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Summary

The nucleotides guanosine tetraphosphate and guanosine pentaphosphate (together (p)

ppGpp) are found in a wide range of prokaryotic and eukaryotic organisms where they are

associated with stress signalling. In this review, we will discuss recent research highlighting the

role of (p)ppGpp signalling as a conserved regulator of photosynthetic activity in the chloroplasts

of plants and algae, and the latest discoveries that open up new perspectives on the emerging

roles of (p)ppGpp in acclimation to environmental stress.We explore how rapid advances in the

studyof (p)ppGpp signalling in prokaryotes are now revealing large gaps in our understandingof

themolecularmechanisms of signalling by (p)ppGpp and related nucleotides in plants and algae.

Filling in these gaps is likely to lead to the discovery of conserved aswell as new plant- and algal-

specific (p)ppGpp signalling mechanisms that will offer new insights into the taming of the

chloroplast and the regulation of stress tolerance.

I. Introduction

Thanks to the domestication of the chloroplast, plants and algae are
among themost successful and important organisms on the planet.
A pair of purine nucleotides called guanosine tetraphosphate
(ppGpp) and guanosine pentaphosphate (pppGpp), collectively
(p)ppGpp, may have helped tame the chloroplast and at the same
time allow efficient acclimation to environmental fluctuations.
These signalling molecules (also known as alarmones), which are
synthesised from GTP/GDP and ATP by RelA SpoT Homologue

(RSH) enzymes (Fig. 1a), were discovered > 50 yr ago in bacteria
where they play amajor role in growth control and in acclimation to
environmental change by targeting awide range of effector enzymes
to slow proliferation and promote resilience (Irving et al., 2020;
Bange et al., 2021). (p)ppGpp signalling (also referred to as the
stringent response)was discoveredmore recently in plants and algae
(van der Biezen et al., 2000; Takahashi et al., 2004), where it takes
place in the chloroplast (Boniecka et al., 2017; Field, 2018). The
chloroplast is the site of photosynthesis, which fuels plant growth
and nearly all life on earth by converting sunlight into chemical
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energy, and is also a hub for stress perception and regulation (Kleine
et al., 2021). (p)ppGpp signalling is therefore well placed to play
important roles in regulating both the nutrition and stress
acclimation of photosynthetic eukaryotes. Indeed, as we will
discuss, recent studies highlight (p)ppGpp as a conserved regulator
of photosynthetic activity and open new perspectives on the
emerging roles of (p)ppGpp in acclimation to environmental stress.
Wewill then look at how rapid advances in the study of prokaryotic

(p)ppGpp signalling are now revealing gaps in our understanding
of the molecular mechanisms of (p)ppGpp signalling in plants and
algae. Filling in these gaps is likely to lead to the discovery of highly
conserved mechanisms as well as new plant- and algal-specific
mechanisms that will offer fresh insights into the remarkable
success of the cohabitation between the chloroplast and the
eukaryotic cell, and a greater understanding of stress acclimation in
these organisms.
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Fig. 1 RelA SpoT Homologue (RSH) enzymes are involved in guanosine tetraphosphate (ppGpp) and pentaphosphate (pppGpp) biosynthesis in plants, algae
and bacteria. (a) Outline of the synthesis and hydrolysis of (p)ppGpp by RSH superfamily enzymes. (b) A schematic outline showing the evolutionary
relationship of RSH enzymes based on the phylogenetic analysis of Avilan et al. (2019). The threemain plant and algal families are shown (RSH1, RSH2/3 and
RSH4/CRSH). (c) The domain structure of long RSH in bacteria and Arabidopsis. For bacteria, we show the structure of a typical member of the Rel subgroup
which is thought to represent theoriginal bacterial longRSH (Atkinsonet al., 2011). (d) The structureofEscherichia coliRelA, abacterial longRSH,whenbound
to the ribosome. Inset shows the position of RelA on the ribosome, and the uncharged tRNA (grey) that interacts with RelA in the AH domain of the regulatory
C-terminal region. Protein Data Bank identifier, 5L3P. CTP, chloroplast transit peptide; hydrolase, (p)ppGpp hydrolase domain; synthetase, (p)ppGpp
synthetase domain; TGS, ThrRS, GTPase, and SpoT; AH, alpha-helical domain; RIS, ribosome-intersubunit domain; ACT, aspartate kinase–chorismate
mutase–tyrA (prephenate dehydrogenase); EF X2, two EF-hand domains. Crossed-out text indicates the presence of a domain that is not catalytically active.
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II. Specialisation of RSH enzymes for (p)ppGpp
metabolism in plants and algae

