii) if for some θ ∈ (0, 1), one has (s, 1/p) = (1 -θ)(s 0 , 1/p 0 ) + θ(s 1 , 1/p 1 ) for j ∈ {0, 1} , s j ∈ R, p j ∈ (1, +∞), then for all u ∈ S ′ h (R n ), we have u Ḣs,p (R n ) p0,p1,s0,s1,n u 1-θ Ḣs 0 ,p 0 (R n ) u θ Ḣs 1 ,p 1 (R n ) .
Remark 

p j ∈ (1, +∞), s j ∈ R, for j ∈ {0, 1} . If (C s0,p0 ) is satisfied then the intersection space Ḣs0,p0 (R n ) ∩ Ḣs1,p1 (R n ) is a Banach space for which S 0 (R n ) is dense in it.
Proof. -The completeness is straightforward. Concerning the claim about density, we follow the proof of [BCD11, Proposition 2.27] with minor modifications, in order to adapt it to our setting.

For

u ∈ Ḣs0,p0 (R n ) ∩ Ḣs1,p1 (R n ), and fixed ε > 0 , for k ∈ {0, 1} there exists N ∈ N such that for all Ñ N u -u Ñ Ḣs k ,p k (R n ) < ε.
Here, for any K ∈ N,

u K := |j| K ∆j u. For M ∈ Ñ + 1, +∞ , R > 0 , provided Θ ∈ C ∞ c (R n ), real valued, supported in B(0, 2), such that Θ | B(0,1) = 1 , and Θ R := Θ(•/R), we introduce u R Ñ ,M := (I -Ṡ-M )[Θ R u Ñ ]. Since ∆k u Ñ = 0 , k -M -1 , we have Ṡ-M u Ñ = 0 , then u R Ñ ,M -u Ñ = (I -Ṡ-M )[(Θ R -1)u Ñ ].
If one sets m k := max(0,

⌊s k ⌋ + 2), since 0 / ∈ supp F(u R Ñ ,M -u Ñ
) by construction, we apply [BL76, Theorem 6.3.2] and decreasing embedding of inhomogeneous Sobolev spaces to deduce

u R Ñ,M -u Ñ Ḣs k ,p k (R n ) M,s k ,p k u R Ñ,M -u Ñ H s k ,p k (R n ) M,s k ,p k (I -Ṡ-M )[(Θ R -1)u Ñ ] H m k ,p k (R n ) M,s k ,p k [(Θ R -1)u Ñ ] H m k ,p k (R n ) . Since one may check that u Ñ ∈ H m k ,p k (R n ) for k ∈ {0, 1} , by dominated convergence theorem it follows that u R Ñ,M -u Ñ Ḣs k ,p k (R n ) -----→ R→+∞ 0.
Thus, for R > 0 big enough, we have for k ∈ {0, 1}

u -u R Ñ ,M Ḣs k ,p k (R n ) < 2ε.
The proof ends here since u R Ñ,M ∈ S 0 (R n ).

Interpolation, duality and the fundamental Sobolev multiplier

We recall the usual interpolation properties for inhomogeneous function spaces,

[H s0,p0 (R n ), H s1,p1 (R n )] θ = H s,p θ (R n ), (B s0 p,q0 (R n ), B s1 p,q1 (R n )) θ,q = B s p,q (R n ), (H s0,p (R n ), H s1,p (R n )) θ,q = B s p,q (R n ), [B s0 p0,q0 (R n ), B s1 p1,q1 (R n )] θ = B s p θ ,q θ (R n
), whenever (p 0 , q 0 ), (p 1 , q 1 ), (p, q) ∈ [1, +∞] 2 (p = 1, +∞, when dealing with Sobolev (Riesz potential) spaces), θ ∈ (0, 1), s 0 = s 1 two real numbers, such that s,

1 p θ , 1 q θ := (1 -θ) s 0 , 1 p 0 , 1 q 0 + θ s 1 , 1 p 1 , 1 q 1 , see [BL76, Theorem 6.4.5].
A similar statement is available for our homogeneous function spaces.

Theorem 2.6 Let (p 0 , p 1 , p, q, q 0 , q

1 ) ∈ (1, +∞) 3 × [1, +∞] 3 , s 0 , s 1 ∈ R, such that s 0 = s 1 , and for θ ∈ (0, 1), let s, 1 p θ , 1 q θ := (1 -θ) s 0 , 1 p 0 , 1 q 0 + θ s 1 , 1 p 1 , 1 q 1 . Assuming (C s0,p ) (resp. (C s0,p,q0
)), we get the following

( Ḣs0,p (R n ), Ḣs1,p (R n )) θ,q = ( Ḃs0 p,q0 (R n ), Ḃs1 p,q1 (R n )) θ,q = Ḃs p,q (R n ). (2.3) If moreover (C s0,p0
) and (C s1,p1 ) are true then also is (C s,p θ ) and

[ Ḣs0,p0 (R n ), Ḣs1,p1 (R n )] θ = Ḣs,p θ (R n ), (2.4)
and similarly if (C s0,p0,q0 ) and (C s1,p1,q1 ) are satisfied then (C s,p θ ,q θ ) is also satisfied and

[ Ḃs0 p0,q0 (R n ), Ḃs1 p1,q1 (R n )] θ = Ḃs p θ ,q θ (R n ).
(2.5)

Proof.

-Step 1: Let us deal with the real interpolation identity (2.3). Let us consider first the case of Sobolev spaces, with

u ∈ Ḣs0,p (R n ) + Ḣs1,p (R n ). For (a, b) ∈ Ḣs0,p (R n ) × Ḣs1,p (R n ), such that u = a + b , by point (v) in Proposition 2.2 we have ( ∆j u) j∈Z = ( ∆j a) j∈Z + ( ∆j b) j∈Z ∈ L p (R n , ℓ 2 s0 (Z)) + L p (R n , ℓ 2 s1 (Z))
. Therefore, by the definition of the K -functional and point (v) in Proposition 2.2, for t > 0 ,

K(t, ( ∆j u) j∈Z , L p (R n , ℓ 2 s0 (Z)), L p (R n , ℓ 2 s1 (Z))) a Ḟs 0 p,2 (R n ) +t b Ḟs 1 p,2 (R n ) p,s0,s1,n a Ḣs 0 ,p (R n ) +t b Ḣs 1 ,p (R n ) .
We then take the infimum on an all such pairs (a, b),

K(t, ( ∆j u) j∈Z , L p (R n , ℓ 2 s0 (Z)), L p (R n , ℓ 2 s1 (Z))) p,s0,s1,n K(t, u, Ḣs0,p (R n ), Ḣs1,p (R n )).
(2.6) Now, we want to prove the reverse estimate. Since ( ∆j u

) j∈Z ∈ L p (R n , ℓ 2 s0 (Z)) + L p (R n , ℓ 2 s1 (Z)), let (A, B) ∈ L p (R n , ℓ 2 s0 (Z)) × L p (R n , ℓ 2 s1 (Z)) such that ( ∆j u) j∈Z = A + B. (2.7)
For (w j ) j∈Z ⊂ S ′ (R n ), say, for simplicity, with finite support in the discrete variable, we define the map

Σ((w j ) j∈Z ) := +∞ j=-∞ ∆j [w j-1 + w j + w j+1 ], (2.8) and it satisfies for v ∈ S ′ h (R n ) Σ(( ∆j v) j∈Z ) = v.
By point (v) in Proposition 2.2 and [Gra14a, Proposition 6.1.4], one can check that Σ :

L p (R n , ℓ 2 s0 (Z)) -→ Ḣs0,p (R n ) (2.9)
is well defined and bounded since (C s0,p ) is satisfied. Now, we apply Σ to (2.7) to deduce from

Σ( ∆j u) j∈Z = u ∈ S ′ h (R n ), and ΣA ∈ Ḣs0,p (R n ) ⊂ S ′ h (R n ), that ΣB = u -ΣA ∈ S ′ h (R n ). By mean of [Gra14a, Proposition 6.1.4], we obtain ΣB Ḟs 1 p,2 (R n ) = ( ∆j ΣB) j∈Z L p (R n ,ℓ 2 s 1 (Z)) p,s1,n B L p (R n ,ℓ 2 s 1 (Z)) .
(2.10) Hence, by point (v) in Proposition 2.2, ΣB is an element of Ḣs1,p (R n ). Therefore by the definition of the K -functional, the boundedness properties of Σ, point (v) in Proposition 2.2, for t > 0 ,

K(t, u, Ḣs0,p (R n ), Ḣs1,p (R n )) ΣA Ḣs 0 ,p (R n ) +t ΣB Ḣs 1 ,p (R n ) p,s0,s1,n A L p (R n ,ℓ 2 s 0 (Z)) + t B L p (R n ,ℓ 2 s 1 (Z))
. Thus, let us take the infimum on all such pairs (A, B), and invoke (2.6) to obtain for all t > 0 , and

all u ∈ Ḣs0,p (R n ) + Ḣs1,p (R n ), K(t, ( ∆j u) j∈Z , L p (R n , ℓ 2 s0 (Z)), L p (R n , ℓ 2 s1 (Z))) ∼ p,s0,s1,n K(t, u, Ḣs0,p (R n ), Ḣs1,p (R n )).
(2.11)

We recall that [BL76, Theorems 5.6.1 & 3.5.3] and [Tri78, Theorem, Section 1.18.4] give, all together, the well known real interpolation identity

(L p (R n , ℓ 2 s0 (Z)), L p (R n , ℓ 2 s1 (Z))) θ,q = ℓ q s (Z, L p (R n )).
(2.12) Thus, up to multiply the estimate (2.11) by t -θ and taking its L q * -norm, it can be turned into

u Ḃs p,q (R n ) = ( ∆j u) j∈Z ℓ q s (Z,L p (R n )) ∼ p,s0,s1,θ,n ( ∆j u) j∈Z (L p (R n ,ℓ 2 s 0 (Z)),L p (R n ,ℓ 2 s 1 (Z))) θ,q ∼ p,s0,s1,θ,n u ( Ḣs 0 ,p (R n ), Ḣs 1 ,p (R n )) θ,q .
Therefore (2.3) is proved.

Step 2: For p ∈ (1, +∞), q ∈ [1, +∞] and s ∈ R such that (C s,p,q ) is satisfied, for Σ introduced in (2.8), we want to show the boundedness of Σ :

ℓ q s (Z, L p (R n )) -→ Ḃs p,q (R n ). (2.13)
The idea is to consider instead the operator ( ∆j Σ) j∈Z and to show that it is a bounded operator seen as

( ∆j Σ) j∈Z : ℓ q s (Z, L p (R n )) -→ ℓ q s (Z, L p (R n )), p ∈ (1, +∞), q ∈ [1, +∞], s ∈ R. (2.14)
In fact, as for (2.9) and (2.10), by [Gra14a, Proposition 6.1.4], for given p ∈ (1, +∞) and s, s 0 , s 1 ∈ R with s 0 < s < s 1 , one has the following boundedness property:

( ∆j Σ) j∈Z : L p (R n , ℓ 2 s k (Z)) -→ L p (R n , ℓ 2 s k (Z)), k ∈ {0, 1}
. Therefore, (2.14) follows from real interpolation, thanks to the previous identity (2.12). Now, in order to obtain (2.13) when (C s,p,q ) is satisfied, it suffices to consider an element (u j ) j∈Z in the space ℓ q s (Z, L p (R n )), then to approximate it by truncation with respect to the discrete variable, so that

Σ(u j ) j∈ -N,N N ∈N ⊂ L p (R n ) ∩ Ḃs p,q (R n ).
Then, the map Σ extends uniquely to a bounded map with values in Ḃs p,q (R n ) whenever (C s,p,q ) is satisfied and q < +∞.

For the case q = +∞ when (C s,p,q ) is satisfied, i.e. when s < n/p is satisfied, the result follows in fact directly from Step 1.

In fact, the above manual real interpolation procedure was mainly performed to reach the endpoint couple (

Ḃn/p p,1 (R n ), ℓ 1 n/p (Z, L p (R n ))).
Step 3: For the real interpolation identity (2.3) in the case of Besov spaces, by the previous Step 2, the proof presented in Step 1 is still valid if we replace ( Ḣs0,p , Ḣs1,p ) and the condition (C s0,p ) by ( Ḃs0 p,q0 , Ḃs1 p,q1 ) with the condition (C s0,p,q0 ).

Step 4: As in the proof of [BL76, Theorem 6.4.5], being aware of [BL76, Definition 6.4.1], we can claim, thanks to previous steps, that • thanks to its definition, for all s ∈ R, p ∈ (1, +∞), q ∈ [1, +∞], when (C s,p,q ) is satisfied, Ḃs p,q (R n ) is a retraction of ℓ q s (Z, L p (R n )) on S ′ h (R n ) through the homogeneous Littlewood-Paley decomposition ( ∆j ) j∈Z , and projection map Σ;

• similarly, due to point (v) in Proposition 2.2, for all s ∈ R, p ∈ (1, +∞), when (C s,p ) is satisfied Ḣs,p (R n ) is a retraction of L p (R n , ℓ 2 s (Z)) on S ′ h (R n
) through the homogeneous Littlewood-Paley decomposition ( ∆j ) j∈Z , and projection map Σ. Thus, one may apply [BL76, Theorem 6.4.2], with [BL76, Theorem 5.6.3] for complex interpolation of Besov spaces and [Tri78, Theorem, Section 1.18.4] for complex interpolation of Sobolev spaces, to obtain respectively (2.5) and (2.4).

The completeness assumption is necessary in the case of complex interpolation, since one can not provide in general an appropriate sense of holomorphic functions (then of the definition of complex interpolation spaces) in non-complete normed vector spaces.