RSH superfamily enzymes carry out the synthesis and hydrolysis of
(p)ppGpp (Fig. 1a). A synthetase domain catalyses the Mg2+-
dependent transfer of a pyrophosphate group from ATP to the
ribose 30-OH of GDP (or GTP) to form (p)ppGpp, whereas a
hydrolase domain catalyses theMn2+-dependent removal of the 30-
diphosphate from (p)ppGpp to produce GDP (or GTP) and
pyrophosphate. Multi-domain long RSH enzymes that possess
both (p)ppGpp synthetase and hydrolase domains, as well as the
related single-domain small alarmone synthetases (SAS) and small
alarmone hydrolases, have been identified in almost all bacterial
groups studied, as well as in photosynthetic eukaryotes, and some
members of the Archaea (Atkinson et al., 2011; Ito et al., 2017;
Avilan et al., 2019). An interesting recent development is the
identification of the SAS called Metazoan SpoT homologue 1
(MESH1) in animals, along with the presence of (p)ppGpp (Sun
et al., 2010; Young et al., 2021; Ito et al., 2022). However, the
absence of an obvious enzyme responsible for (p)ppGpp synthetase
activity and the dual activities of MESH1 as an efficient hydrolase
of both (p)ppGpp and NADPH mean that the physiological role
played by (p)ppGpp in animals is not yet fully resolved (Mestre
et al., 2022). Plants and algae have at least three conserved families
of long RSH enzymes, RSH1, RSH2/3 and RSH4 (or Ca2+-
activated RSH, CRSH) (Atkinson et al., 2011; Ito et al., 2017;
Avilan et al., 2019) (Fig. 1b). These families originated at an early
stage in the evolution of the Archaeplastida because representatives
can be found in the three major lineages—green plants and algae
(Viridiplantae), red algae (Rhodophyta) and blue-green algae
(Glaucophyta). Evolutionary inference in multiple studies places
the Archaeplastida RSH families far from the cyanobacteria, the
likely ancestors of the chloroplast, pointing to a complex evolu-
tionary history thatmay not be possible to explain by simple vertical
descent. Indeed, the RSH1 family groups with RSH from the
Deinococcus–Thermus bacteria (Atkinson et al., 2011; Ito
et al., 2017; Avilan et al., 2019), and there are signs of the more
recent emergence of clades of diatom RSH that may have involved
lateral gene transfer from bacteria (Avilan et al., 2019).

Plant and algal RSH enzymes show important differences in
domain structure from bacterial RSH, as well as a higher diversity
and functional specialisation (Fig. 1c). The majority of plant and
algal RSH so far tested are nuclear encoded and possess a predicted
or experimentally verified chloroplast transit peptide (CTP).
Except for the CTP and an N-terminal extension, members of
the RSH1 family show a strong resemblance to bacterial long RSH
enzymes (Fig. 1c), with both (p)ppGpp hydrolase and synthetase
domains, and a bacteria-like C-terminal regulatory region (CTR)
with the threonyl-tRNA synthetase-GTPase-SpoT and helical
domains. While Arabidopsis lacks a clearly identifiable aspartate
kinase–chorismate mutase–TyrA (prephenate dehydrogenase)
domain in the CTR, this domain is found in the CTR of many
other plant and algal RSH1 (Avilan et al., 2019). In bacteria, the
CTR controls the switch between hydrolase and synthetase
activities by interacting with partners such as stalled ribosomes
(Fig. 1d) (Arenz et al., 2016; Brown et al., 2016; Loveland

et al., 2016) and regulatory proteins (Battesti & Bouveret, 2006;
Ronneau et al., 2019; Kr€uger et al., 2021). It is not yet known
whether RSH1 family enzymes are also regulated by interactions at
the CTR in a similar way. However, the report of an evolutionarily
conserved interaction between Arabidopsis RSH1 and the chloro-
plastic ribosome-associated GTPase spo0B-associated GTP-
binding protein (ObgC) by a yeast two-hybrid system suggests
that such interactions are a real possibility (Bang et al., 2012). In the
land plant-clade of RSH1 enzymes, despite an early report showing
ppGpp synthetase activity in Escherichia coli complementation
assays (van der Biezen et al., 2000), it is now generally accepted that
the synthetase domain is not catalytically functional (Mizusawa
et al., 2008; Sugliani et al., 2016; Avilan et al., 2019), and the
enzyme functions as the main (p)ppGpp hydrolase limiting (p)
ppGpp levels in planta (Sugliani et al., 2016; Li et al., 2022) (Fig. 2).

RSH2/RSH3 family enzymes show bifunctional (p)ppGpp
synthetase/hydrolase activity and in Arabidopsis act as the major
ppGpp synthetases during the day (Maekawa et al., 2015; Sugliani
et al., 2016) and are required for constraining (p)ppGpp levels at
night (Ono et al., 2020). In addition to the catalytic region, plant
RSH2/RSH3 enzymes have significant N-terminal region (NTR)
and CTR extensions with high sequence conservation, which bear
little or no homology to their bacterial counterparts (Fig. 1c). The
RSH2/RSH3 NTR and CTR may therefore be involved in novel,
plant-specific regulatory processes.

The RSH4/CRSH family enzymes identified so far all contain a
nonfunctional (p)ppGpp hydrolase domain, and except for the
CTP they lack an extension in the NTR. In plants and some green
algae, the CTR contains EF-hand domains which permit the Ca2+-
mediated activation of (p)ppGpp synthetase activity (Tozawa
et al., 2007; Masuda et al., 2008a; Avilan et al., 2019) (Fig. 1c).
Interestingly, the acquisition of novel domains is frequent among
algal members of the RSH4 family (Ito et al., 2017; Avilan
et al., 2019). This suggests that the regulation of synthetase domain
activity observed in bacterial RSH can readily be repurposed to
permit new regulatory connections.

III. The physiological roles of (p)ppGpp in
photosynthetic eukaryotes

Although the (p)ppGpp pathway was discovered some time ago in
plants and algae, it is only recently that significant progress has been
made in understanding its physiological roles. Progress has come
principally frommanipulating ppGpp levels in vivo (pppGpp is not
usually detected in plants) via the use of different RSHmutants or
the expression of ppGpp synthetases and hydrolases initially in
Arabidopsis (Maekawa et al., 2015; Yamburenko et al., 2015;
Sugliani et al., 2016; Abdelkefi et al., 2018; Honoki et al., 2018;
Ono et al., 2020;Goto et al., 2022; Romand et al., 2022), andmore
recently using similar approaches in rice, moss and algae (Imamura
et al., 2018; Avilan et al., 2021; Harchouni et al., 2022; Ito
et al., 2022; Li et al., 2022). These studies have highlighted the role
of (p)ppGpp signalling in regulating chloroplast function (and in
particular photosynthesis) during growth and development, accli-
mation to nitrogen starvation, and the onset of night and immune
responses (Fig. 2).
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1. ppGpp is a conserved regulator of photosynthesis in
plants and algae