Proposition 2.7 For any s ∈ R, p ∈ (1, +∞),      Ḣs,p × Ḣ-s,p ′ -→ C (u, v) -→ |j-j ′ |≤1 ∆j u, ∆j ′ v R n defines a continuous bilinear functional on Ḣs,p (R n ) × Ḣ-s,p ′ (R n ). Denote by V -s,p ′ the set of functions v ∈ S(R n ) ∩ Ḣ-s,p ′ (R n ) such that v Ḣ-s,p ′ (R n ) 1 . If u ∈ S ′ h (R n ), then we have u Ḣs,p (R n ) = sup v∈V -s,p ′ u, v R n . Moreover, if (C s,p ) is satisfied, Ḣs,p (R n ) is reflexive and we have ( Ḣ-s,p ′ (R n )) ′ = Ḣs,p (R n ).
(2.15)

Proof. -For simplicity, we will first work with the norm provided point (v) in Proposition 2.2, by equivalence of norms, the result will remain true.

Let (u, v) ∈ Ḣs,p (R n ) × Ḣ-s,p ′ (R n ), the L p (ℓ 2 )-L p ′ (ℓ 2 ) Hölder's inequality gives, u, v R n u Ḟs p,2 (R n ) (2 -js [ ∆j-1 + ∆j + ∆j+1 ]v) j∈Z ℓ 2 (Z) L p ′ (R n ) (2 |s|+1 + 1) u Ḟs p,2 (R n ) v Ḟ-s p ′ ,2 (R n )
. Now, we know that it is a well defined quantity, we can compute

u, v R n = |j-j ′ |≤1 ∆j u, ∆j ′ v R n = |j-j ′ | 1 (-∆) s 2 ∆j u, (-∆) -s 2 ∆j ′ v R n = (-∆) s 2 u, (-∆) -s 2 v R n . Hence, Hölder's inequality gives u, v R n u Ḣs,p (R n ) v Ḣ-s,p ′ (R n ) ,
which can be turned effortless into sup

v∈V -s,p ′ u, v R n u Ḣs,p (R n ) .
This also proves the continuous embedding Ḣs,p (R n ) ֒→ ( Ḣ-s,p ′ (R n )) ′ . For the reverse inequality, but not the reverse embedding, from L p -L p ′ duality, by density of S 0 (R n ), we have

u Ḣs,p (R n ) = sup v∈S0(R n ), v L p ′ 1 (-∆) s 2 u, v R n = sup w∈S0(R n ), w Ḣ-s,p ′ 1 u, w R n sup v∈V -s,p ′ u, v R n .
In particular, the embedding Ḣs,p (R n ) ֒→ ( Ḣ-s,p ′ (R n )) ′ always holds and is isometric. Now, assume that (C s,p ) holds. We recall that point (ii) of Proposition 2.2 yields the reflexivity of Ḣs,p

(R n ). Let Ũ ∈ ( Ḣ-s,p ′ (R n )) ′ , we have Ũ , (-∆) s 2 v Ũ ( Ḣ-s,p ′ (R n )) ′ v L p ′ (R n ) , v ∈ S 0 (R n ). Since the space S 0 (R n ) is dense in L p ′ (R n ), we deduce there exists a unique function w ∈ L p (R n ) such that, Ũ , v = w, (-∆) -s 2 v R n , v ∈ S(R n ).
Thus u := (-∆) -s 2 w ∈ Ḣs,p (R n ) by point (ii) in Proposition 2.2, and yields that the canonical embedding Ḣs,p

(R n ) ֒→ ( Ḣ-s,p ′ (R n )) ′ is surjective. Proposition 2.8 For any s ∈ R, p ∈ (1, +∞), q ∈ [1, +∞],      Ḃs p,q × Ḃ-s p ′ ,q ′ -→ C (u, v) -→ |j-j ′ |≤1 ∆j u, ∆j ′ v R n defines a continuous bilinear functional on Ḃs p,q (R n ) × Ḃ-s p ′ ,q ′ (R n ). Denote by Q -s p ′ ,q ′ the set of functions v ∈ S(R n ) ∩ Ḃ-s p ′ ,q ′ (R n ) such that v Ḃ-s p ′ ,q ′ (R n ) 1 . If u ∈ S ′ h (R n ), then we have u Ḃs p,q (R n ) p,s,n sup v∈Q -s p ′ ,q ′ u, v R n .
Moreover, if -n/p ′ < s < n/p is satisfied and q ∈ (1, +∞] then

( Ḃ-s p ′ ,q ′ (R n )) ′ = Ḃs p,q (R n ) and ( Ḃ-s p ′ ,∞ (R n )) ′ = Ḃs p,1 (R n ).
(2.16)

The space Ḃs p,q (R n ) is reflexive whenever both (C s,p,q ) and q = 1, +∞ are satisfied.

Proof. -The first part of the claim is just [BCD11, Proposition 2.29]. The claimed part about reflexivity and duality follows directly from the application of [BL76, Theorem 3.7.1] and of Theorem 2.6 and Proposition 2.7.

We also have a Sobolev-Besov multiplier result, which is useful for the construction of homogeneous Sobolev and Besov space on domains. The first presentation of the next result in the setting of inhomogeneous function spaces is due to Strichartz [Str67, Chapter II, Corollary 3.7], one may all so check [JK95, Proposition 3.5]. We are going to use it to prove a straightforward generalization. The next result was also known but only stated for homogeneous Besov spaces up to now, see e.g. [START_REF] Danchin | A critical functional framework for the inhomogeneous Navier-Stokes equations in the half-space[END_REF]Appendix].

Proposition 2.9 For all p ∈ (1, +∞), q ∈ [1, +∞], for all s ∈ (-1 + 1 p , 1 p ), for all u ∈ Ḣs,p (R n ) (resp. Ḃs p,q (R n )), ½ R n + u Ḣs,p (R n ) s,p,n u Ḣs,p (R n ) (resp. ½ R n + u Ḃs p,q (R n ) s,p,n u Ḃs p,q (R n )
). The same results still holds with (H, B) instead of ( Ḣ, Ḃ).

Proof. -We start from the result stated in the inhomogeneous case [Str67, Chapter II, Corollary 3.7], which states the following: for all p ∈ (1, +∞), for all s

∈ [0, 1 p ), for all u ∈ H s,p (R n ) ½ R n + u H s,p (R n ) s,p,n u H s,p (R n ) . If s = 0 , there is nothing to achieve since H 0,p (R n ) = Ḣ0,p (R n ) = L p (R n
) with equality of norms. Now for s > 0 , by the equivalence of norms, we obtain

½ R n + u L p (R n ) + ½ R n + u Ḣs,p (R n ) s,p,n u L p (R n ) + u Ḣs,p (R n ) .
Plugging u λ := u(λ•) in above inequality, provided λ is a positive real number, since one has

½ R n + (λ•)u λ = ½ R n + u λ , we obtain that λ -n p ½ R n + u L p (R n ) + λ s-n p ½ R n + u Ḣs,p (R n ) s,p,n λ -n p u L p (R n ) + λ s-n p u Ḣs,p (R n ) .
Thus one may divide by λ s-n p , and then as λ tends to infinity, we deduce

½ R n + u Ḣs,p (R n ) s,p,n u Ḣs,p (R n ) .
Therefore, the result follows by density argument.

The result for s ∈ (-1 + 1 p , 0) is a consequence of duality and density using the duality bracket defined on S 0 (R n ) × S 0 (R n ).

The Besov space case follows by real interpolation.

Function spaces on the upper half-space

Let s ∈ R, p ∈ (1, +∞), q ∈ [1, +∞].
Then for any X ∈ {B s p,q , Ḃs p,q , H s,p , Ḣs,p } , and we define

X(R n + ) := X(R n ) | R n + , with the quotient norm u X(R n + ) := inf ũ∈X(R n ), ũ| R n + =u . ũ X(R n ) . A direct consequence from the definition of those spaces is the density of S 0 (R n + ) ⊂ S(R n + ) in each of them.
The completeness and reflexivity is also carried over when their counterpart on R n are respectively complete and reflexive. We also define

X 0 (R n + ) := u ∈ X(R n ) supp u ⊂ R n + , with natural induced norm u X0(R n + ) := u X(R n ) .
We always have the canonical continuous injection,

X 0 (R n + ) ֒→ X(R n + ). Since there is a natural embedding S ′ (R n ) ֒→ D ′ (R n + ), we also have the inclusion X(R n + ) ⊂ D ′ (R n + ). If X and Y are different function spaces • if one has continuous embedding Y(R n ) ֒→ X(R n ). a direct consequence from the definition is Y(R n + ) ֒→ X(R n + )
, and similarly with X 0 and Y 0 .

• We write [X ∩ Y](R n + ) the restriction of X(R n ) ∩ Y(R n ) to R n + , in general there is nothing to ensure more than [X ∩ Y](R n + ) ֒→ X(R n + ) ∩ Y(R n + ).
Results corresponding to those obtained for the whole space R n in previous section are usually carried over by the existence of an appropriate extension operator

E : S ′ (R n + ) -→ S ′ (R n ), bounded from X(R n + ) to X(R n ).

Quick overview of inhomogeneous function spaces on R n

+

For inhomogeneous spaces on special Lipschitz domains (in particular on R n + ), an approach was done by Stein in [Ste70, Chapter VI], for Sobolev spaces with non-negative index, and Besov spaces of positive index of regularity (this follows by real interpolation). A full and definitive result for the inhomogeneous case on Lipschitz domains, and even in a more general case (allowing p, q to be less than 1 considering the whole Besov and Triebel-Lizorkin scales), was given by Rychkov in [START_REF] Rychkov | On Restrictions and Extensions of the Besov and Triebel-Lizorkin spaces with Respect to Lipschitz Domains[END_REF] where the extension operator is known to be universal and to cover even negative regularity index.

The extension operator provided by Rychkov can be used to prove, thanks to [BL76, Theorem 6.4

.2], if (h, b) ∈ {(H, B), (H 0 , B •,•,0 )} , [h s0,p0 (R n + ), h s1,p1 (R n + )] θ = h s,p θ (R n + ), (b s0 p,q0 (R n + ), b s1 p,q1 (R n + )) θ,q = b s p,q (R n + ), (3.1) (h s0,p (R n + ), h s1,p (R n + )) θ,q = b s p,q (R n + ), [b s0 p0,q0 (R n + ), b s1 p1,q1 (R n + )] θ = b s p θ ,q θ (R n + ), (3.2) 
whenever (p 0 , q 0 ), (p 1 , q 1 ), (p, q) ∈ [1, +∞] 2 (p = 1, +∞, when dealing with Sobolev (Bessel potential) spaces), θ ∈ (0, 1), s 0 = s 1 two real numbers, such that

s, 1 p θ , 1 q θ := (1 -θ) s 0 , 1 p 0 , 1 q 0 + θ s 1 , 1 p 1 , 1 q 1 .
A nice property is that the description of the boundary yields the following density results, for all p ∈ (1, +∞), q ∈ [1, +∞), s ∈ R, 

H s,p 0 (R n + ) = C ∞ c (R n + ) • H s,p (R n ) , and B s p,q,0 (R n + ) = C ∞ c (R n + ) • B s p,q (R n ) . ( 3 
∈ R, p ∈ (1, +∞), q ∈ [1, +∞), (H s,p (R n + )) ′ =H -s,p ′ 0 (R n + ), (B s p,q (R n + )) ′ = B -s p ′ ,q ′ ,0 (R n + ), (3.4) 
(B s p,q,0 (R n + )) ′ = B -s p ′ ,q ′ (R n + ). (3.5) 
And finally, thanks to the inhomogeneous version of Proposition 2.9, we also have a particular case of equality of Sobolev spaces, with equivalent norms, for all p ∈ (1, +∞), q ∈ [1, +∞], s ∈

(-1 + 1 p , 1 p ), H s,p (R n + ) = H s,p 0 (R n + ), B s p,q (R n + ) = B s p,q,0 (R n + ). (3.6)
The interested reader may also found an explicit and way more general (and still valid, for the most part of it, in the case of the half-space) treatment for bounded Lipschitz domains in [START_REF] Kalton | Interpolation of Hardy-Sobolev-Besov-Triebel Lizorkin spaces and applications to problems in partial differential equations[END_REF], where the Triebel-Lizorkin scale, including Hardy spaces, and other endpoint function spaces are also treated.

All the results presented above will be used without being mentioned and are assumed to be well known to the reader.

Homogeneous function spaces on R n

+

One may expect to recover similar results for the scale of homogeneous Sobolev and Besov as the one mentioned in the subsection 3.1. However, due to the setting involving the use of S ′ h (R n ), we have a lack of completeness so that one can no longer use complex interpolation theory and density argument on the whole scale to provide boundedness of linear operators. A first approach we could have in mind is that one would expect Rychkov's extension operator to preserve S ′ h , say

E(S ′ h (R n + )) ⊂ S ′ h (R n )
with homogeneous estimates, which is not known yet. However, if we consider a more naive extension operator like by reflection around the boundary, as in [DHMT21, Chapter 3], a certain amount of results remains true, up to consider index s > -1 + 1 p , provided p ∈ (1, +∞). This is what we are going to achieve here: this subsection is devoted to proofs of usual results on homogeneous Sobolev and Besov spaces on R n + . This subsection contains 3 subparts: the first one is about extension-restriction and density results for our homogeneous Sobolev spaces, from which for the second, we are going to build corresponding ones for Besov spaces, via some ersatz of real interpolation procedure. Both will be used to build the third subpart which concerns effective interpolation results for our homogeneous Sobolev and Besov spaces.

Homogeneous Sobolev spaces

We start proving the boundedness of extension operators defined by higher order reflection principle but for homogeneous Sobolev spaces with fractional index of regularity. This is done as in [DHMT21, Lemma 3.15, Proposition 3.19], where it was achieved only for homogeneous Besov spaces.

Proposition 3.1 For m ∈ N, there exists a linear extension operator E , depending on m, such that for all p ∈ (1, +∞), -1 

+ 1 p < s < m + 1 + 1 p , so that if either, • s 0 and u ∈ H s,p (R n + ) ; • s ∈ (-1 + 1 p , 1 p )
=    u(x) , if x ∈ R n + , m j=0 α j u(x ′ , -xn j+1 ) , if x ∈ R n \ R n + .
where, as in [DHMT21, Lemma 3.15], x = (x 1 , . . . , x n-1 , x n ) = (x ′ , x n ) ∈ R n-1 ×R, and (α j ) j∈ 0,m is such that E maps C m -functions on R n + to C m -functions on R n . This is indeed true since α j , j ∈ 0, m , is chosen so that it satisfies for all κ ∈ 0, m ,

m j=0 -1 j + 1 κ α j = 1.
By construction, the operator E also maps boundedly H k,p (R n + ) to H k,p (R n ) for all k ∈ 0, m + 1 . The boundedness of the operator E from H s,p (R n + ) to H s,p (R n ) for all s ∈ [0, m + 1] follows from complex interpolation.

Notice also that Proposition 2.9 and the formulation, given for

x ∈ R n , Eu(x) = [½ R n + u](x) + m j=0 α j [½ R n + u](x ′ , -xn j+1 ) implies that E : Ḣs,p (R n + ) -→ Ḣs,p (R n ) is bounded for all s ∈ (-1 + 1 p , 1 p ). Now for p ∈ (1, +∞), s ∈ [0, m + 1 + 1 p ), s -1 p / ∈ N, u ∈ H s,p (R n + ), E : H s,p (R n + ) -→ Ḣs,p (R n ), we can whose ℓ ∈ N such that s -ℓ ∈ (-1 + 1 p , 1 p ) so that ∂ ℓ x k Eu = E[∂ ℓ x ℓ u], provided k ∈ 1, n -1 , ∂ ℓ xn Eu = E (ℓ) ∂ ℓ xn u = m j=0 α j -1 j+1 ℓ ∂ ℓ xn u(x ′ , -xn j+1 ).
For the same reasons as in the beginning of the present proof, E (ℓ) maps H s,p (R n + ) to H s,p (R n ) for all s ∈ [0, mℓ + 1], and Ḣs,p (R n + ) to Ḣs,p (R n ) for s ∈ (-1 + 1/p, 1/p), thanks to Proposition 2.9.

From the fact that

∂ ℓ xj u ∈ Ḣs-ℓ,p (R n + ), we deduce Eu Ḣs,p (R n ) ∼ ℓ,p,n n-1 j=1 ∂ ℓ xj Eu Ḣs-ℓ,p (R n ) + E (ℓ) ∂ ℓ xn u Ḣs-ℓ,p (R n ) s,ℓ,p,n,m n j=1 ∂ ℓ xj u Ḣs-ℓ,p (R n ) .
(3.7)

To be more synthetic, we have obtained Eu Ḣs,p (R n ) p,k,n,m u Ḣs,p (R n + ) , so that E : Ḣs,p (R n + ) -→ Ḣs,p (R n ) is bounded on the subspace H s,p (R n + ), in particular it extends uniquely to a bounded linear operator on whole Ḣs,p (R n + ) when it is complete, i.e. s < n p , this follows from the fact that S(R n + ) ⊂ H s,p (R n + ) is dense in Ḣs,p (R n + ). It remains to cover cases when s -1 p ∈ 0, m . To do so, we want to reproduce the above procedure, proving first that E (resp.

E (ℓ) , ℓ ∈ 1, m ) is bounded from Ḣ 1 p ,p (R n + ) to Ḣ 1 p ,p (R n ), via some complex interpolation scheme. Now let p 0 , p 1 ∈ (1, +∞), p 1 < n, θ ∈ (0, 1). Consider u ∈ [L p0 (R n + ), Ḣ1,p1 (R n + )] θ . Let f ∈ F (L p0 (R n + ), Ḣ1,p1 (R n + ))
, such that f (θ) = u , it follows from the previous considerations that Ef ∈ F (L p0 (R n ), Ḣ1,p1 (R n )). Thus, from Theorem 2.6, one has Ef (θ) ∈ Ḣθ,p (R n ), where θ,

1 p := (1 -θ) 0, 1 p 0 + θ 1, 1 p 1 . So u = Ef (θ) | R n + ∈ Ḣθ,p (R n + ) with the norm estimate u Ḣθ,p (R n + ) m1,p,n u [L p 0 (R n + ), Ḣ1,p 1 (R n + )] θ
which is a direct consequence of the definition of restriction space, the equivalence of the complex interpolation norm (2.4) from Theorem 2.6, the definition of the complex interpolation norm, and then of the boundedness of

E from L p0 (R n ) to L p0 (R n + ) and from Ḣ1,p1 (R n ) to Ḣ1,p1 (R n + ). Now, if u ∈ Ḣθ,p (R n + )
, by definition of restriction spaces there exists U ∈ Ḣθ,p (R n ), such that

U | R n + = u, and 1 2 U Ḣθ,p (R n ) u Ḣθ,p (R n + ) U Ḣθ,p (R n ) .
By Theorem 2.6, there exists

f ∈ F (L p0 (R n ), Ḣ1,p1 (R n )) such that f (θ) = U , we deduce f (•) | R n + ∈ F (L p0 (R n + ), Ḣ1,p1 (R n + )), so u = f (θ) | R n + ∈ [L p0 (R n + ), Ḣ1,p1 (R n + )
] θ with the following estimate which is a direct consequence from the definition of function spaces by restriction, and complex interpolation spaces,

u [L p 0 (R n + ), Ḣ1,p 1 (R n + )] θ u Ḣθ,p (R n + ) .
Hence, homogeneous (Riesz potential) Sobolev spaces on the half-space are still a complex interpolation scale provided that p ∈ (1, +∞), s ∈ [0, 1], (C s,p ) being satisfied, so the boundedness of E : Ḣθ,p (R n + ) → Ḣθ,p (R n ) follows by interpolation. In particular, E : Ḣs,p (R n + ) -→ Ḣs,p (R n ) is bounded for all s ∈ (-1 + 1 p , 1 p ]. Hence the result has been proved for s -1 p = 0 . The same result is obtained for

E (ℓ) , provided ℓ ∈ 1, m . Now, let p ∈ (1, +∞), s -1 p ∈ 1, m , for u ∈ H s,p (R n + ), we have Eu ∈ H s,p (R n ), ∇ ℓ Eu ∈ Ḣs-ℓ,p (R n ), s -ℓ = 1
p , so that, similarly as in (3.7), Eu Ḣs,p (R n ) s,p,n,ℓ u Ḣs,p (R n + ) . Therefore, we have obtained the desired estimate and can conclude about the boundedness of E via density argument whenever (C s,p ) is satisfied.

In the proof of Proposition 3.1, we used boundedness of derivatives, i.e. for all p ∈ (1, +∞),

s ∈ R, u ∈ Ḣs,p (R n + ), m ∈ N, ∇ m u Ḣs-m,p (R n + ) p,s,n,m u Ḣs,p (R n + ) . (3.8)
The estimate above is a direct consequence of definition of function spaces by restriction and can be turned into an equivalence under some additional assumptions.

Proposition 3.2 Let p ∈ (1, +∞), k ∈ 1, +∞ , s > k -1 + 1 p , for all u ∈ H s,p (R n + ), n j=1 ∂ k xj u Ḣs-k,p (R n + ) ∼ s,k,p,n ∇ k u Ḣs-k,p (R n + ) ∼ s,k,p,n u Ḣs,p (R n + ) .
In particular,

∇ k • Ḣs-k,p (R n + ) and n j=1 ∂ k xj • Ḣs-k,p (R n + ) provide equivalent norms on Ḣs,p (R n + ), whenever (C s-k,p ) is satisfied.
Proof. -Let us prove it for k = 1 , the higher order case can be achieved in a similar manner. Consider p ∈ (1, +∞), s > 1 p , for u ∈ H s,p (R n + ), we have Eu ∈ Ḣs,p (R n ), where E is an extension operator provided by Proposition 3.1 (for some big enough m 1 ), ∇Eu ∈ Ḣs-1,p (R n ), with s -1 > -1 + 1 p . We can write on R n

+ c ∂ x ℓ Eu = E[∂ x ℓ u], provided ℓ ∈ 1, n -1 , and ∂ xn Eu = m j=0 α j -1 j+1 ∂ xn u(x ′ , -xn j+1 ).
Hence, we can use definition of restriction space, apply point (iii) in Proposition 2.2, and the boundedness of E , since m is large enough, to obtain,

u Ḣs,p (R n + ) Eu Ḣs,p (R n ) s,p,n ∇Eu Ḣs-1,p (R n ) s,p,n,m ∇u Ḣs-1,p (R n + )
. Therefore by (3.8), the equivalence of norms on Ḣs,p (R n + ) holds by density when (C s-k,p ) is true.

The next proposition is about identifying intersection of homogeneous Sobolev spaces on R n + , and give a dense subspace. As we can see later this will help for real interpolation.

Proposition 3.3 Let p j ∈ (1, +∞), s j > -1 + 1 pj , j ∈ {0, 1} , if (C s0,p0
) is satisfied then the following equality of vector spaces holds with equivalence of norms Ḣs0,p0 (R n + ) ∩ Ḣs1,p1 (R n + ) = [ Ḣs0,p0 ∩ Ḣs1,p1 ](R n + ). In particular, Ḣs0,p0 (R n + ) ∩ Ḣs1,p1 (R n + ) is a Banach space which admits S 0 (R n + ) as a dense subspace.

Proof. -Let p ∈ (1, +∞), s 0 , s 1 ∈ R, such that (C s0,p0 ). By definition of restriction spaces and Lemma 2.5, [ Ḣs0,p0 ∩ Ḣs1,p1 ](R n + ) is complete and admits S 0 (R n + ) as a dense subspace. The following continuous embedding also holds by definition,

[ Ḣs0,p0 ∩ Ḣs1,p1 ](R n + ) ֒→ Ḣs0,p0 (R n + ) ∩ Ḣs1,p1 (R n + )
. Hence, it suffices to prove the reverse one. To do so, let us choose ℓ ∈ N such that (C s1-ℓ,p1 ) is satisfied, and s 1ℓ > -1 + 1 p1 , then choosing E from Proposition 3.1 with m + 1 + 1 pj > s j , j ∈ {0, 1} (m big enough), for all j ∈ 1, n , and all u ∈ Ḣs0,p0 (R n + ) ∩ Ḣs1,p1 (R n + ), Eu makes sense in Ḣs0,p0 (R n ) then in S ′ h (R n ) and one may use an estimate similar to (3.7), to deduce

n k=1 ∂ ℓ x k Eu Ḣs 1 -ℓ,p 1 (R n ) = n-1 k=1 E∂ ℓ x k u Ḣs 1 -ℓ,p 1 (R n ) + E (ℓ) ∂ ℓ xn u Ḣs 1 -ℓ,p 1 (R n ) p1,n s1,m,ℓ u Ḣs 1 ,p 1 (R n + ) .
The above operator E (ℓ) is given via the identity

∂ ℓ xn E = E (ℓ) ∂ ℓ xn . Hence, it follows that for all u ∈ Ḣs0,p0 (R n + ) ∩ Ḣs1,p1 (R n + ), Eu Ḣs 0 ,p 0 (R n ) + n k=1 ∂ ℓ x k Eu Ḣs 1 -ℓ,p 1 (R n ) p0,p1,n s0,s1,m,ℓ u Ḣs 0 ,p 0 (R n + ) + u Ḣs 1 ,p 1 (R n + ) .
In particular, since Eu ∈ S ′ h (R n ), and by uniqueness of representation of

∂ ℓ xj Eu in S ′ (R n ), we deduce from point (iii) in Proposition 2.2 that Eu ∈ Ḣs0,p0 (R n ) ∩ Ḣs1,p1 (R n ).
Thus u ∈ [ Ḣs0,p0 ∩ Ḣs1,p1 ](R n + ), and by definition of restriction spaces,

u [ Ḣs 0 ,p 0 ∩ Ḣs 1 ,p 1 ](R n + ) Eu Ḣs 0 ,p 0 (R n ) + Eu Ḣs 1 ,p 1 (R n ) p0,p1,n s0,s1,m,ℓ u Ḣs 0 ,p 0 (R n + ) + u Ḣs 1 ,p 1 (R n + )
. This proves the claim.

So one can deduce the following corollary which allows separate homogeneous estimates for intersection of homogeneous Sobolev spaces on R n + . Since the estimates below are decoupled, it provides an ersatz of extension-restriction operators for homogeneous Sobolev spaces of higher order, thanks to the taken intersection yielding a complete space. For instance, this will be of use to circumvent the lack of completeness when we will want to (real-)interpolate between a "higher" order homogeneous Sobolev space, and one that is known to be complete.

Corollary 3.4 Let p j ∈ (1, +∞), s j > -1 + 1 pj , j ∈ {0, 1} , such that (C s0,p0
) is satisfied, consider m ∈ N such that s j < m + 1 + 1 pj , and the extension operator E given by Proposition 3.1. Then for all u ∈ Ḣs0,p0 (R n + ) ∩ Ḣs1,p1 (R n + ), we have Eu ∈ Ḣsj,pj (R n ), j ∈ {0, 1} , with the estimate Eu Ḣs j ,p j (R n ) sj ,pj ,m,n u Ḣs j ,p j (R n + ) . Corollary 3.4 and the proof of Proposition 3.2 lead to

Corollary 3.5 Let p j ∈ (1, +∞), m j ∈ 1, +∞ , s 1 > m 1 -1 + 1 p1 , j ∈ {0, 1} , such that (C s0,p0 ) is satisfied. Then for all u ∈ Ḣs0,p0 (R n + ) ∩ Ḣs1,p1 (R n + ), n k=1 ∂ m1 x k u Ḣs 1 -m 1 ,p 1 (R n + ) ∼ s1,m1,p1,n ∇ m1 u Ḣs 1 -m 1 ,p 1 (R n + ) ∼ s1,m1,pj ,n u Ḣs 1 ,p 1 (R n + ) .
Since one may also be interested into Sobolev spaces with 0 -boundary condition, we introduce a projection operator that allows to deal with the interpolation property, and to recover, later on, some appropriate density results. Lemma 3.6 Let p ∈ (1, +∞), s ∈ R, m ∈ N, such that -1 + 1 p < s < m + 1 + 1 p , then there exists a bounded projection P 0 , depending on m, such that it maps H s,p (R n ) to H s,p 0 (R n + ).