A common theme emerging from multiple studies on plants and
algae is that manipulation of ppGpp levels alters photosynthetic
activity. Specifically, ppGpp accumulation causes a decrease in
photosynthesis – reducing maximal quantum efficiency (Fv/Fm)
and operating efficiency (or quantum yield) and electron transport
rate (Sugliani et al., 2016; Honoki et al., 2018; Avilan et al., 2021;
Harchouni et al., 2022; Ito et al., 2022; Li et al., 2022; Romand
et al., 2022). In Arabidopsis, moss and diatoms, these changes are
associated with modifications in the architecture of the photosyn-
thetic electron transport chain. Notably at photosystem II (PSII),
there is a decrease in the quantity of PSII reaction centres compared
with the peripheral light-harvesting antenna (Maekawa et al., 2015;
Sugliani et al., 2016; Avilan et al., 2021; Harchouni et al., 2022).
Photosystem I (PSI) would appear to be less affected, although
more work is required to determine the relative impact of ppGpp
on PSI and PSII. Rubisco levels also drop markedly in response to
ppGpp accumulation, and RSH mutants deficient in (p)ppGpp
metabolism show defects in nitrogen remobilisation from Rubisco
during stress-induced senescence (Maekawa et al., 2015; Sugliani
et al., 2016; Honoki et al., 2018; Harchouni et al., 2022; Li
et al., 2022; Romand et al., 2022). Interestingly, while the decrease
in photosynthetic activity in response to ppGpp accumulation is
conserved, certain features vary. For example, Rubisco is not
sensitive to even very high levels of ppGpp in the diatom
Phaeodactylum tricornutum (Avilan et al., 2021). This suggests

that (p)ppGpp is able to trigger specific responses in different
photosynthetic organisms.

The effects of ppGpp on photosynthesis were first established via
the artificial overaccumulation of ppGpp. The relevance of these
effects was also demonstrated at physiological levels of ppGpp in
wild-type (WT) organisms, as well as in the absence of stress
(Sugliani et al., 2016; Romand et al., 2022).RSHmutants deficient
in (p)ppGpp biosynthesis or hydrolysis show small defects in
photosynthetic parameters under standard growth conditions
(Sugliani et al., 2016; Honoki et al., 2018). More recently, very
large ppGpp-dependent effects on photosynthesis were observed
during nitrogen starvation in Arabidopsis (Romand et al., 2022),
and also in field-grown rice plants carrying a mutation in the (p)
ppGpp hydrolase gene RSH1 (also known asABC1 REPRESSOR2,
ARE2) (Li et al., 2022). These points are discussed in detail in the
following section.

2. (p)ppGpp signalling influences growth and development

Several studies have reported that the perturbation of (p)ppGpp
levels has effects on growth and development. Such effects might
be expected given the role of (p)ppGpp in the regulation of
photosynthetic activity as discussed earlier. However, the situation
is complex because (p)ppGpp overaccumulation in plants includ-
ing Arabidopsis, rice and moss has variously been reported to
increase (Maekawa et al., 2015), decrease (Sugliani et al., 2016; Li
et al., 2022) or have no detectable effect on plant size (Harchouni
et al., 2022; Ito et al., 2022). These conflicting results may be
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related to differing levels of (p)ppGpp, species-specific effects,
differences in light intensity/quality and nutrient levels. Indeed,
there is recent support for the idea that variation in nutrient levels,
which can vary considerably during the course of plant culture and
in different growth substrates, might explain the different effects
reported for ppGpponplants size inArabidopsis.Goto et al. (2022)
showed that plantswith high ppGpp levels can grow to a greater size
than WT plants under moderately low nitrogen conditions.
Defects in (p)ppGpp signalling also affect senescence. In Ara-
bidopsis, dark-induced and natural senescence are accelerated in
mutants of the (p)ppGpp hydrolase RSH1 that have higher (p)
ppGpp levels, and delayed in mutants unable to accumulate WT
levels of (p)ppGpp (Sugliani et al., 2016; Li et al., 2022).