If either

• s 0 and u ∈ H s,p (R n );

• s ∈ (-1 + 1 p , 1 p ) and u ∈ Ḣs,p (R n ); we have the estimate

P 0 u Ḣs,p (R n ) s,m,p,n u Ḣs,p (R n ) .
In particular, P 0 extends uniquely to a bounded projection from Ḣs,p (R n ) to Ḣs,p

0 (R n + ) whenever (C s,p ) is satisfied. Proof. -Let p ∈ (1, +∞), s > -1 + 1 p , m ∈ N, such that s < m + 1 + 1 p .
Then we consider the operator E given by Proposition 3.1, but we modify it into an operator E -, for any measurable function u : R n --→ C, we set for almost every

x ∈ R n E -u(x) :=    u(x) , if x ∈ R n -, m j=0 α j u(x ′ , -xn j+1 ) , if x ∈ R n \ R n -.
Hence for any measurable function u : R n -→ C, we set for almost every x ∈ R n ,

P 0 u := u -E -[½ R n -u].
Lemma 3.13 Let (p, q, q 0 , q 1 ) ∈ (1, +∞) × [1, +∞] 3 , s 0 , s 1 ∈ R, such that s 0 < s 1 , and set

s := (1 -θ)s 0 + θs 1 . If (C s0,p ) is satisfied we have, Ḃs p,q (R n + ) ֒→ ( Ḣs0,p (R n + ), Ḣs1,p (R n + )) θ,q , (3.13) Ḃs p,q,0 (R n + ) ←֓ ( Ḣs0,p 0 (R n + ), Ḣs1,p 0 (R n + )) θ,q . (3.14) Similarly if (C s0,p,q0
) is satisfied, we also have 

Ḃs p,q (R n + ) ֒→ ( Ḃs0 p,q0 (R n + ), Ḃs1 p,q1 (R n + )) θ,q , (3.15) Ḃs p,q,0 (R n + ) ←֓ ( Ḃs0 p,q0,0 (R n + ), Ḃs1 p,q1,0 (R n + )) θ,q . ( 3 
(R n + ), Ḣs1,p 0 (R n + )) θ,q ֒→ ( Ḣs0,p (R n ), Ḣs1,p (R n )) θ,q = Ḃs p,q (R n ). By definition, f ∈ ( Ḣs0,p 0 (R n + ), Ḣs1,p 0 (R n + )) θ,q ⊂ Ḣs0,p 0 (R n + ) + Ḣs1,p 0 (R n + ), hence supp f ⊂ R n + and f ∈ Ḃs p,q,0 (R n + ).
As we mentioned, the above lemma can be used to prove the boundedness of some operators on a sufficiently large range of indices on Besov spaces via some sort of interpolation method, without the exact description of the interpolation space; see below.

Corollary 3.14 Let p ∈ (1, +∞), q ∈ [1, +∞], s > -1 + 1 p , m ∈ N, such that s < m + 1 + 1 p .
Let us consider the extension operator E (resp. P 0 ) given by Proposition 3.1 (resp. Lemma 3.6).

If either

• s > 0 and u ∈ B s p,q (R n + ) (resp. u ∈ B s p,q (R n )) ; • s ∈ (-1 + 1 p , 1 p ) and u ∈ Ḃs p,q (R n + ) (resp. u ∈ Ḃs p,q (R n )) ;
we have the estimate

Eu Ḃs p,q (R n ) s,m,p,n u Ḃs p,q (R n + ) . (resp. P 0 u Ḃs p,q (R n )
s,m,p,n u Ḃs p,q (R n ) . ) In particular, E (resp. P 0 ) is a bounded operator from Ḃs p,q (R n + ) to Ḃs p,q (R n ) (resp. from Ḃs p,q (R n ) to Ḃs p,q,0 (R n + )) whenever (C s,p,q ) is satisfied.

Proof. -Let p ∈ (1, +∞), q ∈ [1, +∞), s > -1 + 1 p , m ∈ N, such that s < m + 1 + 1 p .
Without loss of generality, it suffices to prove the result for the operator E , since we have the identity

P 0 = I -E -[½ R n -],
as written in the proof of Lemma 3.6.

The boundedness of E on Ḃs

p,q (R n ) for (p, q) ∈ (1, +∞) × [1, +∞], s ∈ (-1 + 1 p , 1 p ) is again a direct consequence of Proposition 2.9.
It remains to prove boundedness for s 1 p . To do so, we proceed via a manual real interpolation scheme.

Let u ∈ B s p,q (R n + ), θ ∈ (0, 1) such that θs 1 = s, where = u , and we have the estimates

s 1 ∈ (s, m + 1 + 1 p ). One has u ∈ (L p (R n + ), H s1,p (R n + )) θ,q ֒→ (L p (R n + ), Ḣs1,p (R n + )) θ,q ⊂ L p (R n + ) + Ḣs1,p (R n + ). Hence, for a ∈ L p (R n + ), b ∈ Ḣs1,p (R n + ) such that f = a + b , we can deduce that b = u -a ∈ B s p,q (R n + ) + L p (R n + ) ⊂ L p (R n + ), so that b ∈ L p (R n + ) ∩ Ḣs1,p (R n + ) = H
K(t, Eu, L p (R n ), Ḣs1,p (R n )) Ea L p (R n ) + t Eb Ḣs 1 ,p (R n ) p,m,n a L p (R n + ) + t b Ḣs 1 ,p (R n + )
. Hence, taking infimum on all such functions a and b , and multiplying by t -θ leads to

t -θ K(t, Eu, L p (R n ), Ḣs1,p (R n )) p,s,s1,n t -θ K(t, u, L p (R n + ), Ḣs1,p (R n +
)), so one may take the L q * -norm of above inequality and use (3.13) from Lemma 3.13 to deduce that Eu Ḃs p,q (R n ) p,s,q,n u Ḃs p,q (R n + ) . If q < +∞, then B s p,q (R n + ) is dense in Ḃs p,q (R n + ), so that the conclusion holds by density whenever (C s,p,q ) is satisfied.

If q = +∞, and (C s,p,q ) is satisfied, necessarily s < n p . We introduce

E := E[½ R n + •]
which is bounded, thanks to the above step, seen as an operator

E : Ḃsj p,qj (R n ) -→ Ḃsj p,qj (R n ), provided s 0 < s < s 1 < n
p , and q j ∈ [1, ∞), j ∈ {0, 1} . Thus, by real interpolation argument, thanks to Theorem 2.6, for all

U ∈ Ḃs p,∞ (R n ), we have EU Ḃs p,∞ (R n ) p,s,q,n U Ḃs p,∞ (R n ) . In particular, for all u ∈ Ḃs p,∞ (R n + ), and all U ∈ Ḃs p,∞ (R n ) such that U | R n + = u , we have Eu Ḃs p,∞ (R n ) p,s,q,n U Ḃs p,∞ (R n ) .
Hence, taking the infimum on all such functions U gives the result when q = +∞ and (C s,p,q ) is satisfied.

Proposition 3.15 Let p, q ∈ [1, +∞], s ∈ (0, n), such that 1 q = 1 p - s n .
We have the following estimates,

u L q (R n + )
n,s,p,q,r u Ḃs

p,r (R n + ) , ∀u ∈ Ḃs p,r (R n + ), r ∈ [1, q] u Ḃ-s q,r,0 (R n + ) n,s,p,q,r u L p (R n + ) , ∀u ∈ L p (R n + ), r ∈ [q, +∞].
Moreover, we also have

Ḃ n p p,1 (R n + ) ֒→ C 0 0 (R n + )
, whenever p is finite.

Proof. -Each embedding is a direct consequence of the definition of each space and the corresponding ones on R n , see point (iv) of Proposition 2.1.

Lemma 3.16 Let p ∈ (1, +∞), q ∈ [1, +∞) and s > 0 . The function space C ∞ c (R n + ) is dense in Ḃs p,q,0 (R n + ) whenever (C s,p,q ) is satisfied.
Proof. -As in the proof of Proposition 3.9, in the case of non negative index: by a successive approximations scheme, we use density of B s p,q (R n ) in Ḃs p,q (R n ), to approximate functions in Ḃs p,q,0 (R n + ). Then the boundedness of P 0 on Ḃs p,q (R n + ), and the density of

C ∞ c (R n + ) in B s p,q,0 (R n + ) yields the result. Proposition 3.17 Let (p 0 , p 1 , p, q) ∈ (1, +∞) 3 × [1, +∞], s 0 , s 1 ∈ R, such that s 0 < s 1 , let (h, b) ∈ {(H, B), (H 0 , B •,•,0 )} , and set s, 1 p θ := (1 -θ) s 0 , 1 p 0 + θ s 1 , 1 p 1 .
If either one of following assertions is satisfied,

(i) q ∈ [1, +∞), s j > -1 + 1 pj , j ∈ {0, 1} ; (ii) q ∈ [1, +∞], s j > -1 + 1 pj , and (C sj ,pj ) is satisfied, j ∈ {0, 1} ;
If p 0 = p 1 = p and (C s,p,q ) is satisfied, the following equality is true with equivalence of norms ( ḣs0,p (R n + ), ḣs1,p (R n + )) θ,q = ḃs p,q (R n + ).

(3.17)

If (C s0,p0
) and (C s1,p1 ) are true then also is (C s,p θ ) and

[ ḣs0,p0 (R n + ), ḣs1,p1 (R n + )] θ = ḣs,p θ (R n + ). (3.18)
Proof. -We start noticing that (3.18) only makes sense under assertion (ii).

Step 1: We prove first (3.18) and (3.17) under assertion (ii).

It suffices to assert that { ḣs0,p0 (R n + ), ḣs1,p1 (R n + )} is a retraction of { Ḣs0,p0 (R n ), Ḣs1,p1 (R n )} , thanks to [BL76, Theorem 6.4.2]. Indeed, both retractions are given by

E : Ḣsj,pj (R n + ) -→ Ḣsj,pj (R n ) and R R n + : Ḣsj,pj (R n ) -→ Ḣsj,pj (R n + ), ι : Ḣsj,pj 0 (R n + ) -→ Ḣsj,pj (R n ) and P 0 : Ḣsj,pj (R n ) -→ Ḣsj,pj 0 (R n + ).
Here, R R n + and ι stand respectively for the restriction and the canonical injection operator. Boundedness and range of E and P 0 provided by Lemma 3.6 and Corollary 3.14 lead to (3.18) and (3.17) under assertion (ii).

Step 2: We prove (3.17) under assertion (i).

Step 2.1: (h, b) = (H, B). Thanks to Lemma 3.13, we have continuous embedding,

Ḃs p,q (R n + ) ֒→ ( Ḣs0,p (R n + ), Ḣs1,p (R n + )) θ,q . (3.19)
Let us prove the reverse embedding, Ḃs p,q (R n + ) ←֓ ( Ḣs0,p (R n + ), Ḣs1,p (R n + )) θ,q . Without loss of generality, we can assume s

1 n p . Let f ∈ S 0 (R n + ) ⊂ Ḃs p,q (R n + ), if follows that f ∈ ( Ḣs0,p (R n + ), Ḣs1,p (R n + )) θ,q ⊂ Ḣs0,p (R n + )+ Ḣs1,p (R n + ). Thus, for all (a, b) ∈ Ḣs0,p (R n + )× Ḣs1,p (R n + ) such that f = a + b , we have, b = f -a ∈ (S 0 (R n + ) + Ḣs0,p (R n + )) ∩ Ḣs1,p (R n + ).
In particular, we have a ∈ Ḣs0,p (R n + ) and b ∈ Ḣs0,p (R n + ) ∩ Ḣs1,p (R n + ). Hence, we can introduce F := Ea+Eb , where

F | R n + = f , Ea ∈ Ḣs0,p (R n ) and Eb ∈ Ḣs0,p (R n )∩ Ḣs1,p (R n ), with the estimates,
given by Corollary 3.4,

Ea Ḣs 0 ,p (R n ) s0,m,p,n a Ḣs 0 ,p (R n + ) and Eb Ḣs 1 ,p (R n ) s1,m,p,n b Ḣs 1 ,p (R n + )
. Then, one may bound the K -functional of F , for t > 0 ,

K(t, F, Ḣs0,p (R n ), Ḣs1,p (R n )) Ea Ḣs 0 ,p (R n ) + t Eb Ḣs 1 ,p (R n ) sj ,p,n a Ḣs 0 ,p (R n + ) + t b Ḣs 1 ,p (R n + )
Taking the infimum over all such functions a and b , we obtain

K(t, F, Ḣs0,p (R n ), Ḣs1,p (R n )) sj ,p,n K(t, f, Ḣs0,p (R n + ), Ḣs1,p (R n + )
), from which we obtain, after multiplying by t -θ , taking the L q * -norm with respect to t, and applying Theorem 2.6,

f Ḃs p,q (R n + ) F Ḃs p,q (R n ) s,p,n f ( Ḣs 0 ,p (R n + ), Ḣs 1 ,p (R n + )) θ,q .
Finally, thanks to the first embedding (3.19), we have

f Ḃs p,q (R n + ) ∼ p,s,n f ( Ḣs 0 ,p (R n + ), Ḣs 1 ,p (R n + )) θ,q , ∀f ∈ S 0 (R n + ).
Since q < +∞, we can conclude by density of S 0 (R n + ) in both Ḃs p,q (R n + ) and in the interpolation space ( Ḣs0,p (R n + ), Ḣs1,p (R n + )) θ,q . Density argument for the later one is carried over by Lemma 2.5 and [BL76, Theorem 3.4.2].

Step 2.2:

C ∞ c (R n + ) is dense in Ḃs p,q,0 , provided -1 + 1 p < s < 1 p , p ∈ (1, +∞), q ∈ [1, +∞).
We state below the Besov analogue of Corollary 3.7, Lemma 2.5 and Proposition 3.3, for which the proofs are similar and left to the reader.

Proposition 3.20 Let p j ∈ (1, +∞), q j ∈ [1, +∞], s j > -1 + 1 pj , j ∈ {0, 1} , m ∈ N, such that (C s0,p0,q0
) is satisfied and s j < m + 1 + 1 pj , and consider the extension operator E given by Proposition 3.1.

Then for all u ∈ Ḃs0 p0,q0 (R n + )∩ Ḃs1 p1,q1 (R n + ), we have Eu ∈ Ḃsj pj ,qj (R n ), j ∈ {0, 1} , with the estimate Eu Ḃs j p j ,q j (R n ) sj ,m,p,n u Ḃs j p j ,q j (R n + ) . The same result holds replacing

(E, Ḃsj pj ,qj (R n + ), Ḃsj pj ,qj (R n )) by (P 0 , Ḃsj pj ,qj (R n ), Ḃsj pj ,qj ,0 (R n + ))
, where P 0 is the projection operator given in Lemma 3.6.

Thus, the following equality of vector spaces holds with equivalence of norms

Ḃs0 p0,q0 (R n + ) ∩ Ḃs1 p1,q1 (R n + ) = [ Ḃs0 p0,q0 ∩ Ḃs1 p1,q1 ](R n + ). In particular, Ḃs0 p0,q0 (R n + ) ∩ Ḃs1 p1,q1 (R n +
) is a Banach space, and it admits S 0 (R n + ) as a dense subspace whenever q j < +∞, j ∈ {0, 1} .

Similarly, the following equality with equivalence of norms holds for all s > 0 , q ∈ [1, +∞],

L p (R n + ) ∩ Ḃs p,q (R n + ) = B s p,q (R n + ).
With direct consequence similar to Corollary 3.5:

Corollary 3.21 Let p j ∈ (1, +∞), q j ∈ [1, +∞] m j ∈ 1, +∞ , s j > m j -1 + 1 pj , j ∈ {0, 1} , such that (C s0,p0,q0 ) is satisfied. For all u ∈ [ Ḃs0 p0,q0 ∩ Ḃs1 p1,q1 ](R n + ), ∇ mj u Ḃs j -m j p j ,q j (R n + ) ∼ sj ,mj ,pj ,n u Ḃs j p j ,q j (R n + ) .
Above Proposition 3.20 also implies the expected interpolation result for Besov spaces, for which the proof is similar to the one of Proposition 3.17 and left again to the reader. Proposition 3.22 Let (p 0 , p 1 , p, q, q 0 , q 1 ) ∈ (1, +∞) 3 × [1, +∞] 3 , s 0 , s 1 ∈ R, such that s 0 < s 1 , and let b ∈ {B, B •,•,0 } , and set s,

1 p θ , 1 q θ := (1 -θ) s 0 , 1 p 0 , 1 q 0 + θ s 1 , 1 p 1 , 1 q 1 .
such that the following assertion is satisfied,

• s j > -1 + 1 pj , j ∈ {0, 1} , and (C s0,p0,q0 ) is true;

Then if p 0 = p 1 = p, and (C s,p,q ) is satisfied, the following equality holds with equivalence of norms

( ḃs0 p,q0 (R n + ), ḃs1 p,q1 (R n + )) θ,q = ḃs p,q (R n + ). (3.20) If (C s0,p0,q0
) and (C s1,p1,q1 ) are true then also is (C s,p θ ,q θ ) and with equivalence of norms,

[ ḃs0 p0,q0 (R n + ), ḃs1 p1,q1 (R n + )] θ = ḃs p θ ,q θ (R n + ). (3.21)
We finish stating a duality result for homogeneous Besov space son the half-space.

Proposition 3.23 Let p ∈ (1, +∞), q ∈ (1, +∞], s > -1 + 1 p , if (C s,p,q
) is satisfied then the following isomorphisms hold

( Ḃ-s p ′ ,q ′ ,0 (R n + )) ′ = Ḃs p,q (R n + ) and ( Ḃ-s p ′ ,q ′ (R n + )) ′ = Ḃs p,q,0 (R n + ).
Proof. -We only prove ( Ḃ-s p ′ ,q ′ (R n + )) ′ = Ḃs p,q,0 (R n + ), the other equality can be shown in a similar way. First let q < +∞, and choose u ∈ Ḃs p,q,0 (R n + ), it follows that u induce a linear form on Ḃ-s

p ′ ,q ′ (R n + ), v -→ u, ṽ R n where ṽ ∈ Ḃ-s p ′ ,q ′ (R n ) is any extension of v ∈ Ḃ-s p ′ ,q ′ (R n + ). If one choose v ′ to be any other extension of v , we have that ṽ -v ′ ∈ Ḃ-s p ′ ,q ′ ,0 (R n -). Since C ∞ c (R n + ) is dense in Ḃs p,q,0 (R n + ), see either Lemma 3.16 or Corollary 3.18, for (u k ) k∈N ⊂ C ∞ c (R n + ) converging to u , we have u, ṽ -v ′ R n = lim k→+∞ u k , ṽ -v ′ R n = 0 due to the fact that R n + ∩ R n -= ∅ .
Thus, the map does not depend on the choice of the extension but is entirely and uniquely determined by u . We have the continuous canonical embedding Ḃs p,q,0 (R n + ) ֒→ ( Ḃ-s p ′ ,q ′ (R n + )) ′ . In fact, the same result holds for q = +∞: the space C ∞ c (R n + ) is sequentially weak * dense in Ḃs p,∞,0 (R n + ) by Corollary 3.19. For the reverse embedding, if

U ∈ ( Ḃ-s p ′ ,q ′ (R n + )) ′ , it induces a continuous linear functional on Ḃ-s p ′ ,q ′ (R n ) by the mean of v -→ U, ½ R n + ṽ , where again ṽ ∈ Ḃ-s p ′ ,q ′ (R n ) is any extension of v ∈ Ḃ-s p ′ ,q ′ (R n + ). Thus, ½ R n + U ∈ ( Ḃ-s p ′ ,q ′ (R n ))
′ and by Proposition 2.8 there exists a unique u ∈ Ḃs p,q (R n ) such that, for all ṽ ∈ Ḃ-s

p ′ ,q ′ (R n ), U, ½ R n + ṽ = u, ṽ R n . Finally, if we test with ṽ ∈ C ∞ c (R n -), it shows that supp u ⊂ R n + , then u ∈ Ḃs p,q,0 (R n + ) which close the proof.

On traces of functions

Dealing with function spaces on domains implies that one may need to investigate the meaning of traces on the boundary if those exist, i.e. to see in our setting if the trace operator

γ 0 : u -→ u | ∂R n
+ still has the expected behavior on Ḣs,p (R n + ) and Ḃs p,q (R n + ). In fact, in the complete case, it behaves as in the case of inhomogeneous function spaces.

The idea here is to give some appropriate trace theorems for homogeneous Sobolev and Besov spaces. It seems there is no clear trace theorem for homogeneous function spaces in the literature, except maybe [START_REF] Jawerth | The trace of Sobolev and Besov spaces if 0 < p < 1[END_REF], but in this case the corresponding results were obtained in a different framework.

On inhomogeneous function spaces.

We discuss first about the usual well known trace theorem on R n with trace on R n-1 × {0} in the inhomogeneous case, the result is a rewritten weaker version adapted to our context. 

γ 0 :    S(R n ) -→ S(R n-1 ) u -→ u(•, 0)
, then following statements are true:

(i ) the trace operator γ 0 : H s,p (R n ) -→ B s-1 p p,p (R n-1 ) is a bounded surjection, in particular for all u ∈ H s,p (R n ), γ 0 u B s-1 p p,p (R n-1 ) s,p,n u H s,p (R n ) ; (ii ) the trace operator γ 0 : B s p,q (R n ) -→ B s-1 p p,q (R n-1
) is a bounded surjection, in particular for all u ∈ B s p,q (R n ),

γ 0 u B s-1 p p,q (R n-1 )
s,p,n,q u B s p,q (R n ) ;

(iii) the trace operator γ 0 : B

1 p p,1 (R n ) -→ L p (R n-1
) is a bounded surjection, in particular for all u ∈ B

1 p p,1 (R n ), γ 0 u L p (R n-1 ) p,n u B 1 p p,1 (R n )
; 

Moreover
γ 0 : u -→ u(•, 0).
The following assertions are true.

(i ) For all u ∈ H s,p (R n + ), we have u ∈ C 0 0,xn (R + , b s-1 p p,p (R n-1 )), with estimate u L ∞ xn (R+,b s-1 p p,p (R n-1 )) s,p,n u h s,p (R n + ) ;
In particular, the trace operator extends uniquely to a bounded linear operator (ii ) For all u ∈ B s p,q (R n + ), we have u

∈ C 0 0,xn (R + , b s-1 p p,q (R n-1 )), with estimate u L ∞ xn (R+,b s-1 p p,q (R n-1 )) s,p,n u b s p,q (R n + ) ;
In particular, the trace operator extends uniquely to a bounded linear operator

γ 0 : Ḃs p,q (R n + ) → Ḃs-1 p p,q (R n-1
) whenever (C s,p,q ) is satisfied, and the following continuous embedding holds

Ḃs p,q (R n + ) ֒→ C 0 0,xn (R + , Ḃs-1 p p,q (R n-1 )).
If q = +∞, the result still holds with uniform boundedness and weak * continuity only.

(iii) For all u ∈ B

1/p p,1 (R n + ), we have u ∈ C 0 0,xn (R + , L p (R n-1 )), with estimate u L ∞ xn (R+,L p (R n-1 )) s,p,n u b 1/p p,1 (R n + ) ;
In particular, the trace operator extends uniquely to a bounded linear operator

γ 0 : Ḃ1/p p,1 (R n + ) → L p (R n-1 )
and the following continuous embedding holds Proof. -We cut the proof in several steps.

Ḃ1/p p,1 (R n + ) ֒→ C 0 0,xn (R + , L p (R n-1 )).
Step 1: The case (h, b) = (H, B). We first check validity of the embedding 

H s,p (R n ) ֒→ C 0 0,xn (R, B s-1 p p,p (R n-1 )). Let u ∈ H s,p (R n ), for t > 0 , for almost every x = (x ′ , x n ) ∈ R n , we introduce u t (x ′ , x n ) := u(x ′ , x n + t), we have u t ∈ H s,p (R n ),
γ 0 u t B s-1 p p,p (R n-1 ) p,s,n u H s,p (R n ) , γ 0 (u t -u) B s-1 p p,p (R n-1 ) p,s,n u t -u H s,p (R n ) .
Therefore, by strong continuity of translation in Lebesgue spaces, then in Sobolev spaces, we obtain Step 2.1: The case (h, b) = ( Ḣ, Ḃ). Boundedness of the trace operator. We only achieve the case (ii) other ones can be done similarly. From Step 1, and for fixed p ∈ (1, +∞), q ∈ [1, +∞], s > 1 p , and u ∈ B s p,q (R n + ), we have u

γ 0 (u t -u) B s-1 p p,p (R n-1 ) p,s,n u t -u H s,p (R n ) ---→ t→0 0. Hence, u ∈ C 0 b,xn (R, B s-1 p p,p (R n-1 )), with estimate, t → u(•, t) B s-1 p p,p (R n-1 ) L ∞ (R) p,s,n u H s,p (R n ) .
L ∞ xn (R+, Ḃs-1 p p,q (R n-1 )) p,s,n u L ∞ xn (R+,B s-1 p p,q (R n-1 )) s,p,n u B s p,q (R n + ) .
Thus, one may use the fact that B s p,q (R n + ) = L p (R n + )∩ Ḃs p,q (R n + ) , which comes from Proposition 3.20, to obtain

u L ∞ xn (R+, Ḃs-1 p p,q (R n-1 )) s,p,n,q u L p (R n + ) + u Ḃs p,q (R n + ) .
So that, by a dilation argument, replacing u , by

u λ := u(λ•), for λ ∈ 2 N , λ s-n p u L ∞ xn (R+, Ḃs-1 p p,q (R n-1 )) s,p,n,q λ -n p u L p (R n + ) + λ s-n p u Ḃs p,q (R n + ) .
Hence, we can divide by λ s-n p on both sides and pass to the limit λ -→ +∞,

u L ∞ xn (R+, Ḃs-1 p p,q (R n-1 ))
s,p,n,q u Ḃs p,q (R n + ) . Therefore, if q < +∞, and (C s,p,q ) is satisfied, the embedding Ḃs p,q (R n + ) ֒→ C 0 0,xn (R + , Ḃs-1 p p,q (R n-1 )) holds by density. If q = +∞, and (C s,p,q ) is satisfied, the result follows from real interpolation.

Step 2.2: The case (h, b) = ( Ḣ, Ḃ). Boundedness of the extension operator. The operator T given by Proposition B.2 is an appropriate extension operator which satisfies the desired boundedness properties. Thus Ext R n + := T behaves as expected. A raised question is about what happens when we want to deal with intersection of homogeneous Sobolev and Besov spaces.

Proposition 4.4 Let p ∈ (1, +∞), q ∈ [1, +∞), -1 + 1 p < s 0 < 1 p < s 1 , and θ ∈ (0, 1) such that 1 p = (1 -θ)s 0 + θs 1 .
Then the following assertions hold.