3. A pivotal role in acclimation to nitrogen deprivation

(p)ppGpp signalling was recently shown to play a major role in
acclimation to nitrogen deprivation (Romand et al., 2022). The
artificial accumulation of ppGpp in an RSH3 overexpression line
was found to protect Arabidopsis plants against nitrogen limitation
(Maekawa et al., 2015; Honoki et al., 2018; Goto et al., 2022)
suggesting that (p)ppGppmight be involved in acclimation. Using
mutants defective in ppGpp accumulation, Romand et al. (2022)
demonstrated that ppGpp accumulation is required for the
acclimation of Arabidopsis plants to nitrogen limitation under
physiological conditions that may be encountered in nature.
Interestingly, another study performed in parallel further supports
these findings by showing that the increase in ppGpp levels caused
by a mutation in the rice (p)ppGpp hydrolase gene RSH1 can
suppress and overcome the constitutive nitrogen-starved pheno-
type of the ABNORMAL CYTOKININ RESPONSE1 mutant (Li
et al., 2022). During nitrogen starvation, (p)ppGpp signalling is
required for the safe downregulation of the photosynthetic
machinery, whose products are no longer necessary due to a
general growth arrest. ppGpp-mediated downregulation of the
photosynthetic machinery is associated with downregulation of
chloroplast transcript levels, a reduction in the GTP pool, and
remodelling of PSII (Romand et al., 2022). These changes are very
similar to those observed in ppGpp-overaccumulating lines
(Maekawa et al., 2015; Sugliani et al., 2016). Limiting ppGpp
biosynthesis during nitrogen starvation delays the downregulation
of photosynthesis, and results in increased reactive oxygen species
(ROS) accumulation, tissue damage, and a major disruption of the
coordination between chloroplast and nuclear gene expression
(Romand et al., 2022). Surprisingly, ppGpp levels do not increase
to very high levels during nitrogen starvation, suggesting that (p)
ppGpp signalling is somehow potentiated during stress by other
factors. For example, potentiation of (p)ppGpp signalling could be
related to the increase in the ppGpp/GTP ratio that occurs under
nitrogen starvation, which would enhance the inhibition of
enzymes where ppGpp is a competitive inhibitor. In any case,
these findings show that the strong connection between (p)ppGpp
signalling and photosynthesis is physiologically relevant and
demonstrate a clear role for (p)ppGpp in abiotic stress acclimation.
Downregulation of the photosynthetic machinery reduces carbon
assimilation and at the same time liberates significant quantities of

nitrogen as the machinery accounts for over half of leaf nitrogen in
C3 plants (Evans&Clarke, 2019).While (p)ppGpp can reduce the
risk of ROS accumulation from excessive photosynthetic activity
during nitrogen limitation, it is likely that the nitrogen liberated
from the photosynthetic machinery also serves a major role in
supporting other cellular processes. Indeed, the photosynthetic and
growth phenotypes of (p)ppGpp mutants under normal growth
conditions (Sugliani et al., 2016; Honoki et al., 2018; Li
et al., 2022) suggest that (p)ppGpp signalling continually fine-
tunes the cellular carbon/nitrogen equilibrium.

4. (p)ppGpp for quiet nights?

(p)ppGpp signalling is likely to be involved in regulating
chloroplast gene expression at night in plants. In Arabidopsis,
ppGpp levels increase at the onset of night (Ihara et al., 2015) in a
CRSH-dependent manner (Ono et al., 2020), although the final
concentration requires the participation of RSH1, RSH2 and
RSH3. The onset of night also triggers a transient Ca2+ flux into the
chloroplast stroma (Johnson et al., 1995; Sai & Johnson, 2002)
which may be responsible for directly activating CRSH via the EF-
handdomains in theCTR.While aCRSHmutant did not show any
obvious growth phenotype, the authors observed a probable defect
in the night-triggered downregulation of transcript levels for
certain chloroplast-encoded genes (Ono et al., 2020). This may
therefore be one of the processes by which dark-induced stromal
Ca2+ transients can influence chloroplast function (Rocha
et al., 2014). Cyanobacteria and algae also accumulate (p)ppGpp
in the dark but do not have RSH enzymes with EF-hand domains
for Ca2+ binding (Hood et al., 2016; Puszynska & O’Shea, 2017;
Jin et al., 2022). This suggests that dark-induced (p)ppGpp
signalling is widespread in photosynthetic organisms, although the
activation of RSH enzymes must occur via distinct mechanisms.