(i ) for all u ∈ Ḣs0,p (R n + ) ∩ Ḣs1,p (R n + ), we have γ 0 u ∈ B s1-1 p p,p (R n-1 ), with estimate γ 0 u B s 1 -1 p p,p (R n-1 ) s0,s1,p,n u 1-θ Ḣs 0 ,p (R n + ) u θ Ḣs 1 ,p (R n + ) + u Ḣs 1 ,p (R n + )
. We also have,

γ 0 u Ḃs 1 -1 p p,p (R n-1 ) s0,s1,p,n u Ḣs 1 ,p (R n + ) ; (ii ) for all u ∈ Ḃs0 p,q (R n + ) ∩ Ḃs1 p,q (R n + ), we have γ 0 u ∈ B s1-1 p p,q (R n-1 ), with estimate γ 0 u B s 1 -1 p p,q (R n-1 ) s0,s1,p,n u 1-θ Ḃs 0 p,q (R n + ) u θ Ḃs 1 p,q (R n + ) + u Ḃs 1 p,q (R n + )
. We also have,

γ 0 u Ḃs 1 -1 p p,q (R n-1 ) s0,s1,p,n u Ḃs 1 p,q (R n + ) ; (iii) for all u ∈ Ḃs0 p,∞ (R n + ) ∩ Ḃs1 p,∞ (R n + ), we have γ 0 u ∈ L p (R n-1 ), with estimate γ 0 u L p (R n-1 ) s0,s1,p,n u 1-θ Ḃs 0 p,∞ (R n + ) u θ Ḃs 1 p,∞ (R n + ) .
Proof. -We only start proving the point (ii), and claim that point (i) can be achieved in a similar manner. We start noticing, the following continuous embedding,

Ḃs0 p,q (R n + ) ∩ Ḃs1 p,q (R n + ) ι ֒→ ( Ḃs0 p,q (R n + ), Ḃs1 p,q (R n + )) θ,1 = Ḃ 1 p p,1 (R n + ) γ0 ֒→ L p (R n-1 ).
Here, ι is the canonical embedding obtained via standard interpolation theory, and the last embedding via the trace operator is a direct consequence of Theorem 4.3, and everything can be turned into the following inequality,

γ 0 u L p (R n-1 ) s0,s1,p,n u 1-θ Ḃs 0 p,q (R n + ) u θ Ḃs 1 p,q (R n + ) , ∀u ∈ Ḃs0 p,q (R n + ) ∩ Ḃs1 p,q (R n + ).
Again, from Theorem 4.3 we obtain for all u ∈ S 0 (R n + ),

γ 0 u Ḃs 1 -1 p p,q (R n-1 ) s1,p,n u Ḃs 1 p,q (R n + ) .
Then one may sum both inequality, notice that L

p (R n-1 ) ∩ Ḃs1-1 p p,p (R n-1 ) = B s1-1 p p,p (R n-1
) and use the density argument provided by Proposition 3.20 so that each estimate holds.

Additional notations and some remarks

Non-exhaustivity of the construction

The goal of presenting here a definitive construction of homogeneous Sobolev and Besov spaces on the half-space is certainly not reached:

• The way arguments are done Section 3 always requires a ground function space to intersect with so that it ensures we deal with restriction of elements of S ′ h (R n ), e.g. see the proof of Proposition 3.3. Hence, with this kind of methods, obtaining more general results like an exhaustive description of dual spaces of homogeneous Besov and Sobolev spaces on R n + in the non-complete case seems to be difficult to reach.

• A related problem is that the extension operator we use is not general enough and disallow to recover too much negative index of regularity in case of homogeneous function spaces. It would be of interest to know if one can also recover non-complete positive index independently, without using intersection or density tricks. As mentioned at the beginning of this section, to know if one can construct an operator similar to Rychkov's extension operator, from [START_REF] Rychkov | On Restrictions and Extensions of the Besov and Triebel-Lizorkin spaces with Respect to Lipschitz Domains[END_REF],

E such that E(S ′ h (R n + )) ⊂ S ′ h (R n
) with homogeneous estimates would be a sufficiently powerful result to overcome such troubles.

• Other definitions are possible for S ′ h (R n ). We have chosen here the one with the strongest convergence for the sum of low frequencies to continue the work started in [BCD11, Chapter 2] and [DHMT21, Chapter 3]. The choice of possible definitions and their functional analytic consequences on Besov spaces' construction are reviewed by Cobb in [Cob21, Appendix] and [START_REF] Cobb | Remarks on Chemin's space of homogeneous distributions[END_REF].

Not to further burden the actual presentation, we just mention that one could also investigate spaces such as Ḃs p,∞ (R n + ) and Ḃs p,∞,0 (R n + ). For those spaces, the space S 0 (R n + ) is dense in the first one by construction, and we can show that the space C ∞ c (R n + ) is dense in the second one, and both may be recovered from interpolation of other appropriate homogeneous Sobolev and Besov spaces. We can also prove corresponding duality and traces results. Details are left to the interested reader.

Operators on Sobolev and Besov spaces

We introduce domains for an operator A acting on Sobolev or Besov spaces, denoting • D s p (A) (resp. Ḋs p (A)) its domain on H s,p (resp. Ḣs,p );

• D s p,q (A) (resp. Ḋs p,q (A)) its domain on B s p,q (resp. Ḃs p,q );

• D p (A) = D 0 p (A) = Ḋ0 p (A) its domain on L p .
Similarly, N s p (A), N s p,q (A) will stand for its nullspace on H s,p and B s p,q , and range spaces will be given respectively by R s p (A) and R s p,q (A). We replace N and R by Ṅ and Ṙ for their corresponding corresponding sets on homogeneous function spaces.

If the operator A has different realizations depending on various function spaces and on the considered open set, we may write its domain D(A, Ω), and similarly for its nullspace N and range space R . We omit the open set Ω if there is no possible confusion.

Applications: the Dirichlet and Neumann Laplacians on the half-space

We introduce the following subsets of the complex plane

Σ µ := { z ∈ C * : |arg(z)| < µ }, if µ ∈ (0, π),
we also define Σ 0 := (0, +∞), and later we are going to consider Σ µ its closure. An operator (D(A), A) on complex valued Banach space X is said to be ω -sectorial, if for a fixed ω ∈ (0, π), both conditions are satisfied (i) σ(A) ⊂ Σ ω , where σ(A) denotes the spectrum of A ;

(ii) For all µ ∈ (ω, π), sup λ∈C\Σµ λ(λI -A) -1 X→X < +∞ .

Sectorial operators is widely reviewed in several references but we mention here Haase's book [START_REF] Haase | The functional calculus for sectorial operators[END_REF]. One may also check [Ege15, Chapter 3].

Before starting the analysis of Dirichlet, Neumann on the half-space, we introduce two appropriate extension operators. We denote E J , for J ∈ {D, N } , the extension operator defined for any measurable function u on R n + , for almost every

x = (x ′ , x n ) ∈ R n-1 × R + : E D u(x ′ , x n ) := u(x ′ , x n ) , if (x ′ , x n ) ∈ R n-1 × R + , -u(x ′ , -x n ) , if (x ′ , x n ) ∈ R n-1 × R * -; E N u(x ′ , x n ) := u(x ′ , x n ) , if (x ′ , x n ) ∈ R n-1 × R + , u(x ′ , -x n ) , if (x ′ , x n ) ∈ R n-1 × R * -.
Obviously, for J ∈ {D, N } , s ∈ (-1 + 1/p, 1/p), p ∈ (1, +∞), the Proposition 2.9 leads to boundedness of

E J : Ḣs,p (R n + ) -→ Ḣs,p (R n ). (6.1)
The same result holds replacing Ḣs,p by either H s,p , B s p,q , or even by Ḃs p,q , q ∈ [1, +∞]. We are going to use the properties of Laplacian acting on the whole space to build the resolvent estimates for both the the Dirichlet and the Neumann Laplacian. Usual Dirichlet and Neumann Laplacians are the operators (D(∆ J ), -∆ J ), for J ∈ {D, N } , where the subscript D (resp. N ) stands for the Dirichlet (resp. Neumann) Laplacian, with, for p ∈ (1, +∞),

D p (∆ D ) := u ∈ H 1,p (R n + , C) ∆u ∈ L p (R n + , C) and u | ∂R n + = 0 , D p (∆ N ) := u ∈ H 1,p (R n + , C) ∆u ∈ L p (R n + , C) and ∂ ν u | ∂R n + = 0 .
For J ∈ {D, N } , and all u ∈ D p (∆ J ), -∆ J u := -∆u.

When p = 2 , one can also realize both Dirichlet and Neumann Laplacians by the mean of densely defined, symmetric, accretive, continuous, closed, sesquilinear forms on L 2 (R n + , C), for J ∈ {D, N } ,

a J : D 2 (a J ) 2 ∋ (u, v) -→ R n + ∇u • ∇v (6.2) with D 2 (a D ) = H 1 0 (R n + , C), D 2 (a N ) = H 1 (R n + , C
), so that it is easy to see, and well-known, that both, the Neumann and Dirichlet Laplacians, are closed, densely defined, non-negative self-adjoint operators on L 2 (R n + , C), see [Ouh05, Chapter 1, Section 1.2]. We can be even more precise.

Proposition 6.1 Provided J ∈ {D, N } , the operator (D 2 (∆ J ), -∆ J ) is an injective non-negative self-adjoint and 0 -sectorial operator on L 2 (R n + , C). Moreover, the following hold

(i) D 2 (∆ J ) is a closed subspace of H 2 (R n + , C); (ii) Provided µ ∈ [0, π), for λ ∈ Σ µ , f ∈ L 2 (R n + , C), then u := (λI -∆ J ) -1 f satisfies |λ| u L 2 (R n + ) + |λ| 1 2 ∇u L 2 (R n + ) + ∇ 2 u L 2 (R n + ) n,µ f L 2 (R n + ) ;
(iii) The following resolvent identity holds for all µ ∈ [0, π), λ ∈ Σ µ , f ∈ L 2 (R n + , C), E J (λI -∆ J ) -1 f = (λI -∆) -1 E J f . Proof. -One may use self-adjointness and (6.2) which gives, by standard hilbertian theory, the following resolvent estimate

|λ| u L 2 (R n + ) + |λ| 1 2 ∇u L 2 (R n + ) + ∆u L 2 (R n + ) µ f L 2 (R n + )
, where u := (λI -∆ J ) -1 f , f ∈ L 2 (R n + , C), λ ∈ Σ µ , µ ∈ [0, π). Now, for fixed f ∈ L 2 (R n + , C), λ ∈ Σ µ , µ ∈ [0, π), we consider u := (λI -∆ J ) -1 f . Assuming J = N , we have for φ ∈ S(R n , C), We have E J f ∈ L 2 (R n , C). By uniqueness of the solution provided in R n , we necessarily have U = E J u , which be can written as

E N u, -∆φ R n = u, -∆φ R n + + ũN , -∆φ R n - = ∇u, ∇φ R n + + u, ∇φ • e n ∂R n + -ũN , ∇φ • e n ∂R n - + [∇ ′ u] N , ∇ ′ φ R n - + [∂ xn u] D , ∂ xn φ R n - Since ∂R n + = ∂R n -= R n-1 × {0} ,
E J (λI -∆ J ) -1 f = (λI -∆) -1 E J f .
Thus one deduces point (iii), from the definition of function spaces by restriction, (ii) follows, and finally setting λ = 1 in point (ii) yields (i).

We want to show some sharp regularity results on the Dirichlet an Neumann resolvent problems, on the scale of inhomogeneous and homogeneous Sobolev and Besov spaces. To do so, we introduce their corresponding domains on each space. Provided p ∈ (1, +∞) s ∈ (-1 + 1/p, 1 + 1/p), if is satisfied (C s,p ): ) by ( Ḃs p,q , Ḃs+2 p,q , Ḃs+2-1 p p,q

) and ( Ḃα p,q , Ḃα+2 p,q , Ḃα+2-1 p p,q

) whenever (C s+2,p,q ) is satisfied, q < +∞. If q = +∞, everything still holds except x n → u(•, x n ) is no more strongly continuous but only weak * continuous with values in Ḃs+2-1 p p,q (R n-1 , C). (ii ) Given s > 0 , for all f ∈ Ḃ-1 p p,p (R n-1 ) ∩ Ḃs-1 p p,q (R n-1 ), we have T f Ḃs p,q (R n + )

s,p,n f

Ḃs-1 p p,q (R n-1 )

.

In particular, T extends uniquely as a bounded linear operator T : Ḃs-1 p p,q (R n-1 ) -→ Ḃs p,q (R n + ) whenever (C s,p,q ) is satisfied. .

Therefore, if λ ∈ 2 N , we can consider f λ is the dilation by factor λ of f , so that plugging f λ instead of f in above inequality, and checking the fact that T f λ = (T f ) λ , we obtain 

λ -n p T f L p (R n + ) + λ s-n p T f

+ f

Ḃs-1 p p,q (R n-1 ) .

For two real

  numbers A, B ∈ R, A a,b,c B means that there exists a constant C > 0 depending on a, b, c such that A CB . When both A a,b,c B and B a,b,c A are true, we simply write A ∼ a,b,c B . When the number of indices is overloaded, we allow ourselves to write A d,e,f a,b,c B instead of A a,b,c,d,e,f B .

  Let p ∈ (1, +∞), q ∈ [1, +∞], s ∈ ( 1 p , +∞),and consider the following operator

γ 0 :

 0 Ḣs,p (R n + ) → Ḃs-1 p p,p (R n-1 ) whenever (C s,p ) is satisfied, and the following continuous embedding holds Ḣs,p (R n + ) ֒→ C 0 0,xn (R + , Ḃs-1 p p,p (R n-1 )).

  If (h, b) = (H, B), the trace operator γ 0 admits a linear right bounded inverse Ext R n + in cases (i) and (ii). (b ) If (h, b) = ( Ḣ, Ḃ), the trace operator γ 0 admits a linear right bounded inverse Ext R n + in cases (i) and (ii).

  and by Theorem 4.1,

Finally, one can

  approximate u by Schwartz functions to deduce u ∈ C 0 0,xn (R, B s-1 p p,p (R n-1 )). One may perform a similar proof for all other cases, and one may check [Gui91, Proposition 1.9] for the continuity of translation in Besov spaces, one may also use a density and an interpolation argument. Now, one can use the definition of function spaces by restriction. One choose Ext R n + = [Ext•] | R n + introduced in the proof of Theorem 4.1 which satisfies the desired boundedness properties.

Remark 6. 2

 2 For u : R n + -→ C, we set ũJ := [E J u] | R n for J ∈ {D, N } . We notice that in D ′ (R n -, C), ∂ xn [ũ N ] = [∂ xn u] D and ∂ xn [ũ D ] = [∂ xn u] N .

  with traces ũN | ∂R n -= u | ∂R n + , we deduce u | ∂R n + , ∇φ • e n ∂R n + -ũN | ∂R n -, ∇φ • e n ∂R n -= 0 . Then, thanks to Remark 6.2 and the boundary condition on u , i.e. ∂ xn u | ∂R n + = 0 , we haveE N u, -∆φ R n = ∇u, ∇φ R n + + [∇ ′ u] N , ∇ ′ φ R n -+ [∂ xn u] D , ∂ xn φ R n -= -∆u, φ R n + + [-∆ ′ u] N , φ R n -+ [-∂ 2 xn u] N , φ R n --∂ xn u, φ ∂R n + -[∂ xn u] D , φ ∂R n -= E N [-∆u], φ R n .Thus, -∆E N u = E N [-∆u] in S ′ (R n , C). One may reproduce above calculations for J = D . So for J ∈ {D, N } , E J u is a solution of λU -∆U = E J f .

(DL 0 ).

 0 problem with inhomogeneous boundary condition:   -∆u = f , in R n + , u | ∂R n + = g, on ∂R n + .The problem (DL 0 ) admits a unique solution u such thatu ∈ Ḣs+2,p (R n + , C) ⊂ C 0 0,xn (R + , -1 )) s,p,n ∇ 2 u Ḣs,p (R n + ) p,n,s f Ḣs,p (R n + ) If moreover f ∈ Ḣα,p (R n + , C) and g ∈ Ḃα+2-1 p p, p (R n-1 , C) then the solution u also satisfies u ∈ Ḣα+2,p (R n + , C)with the corresponding estimate ∇ 2 u Ḣα, p(R n + ) p,n,α f Ḣα, p(R n + ) holds if we replace both ( Ḣs,p , Ḣs+2,p ,

  Proof. -Let p ∈ (1, +∞), s > -1 + 1/p, such that (C s+2,p ) is satisfied. Then for f ∈ Ḣs,p (R n+ , C), g ∈ Ḃs+2-1 p p,p (R n-1 , C)we can write the problem (DL 0 ) as an evolution problem in thex n variable,    -∂ 2 xn u -∆ ′ u = f , in R n-1 × (0, +∞), u(•, 0) = g, on R n-1 . (6.3)Thanks to [ABHN11, Theorem 3.8.3], considering the semigroup (e -xn(-∆ ′ ) 1/2 ) xn 0 and its mapping properties given by Proposition B.2 and Theorem 4.3, if f = 0 , above problem admits unique solutionu ∈ C 0 0,xn (R + , Ḃs+2-1 p p,p (R n-1 , C)). Thus, by linearity, we also have uniqueness of the solution u inC 0 0,xn (R + , Ḃs+2-1 p p,p (R n-1 , C))for non-identically zero function f . Therefore, it suffices to construct a solution.Since f ∈ Ḣs,p (R n + , C), by definition, there exists F ∈ Ḣs,p (R n , C) such thatF | R n + = f, and f Ḣs,p (R n + ) ∼ F Ḣs,p (R n ) . Let v := (-∆) -1 F ∈ Ḣs+2,p (R n , C), we also have v Ḣs+2,p (R n ) s,p,n F Ḣs,p (R n ) s,p,n f Ḣs,p (R n + ) . So it suffices to prove the result for w ∈ Ḣs+2,p (R n + , C), such that    -∆w = 0, in R n-1 × (0, +∞), w | ∂R n + = g, on R n-1 , -1 , C) can be seen as gv(•, 0). But sucha w exists and is unique thanks to Proposition B.2 and [ABHN11, Theorem 3.8.3], and satisfies w Ḣs+2,p (R n

  Proof. -Point (i): For p ∈ (1, +∞), let's consider f ∈ Ḃ-1 p p,p (R n-1 ). We apply Lemma B.1 to obtain,T f L p (R n + ) that for all f ∈ S ′ h (R n-1 ), m ∈ N, ∂ m xn T f = (-∆ ′ ) m 2 T f = T (-∆ ′ ) m 2 f and T f ∈ S ′ h (R n-1 ), thus if f ∈ Ḃ-1 p p,p (R n-1 ) ∩ Ḃm-1 p p,p (R n-1) we may apply previous inequality to obtain,T f Ḣm,p (R n + ) ∼ p,n,m ∂ m xn T f L p (R n + ) + (-∆ ′ ) m 2 T f L p (R n + ) ∼ p,n,m T (-∆ ′ ) m 2 f L p (R n + ) all m ∈ N, all f ∈ Ḃ-1 p p,p (R n-1 ) ∩ Ḃm-1 p p,p (R n-1 ), T f H m,p (R n complex interpolation and Corollary A.2, for all s 0 , all f ∈ Ḃ-1 p p,p (R n-1 ) ∩ Ḃs-1 p p,p (R n-1 ), T f H s,p (R n to Proposition 3.3, H s,p (R n + ) = L p (R n + ) ∩ Ḣs,p (R n + ), T f L p (R n + ) + T f Ḣs,p (R n (R n-1 )

  Ḣs,p (R n + ) p,n,s λ -n p f Ḃ-1 p p,p (R n-1 ) + λ s-n p f Ḃs-1 p p,p (R n-1 ).One may divide above inequality by λ s-n p , so as λ tends to infinity, it yields T f Ḣs,p (R n result holds by density whenever (C s,p ) is satisfied.Point (ii): Now let q ∈ [1, +∞], since for all s 0 , all f ∈ Ḃ-1 p p,p (R n-1 ) ∩ Ḃs-1 p p,p (R n-1), T f H s,p (R n real interpolation, using [Haa06, Proposition B.2.7] instead of Corollary A.2, we obtain that for all s > 0 all f ∈ Ḃ-

  One can make the comparison with homogeneous function spaces defined by tempered distributions quotiented by polynomials:The point (i) of Proposition 2.1, the point (ii) of Proposition 2.2 and [Saw18, Theorems 2.31 & 2.32] tell us that all realizations of homogeneous Sobolev and Besov spaces can be isometrically identified whenever s < n/p.

	2.3 One may check first point (iii) as a direct consequence of [DHMT21, Lemma 2.6]. One
	may deduce the point (i) from [Gra14b, Theorem 1.2.3] and a density argument achieved manually
	(at this stage homogeneous Sobolev spaces are not known to be complete or not, only Lebesgue
	spaces are). The point (ii) is then a direct consequence of the point (i). The point (iii) follows
	directly from the proof of [DHMT21, Proposition 3.7] for the case s = 0 .
	The point (v) is a very well known result, based on extensive use of Khintchine's inequality
	(L p (R n )-square function estimates) and the Hörmander-Mikhlin Fourier multiplier theorem, see for
	instance [Tri92, Remark 3, p.25] and [Gra14a, Proposition 6.1.2] for the case of S ′ (R n ) when s = 0 .
	One may adapt the proof taking care of possible convergence issues (no density argument is a priori
	allowed).
	See [BL76, Theorem 6.3.2] for the point (vi). The point (vii) is just a direct consequence of point
	(v), applying Hölder's inequality twice.
	All the details can be found in the dissertation of the author [Gau23, Chapter 2, Section 2.1].
	Remark 2.4 Lemma 2.5 Let

  Eu Ḣs,p (R n ) p,s,n,m u Ḣs,p (R n + ) . In particular, E : Ḣs,p (R n + ) -→ Ḣs,p (R n ) extends uniquely to a bounded operator whenever (C s,p ) is satisfied.Proof. -As in [DHMT21, Lemma 3.15], let us introduce the higher order reflexion operator E , defined for all measurable function u : R n

	and u ∈ Ḣs,p (R n + ) ;	
	we have	
	+ Eu | R n	= u,
	with the estimate	

+ -→ C by Eu(x) :

  the trace operator γ 0 admits a linear right bounded inverse Ext in cases (i) and (ii).

	Remark 4.2 One also mention [Sch10, Theorems 2.2 & 2.10], [JW84, Sections V-VII], which give
	different proofs of the trace theorem. Notice that in [Sch10, Theorems 2.2 & 2.10] and [Saw18,
	Theorems 4.47, 4.48] the right bounded inverse they give is not linear but covers case (iii).
	4.2 On homogeneous function spaces.
	Theorem 4.3 Let p ∈ (1, +∞), q ∈ [1, +∞], s ∈ ( 1 p , +∞), then for (h, b) ∈ {(H, B), ( Ḣ, Ḃ)} , we consider the trace operator

The fact that P 2 0 = P 0 is clear by definition, and we have P 0 H s,p (R n ) ⊂ H s,p 0 (R n + ), and that P 0| H s,p 0 (R n + ) = I. The boundedness properties, as claimed, follow from Proposition 2.9 and Proposition 3.1.

As well as the extension operator given by higher order reflection principle, the projection operator on "0 -boundary condition" homogeneous Sobolev spaces satisfies homogeneous estimates on intersection spaces. The proof is a direct consequence of Proposition 3.3 and its formula introduced in the proof of Lemma 3.6. Corollary 3.7 Let p j ∈ (1, +∞), s j > -1 + 1 pj , j ∈ {0, 1} , m ∈ N, such that (C s0,p0 ) is satisfied and s j < m + 1 + 1 pj , and consider the projection operator P 0 given by Lemma 3.6. Then for all u ∈ Ḣs0,p0 (R n ) ∩ Ḣs1,p1 (R n ), we have P 0 u ∈ Ḣsj,pj 0 (R n + ), j ∈ {0, 1} , with the estimate P 0 u Ḣs j ,p j (R n ) sj ,m,p,n u Ḣs j ,p j (R n ) .

We still have Sobolev embeddings by definition of function spaces by restriction. Proposition 3.8 Let p, q ∈ (1, +∞), s ∈ [0, n), such that

We have the estimates,

n,s,p,q u Ḣs,p (R n + ) , ∀u ∈ Ḣs,p (R n + ), (3.9)

for which each underlying embedding is dense.

Proof. -First, let us recall the Hardy-Littlewood-Sobolev inequality from (i) in Proposition 2.2, which says that u Ḣ-s,q (R n ) n,s,p,q u L p (R n ) , ∀u ∈ L p (R n ).

Hence, the embedding (3.10) is a direct consequence of plugging ũ the extension to the whole R n of u ∈ L p (R n + ). The embedding (3.9) is a direct consequence of (i) in Proposition 2.2 and function spaces defined by restriction. Indeed, for u ∈ Ḣs,p (R n + ), we have for any extension U ∈ Ḣs,p (R

U L q (R n ) s,p,q,n U Ḣs,p (R n ) .

Looking at the infimum on all such U gives the result. The density for the first embedding follows from the fact that S 0 (R n + ) ⊂ Ḣs,p (R n + ) is dense in L q (R n + ). The density in the second case, follows from the canonical embedding, L p (R n + ) ֒→ Ḣ-s,q 0 (R n + ) ֒→ H -s,q 0 (R n + ), which turn, by duality into embeddings,

In particular, the following is a dense embedding ( Ḣ-s,q

hence by reflexivity, the one below also is

Now, all the ingredients are there in order to build the main usual density result for our 0boundary conditions homogeneous Sobolev spaces. +∞), and assume that (C s,p ) is true, and consider u ∈ Ḣs,p 0 (R n + ). In particular, we have u ∈ Ḣs,p (R n ). Hence, there exists

Thus, it follows from Lemma 3.6, that (P

For ε > 0 , there exists some k 0 , such that for all k k 0 , we have

Step 2: Now for the second part of (i), let us consider s ∈ (0, n p ′ ). For u ∈ Ḣ-s,p 0 (R n + ), applying Proposition 3.8, for ε > 0 there exists a function v ∈ L q (R n + ), (with

n,s,p,q ε, so the triangle inequality gives

n,s,p,q ε, which conclude the proof since w ∈ C ∞ c (R n + ).

Step 3: For the density in the intersection spaces, it suffices to reproduce the above Step 1 by means of Corollary 3.7.

Corollary 3.10 For all

Proof. -This is a direct consequence of the definition of restriction spaces and Proposition 2.9, the density result follows from Proposition 3.9.

, then using definition of restriction spaces, the following map defines a linear functional on Ḣs,p (R n + ), u -→ Φ, ũ R n , where ũ is any extension of u , and notice that the action of Φ does not depend on the choice of such extension of u . Indeed, if U ∈ Ḣs,p (R n ) is another extension of u , we obtain that w := Uũ ∈ Ḣs,p 0 (R n + c ). It follows from Proposition 3.9 that w is a strong limit in Ḣs,p

) so that, passing to the limit, in the duality bracket, we obtain

This gives a well defined continuous injective map

The following map is well defined continuous and injective

Both maps (3.11) and (3.12) are even isometric and we obtain,

, which was the first statement. The second statement follows from duality and reflexivity exchanging roles of involved exponents.

The next result aim to carry over density in intersection spaces to transfer itself as a density result in their real interpolation spaces.

Corollary 3.12 Let p ∈ (1, +∞), -n/p ′ < s 0 < s 1 < n/p, i.e. such that (C -s0,p ′ ) and (C s1,p ) are both satisfied.

The space

There are three subcases, 0 s 0 < s 1 , s 0 < 0 < s 1 , and s 0 < s 1 0 .

The case 0 s 0 < s 1 follows the lines of Proposition 3.9 thanks to Corollary 3.7.

The case s 0 < 0 < s 1 , can be done via duality argument as in Proposition 3.9 for the negative index of regularity. Let us consider 1 q = 1 p -s0 n , the following embeddings are true H s1-s0,q

. We deduce that the last embedding is dense, since ( Ḣs0,p

embedding, so that by duality and reflexivity of all involved spaces, the following embedding is dense:

is dense, the result follows. We end the proof claiming that the third case s 0 < s 1 0 can be done similarly via duality and reflexivity arguments.

Homogeneous Besov spaces, Interpolation

We are done with properties of homogeneous Sobolev spaces. We continue with a real interpolation embedding lemma, that will allow us to transfer all nice properties, like boundedness of extension and projection operators, from homogeneous Sobolev spaces to homogeneous Besov spaces.

Thanks to

Step 1 one may find, -1 + 1 p < s 0 < s < s 1 < 1 p , θ ∈ (0, 1), such that, as a consequence of [BL76, Theorem 3.4.2], we have the following dense embedding,

). The equality in above line is a direct consequence of Proposition 2.9. In this case, the density of C ∞ c (R n + ) is a straightforward application of Corollary 3.12 by successive approximations.

Thanks to Lemma 3.13, we have continuous embedding, ( Ḣs0,p

) θ,q ֒→ Ḃs p,q,0 (R n + ). We are going to prove the reverse embedding, ( Ḣs0,p

. Again, without loss of generality we can assume s 1 n p , otherwise one can go back to Step 1.

thanks to Corollary 3.7. Thus, one may follow the lines of Step 2.1, to obtain for all

. Again, one can conclude via density arguments since q < +∞, and

Step 2.2 and Lemma 3.16.

The Step 2.2 in above proof can be turned more formally into,

Then the following equality holds with equivalence of norms, Ḃs p,q (R n + ) = Ḃs p,q,0 (R n + ). Moreover, the space C ∞ c (R n + ) is dense whenever q < +∞.

From general interpolation theory we are able to deduce the following,

Proof. -The [BL76, Theorem 3.7.1] with the remark at the end of its proof in combination with Lemma 3.12, with the use of [BL76, Theorem 3.4.2], and Proposition 3.17 imply that, for some -1 + 1/p < s 0 < s < s 1 , with θ ∈ (0, 1), such that s = (1θ)s 0 + θs 1 , we have the following strongly dense embedding,

) θ , and the following weak * dense embedding ( Ḣs0,p

, so that the result follows. We mention that (•, •) θ is the real interpolation functor asking the Kfunctional to decay at infinity and near the origin, see for instance [START_REF] Lunardi | Interpolation theory. Appunti. Scuola Normale Superiore di Pisa[END_REF] 

pj ,qj (R n-1 ), j ∈ {0, 1} , with estimate γ 0 u Ḃs j -1 p j p j ,q j (R n-1 ) sj ,pj ,n u Ḃs j p j ,q j (R n + ) ; Remark 4.7 Corollary B.3 yields the ontoness of the trace operator on intersection spaces given by above Proposition 4.6.

Hence, we have the following canonical isomorphism of Banach spaces

The result still holds replacing Ḣsj,pj by Ḃsj pj ,qj ,

So that introducing the extensions by 0 to R n , ũ and ∇u ,

Hence ∇u = ∇ũ in S ′ (R n , C n ). Thus, by Propositions 2.7 and 2.9, we deduce that

u Ḣs j ,p j (R n + ) . One may conclude thanks to Proposition 2.7, and Corollary 3.5. The case of Besov spaces follows the same lines. The isomorphism is then a direct consequence.

Ḋs

We can also consider their domains on inhomogeneous Sobolev and Besov spaces, as well as homogeneous spaces, replacing ( Ḋs p , Ḣs,p ) by either (D s p , H s,p ), (D s p,q , B s p,q ) and finally ( Ḋs p,q , Ḃs p,q ) provided q ∈ [1, +∞], and (C s,p,q ) is satisfied. Remark 6.3 We allowed us a slight abuse of notation here: we identified Ḣs,p 0 (R n + ) with either • Ḣs,p (R n + ) when s ∈ (-1 + 1/p, 1/p), thanks to Proposition 2.9;

• Ḣs,p (R n + ) with homogeneous Dirichlet boundary condition when s ∈ (1/p, 1 + 1/p), thanks to Lemma 4.8.

The same identification is made for Besov spaces, and inhomogeneous function spaces.

It is then not difficult to see that the Dirichlet and Neumann Laplacians are well defined unbounded closed linear operators, densely defined, if q ∈ [1, +∞) in the case of inhomogeneous and homogeneous Besov spaces. If q = +∞, the domain of the Dirichlet (resp. Neumann) Laplacian is only known to be weak * dense in B s p,∞,0 (resp. in B s p,∞ ) and Ḃs p,∞,0 (resp. Ḃs p,∞ ).

p ), α = 1/p, and λ ∈ Σ µ provided µ ∈ [0, π). We assume that (C s,p ), and we let f ∈ Ḣs,p 0 (R n + , C).

Let us consider the resolvent Dirichlet problem with homogeneous boundary condition:

The ) . The result still holds replacing ( Ḣs,p , Ḣs+2,p , Ḣα,p , Ḣα+2,p ) by ( Ḃs p,q , Ḃs+2 p,q , Ḃα p,q , Ḃα+2 p,q ) whenever (C s,p,q ) is satisfied. Remark 6.5 • For this specific Proposition 6.4, we have excluded the cases s = 1/p and α = 1/p. Both require to introduce, e.g. in case of Sobolev spaces, the homogeneous counterpart of the Lions-Magenes Sobolev space Ḣ1/q,q 00 (R n + ), q ∈ {p, p} . See for instance [LM72, Chapter 1, Theorem 11.7] for the inhomogeneous space in the case q = 2 .

• We bring to the attention of the reader that (C α, p) is NEVER assumed, only (C s,p ) is. This is in order to echo the principle of decoupled estimates in intersection spaces when one wants to deal with higher regularities involving some non-complete spaces. All the other results presented below follow the same principle.

Proof. -Provided p ∈ (1, +∞), and firstly that s ∈ (-1 + 1/p, 1/p), for f ∈ Ḣs,p (R n + , C), it follows from Proposition 2.9 that for U := (λI

. Thus, by definition of restriction restriction space, we set u 

. One may proceed similarly as before to obtain the full estimate

p,n,s,µ f Ḣs,p (R n + ) . Thus the estimates still hold by density for all f ∈ Ḣs,p

The Ḣα,p -estimate for f ∈ [ Ḣs,p 0 ∩ Ḣα,p 0 ](R n + ) can be obtained the same way, whenever (C s,p ) is satisfied.

The case of Besov spaces Ḃs p,q,0 can be achieved via similar argument for q < +∞, the case q = +∞ is obtained via real interpolation. The case of the Ḃα p,q,0 -estimate for f ∈ Ḃs p,q,0 ∩ Ḃα p,q,0 can be done as above.

The proof for the Neumann resolvent problem in the proposition below is fairly similar to the proof of Proposition 6.4, a complex interpolation argument allows values s = 1/p and α = 1/p. Proposition 6.6 Let p, p ∈ (1, +∞), q, q ∈ [1, +∞], s ∈ (-1 + 1 p , 1 + 1 p ), α ∈ (-1 + 1 p , 1 + 1 p ) and λ ∈ Σ µ provided µ ∈ [0, π). We assume that (C s,p ), and we let f ∈ Ḣs,p (R n + , C). Let us consider the resolvent Neumann problem with homogeneous boundary condition:

The problem

. The result still holds replacing ( Ḣs,p , Ḣs+2,p , Ḣα,p , Ḣα+2,p ) by ( Ḃs p,q , Ḃs+2 p,q , Ḃα p,q , Ḃα+2 p,q ) whenever (C s,p,q ) is satisfied.

), let us consider the Dirichlet Now, we can set u := v + w which is a solution of (DL 0 ), and triangle inequality leads to

which was the desired bound.

The Besov spaces case for (f, g) ∈ Ḃs p,q (R n + , C)× Ḃs+2-1/p p,q (R n-1 , C), whenever (C s+2,p,q ) is satisfied, follows the same lines as before, except when q = +∞ where the uniqueness argument can only be checked in a weak sense since (e -xn(-∆ ′ ) 1/2 ) xn 0 is only weak

](R n-1 , C), then with the same notations as above, by Proposition 4.6, we have

From this, one may reproduce the estimates as above to obtain

.

The case of intersection of Besov spaces follows the same lines.

We state the same result for the corresponding Neumann problem, for which the proof is very close.

(N L 0 )

The problem (N L 0 ) admits a unique solution u such that

with the estimate

. The result still holds replacing ( Ḣs,p , Ḣs+2,p , Ḃs+1-

) by ( Ḃs p,q , Ḃs+2 p,q , Ḃs+1-

) and ( Ḣα,p , Ḣα+2,p , Ḃα+1-1 p p, p

) by ( Ḃα p,q , Ḃα+2 p,q , Ḃα+1-1 p p,q

) whenever (C s+2,p,q ) is satisfied and q < +∞. If q = +∞, everything still holds except x n → u(•, x n ) is no more strongly continuous but only

We notice that similar, but a little bit different, results of well-posedness and regularity are also available in [DM15, Chapter 3] with arguments of a different nature, and the case of Sobolev spaces and the resolvent problems are not treated.

A Complex interpolation for intersection of homogeneous Besov spaces

The next result is direct. Thanks to the fact that for all a, b > 0 , θ ∈ [0, 1],

and since for q ∈ [1, +∞), s 0 , s 1 ∈ R, and for θ ∈ (0, 1), if s = (1θ)s 0 + θs 1 , we have with equivalence of norms ℓ q s0 (Z) ∩ ℓ q s (Z) = ℓ q (Z, (2 ks0q + 2 ksq )dk) = ℓ q (Z, (2 ks0q + 2 ks1q ) θ 2 ks0q(1-θ) dk) , therefore, by complex interpolation of weighted ℓ q spaces, see [START_REF] Triebel | Interpolation Theory, Function Spaces, Differential Operators[END_REF]Section 1.18.5], we obtain Proposition A.1 Let q ∈ [1, +∞), s 0 , s 1 ∈ R, consider a complex Banach space X , and for θ ∈ (0, 1) let's introduce s := (1θ)s 0 + θs 1 . The following equality holds with equivalence of norms [ℓ q s0 (Z, X), ℓ q s0 (Z, X) ∩ ℓ q s1 (Z, X)] θ = ℓ q s0 (Z, X) ∩ ℓ q s (Z, X) . The result still holds with N instead of Z.

The next corollary will have its importance in the proof of the next Proposition B.2.

Then for θ ∈ (0, 1), let's introduce s := (1θ)s 0 + θs 1 . Then the following equality holds with equivalence for norms

Proof. -Both function spaces Ḃs0 p,q (R n ), and Ḃs0 p,q (R n ) ∩ Ḃs1 p,q (R n ) are complete normed vector spaces, see [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF]Theorem 2.25]. Now, we apply [BL76, Theorem 6.4.2] and Proposition A.1, claiming that, for all s ∈ R, Ḃs p,q (R n ) is a retraction of ℓ q s (Z, L p (R n )) through the homogeneous Littlewood-Paley decomposition ( ∆j ) j∈Z .

B Estimates for the Poisson semigroup

Lemma B.1 Let s > 0 , α 0 and p, q ∈ [1, +∞] 2 . For all u ∈ S ′ h (R n ), u Ḃα-s p,q (R n ) ∼ p,s,α,n,q t → t s (-∆)

α 2 e -t(-∆) 1 2 u L p (R n ) L q * (R+) . Proof. -It suffices to show the result for α = 0 . But in this case, the proof is straightforward the same as the one of [BCD11, Theorem 2.34] for the heat semigroup.

The following result was already proven in the case of homogeneous Besov spaces only, see [DM09, Lemma 2]. It is extended here to the case of homogeneous Sobolev spaces with a new proof that also cover the case of Besov spaces. In particular, T extends uniquely as a bounded linear operator T : Ḃs-1 p p,p (R n-1 ) -→ Ḣs,p (R n + ) whenever (C s,p ) is satisfied.

Then the same dilation procedure as before, yields T f Ḃs p,q (R n + )

p,n,s f Ḃs-1 p p,q (R n-1 ) , which again allows to conclude via density argument if q < +∞ and (C s,p,q ) is satisfied. The case q = +∞, when (C s,p,q ) is satisfied, follows from real interpolation with the last estimate.

Proposition B.2 can be self-improved as Corollary B.3 Let p j ∈ (1, +∞), q j ∈ [1, +∞), j ∈ {0, 1} . The map

is such that (i ) Let s j 0 , j ∈ {0, 1} , such that (C s0,p0 ) is satisfied. For all f ∈ [ Ḃs0-1 p 0 p0,p0 ∩ Ḃs1-1 p 1 p1,p1 ](R n-1 ), we have T f Ḣs j ,p j (R n + ) sj ,pj ,n f Ḃs j -1 p j p j ,p j (R n-1 ) , j ∈ {0, 1} .

(ii ) Let s j > 0 , j ∈ {0, 1} , such that (C s0,p0,q0 ) is satisfied. For all f ∈ [ Ḃs0-1 p 0 p0,q0 ∩ Ḃs1-1 p 1 p1,q1 ](R n-1 ), we have T f Ḃs j p j ,q j (R n + )

sj ,pj ,n f

Ḃs-1 p j p j ,q j (R n-1 )

, j ∈ {0, 1} .