5. (p)ppGpp signalling influences plant immunity

The chloroplast, and in particular chloroplast-generated ROS,
plays a key role in plant immunity (Littlejohn et al., 2021).
Therefore, it is perhaps not surprising that (p)ppGpp signalling,
with its ability to downregulate photosynthesis where ROS are
generated, can influence plant immunity against pathogens. The
expression of plant RSH2/3 genes is upregulated by plant
pathogens, wounding, pathogen-associated molecules and
defence-related hormones (Givens et al., 2004; Takahashi
et al., 2004; Kim et al., 2009; Abdelkefi et al., 2018; Petrova
et al., 2021). However, RSH2/3 upregulation is associated with
pathogen susceptibility suggesting that under at least some cases (p)
ppGpp accumulation can favour the pathogen (Petrova
et al., 2021). Consistent with this, overaccumulation of ppGpp
in Arabidopsis leads to strong reductions in the levels of transcripts
for defence-related genes (Abdelkefi et al., 2018). Furthermore,
high ppGpp levels lead to greater susceptibility to Turnip Mosaic
virus, whereas lower levels are associated with increased resistance,
accumulation of the defence hormone salicylic acid and precocious
expression of the defence-related protein PATHOGENESIS-
RELATED 1 (Abdelkefi et al., 2018). Pathogen-associated
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molecular pattern (PAMP)-triggered immunity (PTI) provokes
stromal Ca2+ fluxes in a similar way to darkness, suggesting that
CRSH might be activated during PTI. However, treatment of a
CRSHmutant with the PAMP flagellin22 induced defence-related
genes in a similar fashion to the WT control (Ono et al., 2020).
Therefore, the links between (p)ppGpp and Ca2+ signalling during
immunity remain uncertain. Altogether, more work is required for
understanding the full role that (p)ppGpp signalling has on plant
immunity, and in particular during interactions with biotrophic
and necrotrophic pathogens as well as herbivores. Furthermore,
comparing the pathogenicity of WT pathogens with mutants
unable to deliver their effector machinery may allow the identi-
fication of pathogens that are able to subvert (p)ppGpp signalling to
overcome host defence.

IV. Molecular mechanisms of (p)ppGpp signalling in
plants and algae

Despite recent advances in understanding the physiological roles of
(p)ppGpp as discussed earlier, few if any chloroplastic effectors of
(p)ppGpp have been firmly identified. This contrasts with the
situation in bacteria where (p)ppGpp and related nucleotides are
known to interact directly with specific effector enzymes to regulate
growth rate and promote stress acclimation and survival (Irving
et al., 2020; Bange et al., 2021).Over recent years, the development
of systematic approaches has led to a considerable expansion in the
number of known (p)ppGpp-binding proteins and effectors in
bacteria. These advances were driven by techniques such as the
differential radial capillary action of ligand assay, a rapid and
quantitative method that can be used for testing candidate protein-
(p)ppGpp interactions in crude extracts and without the need for
protein purification (Roelofs et al., 2011; Corrigan et al., 2016;
Zhang et al., 2018), as well as by the use of ppGpp analogues to
directly capture and identify ppGpp-binding proteins in cellular
extracts (Wang et al., 2019; Haas et al., 2022). Such approaches
may also have considerable potential for identifying effectors in
plants and algae. At the same time, the growing list of (p)ppGpp
targets in bacteria also provides insights into the possible molecular
mechanisms of (p)ppGpp signalling in plants. Indeed, bacterial
ppGpp effectors are known today in transcription, nucleotide
metabolism, translation, ribosome assembly, fatty acid biosynthesis
and amino acidmetabolism (Kanjee et al., 2012; Irving et al., 2020;
Steinchen et al., 2020; Bange et al., 2021). Many of these processes
are conserved in the chloroplasts of plants and algae and should
therefore be considered potential targets of (p)ppGpp signalling
(Table 1).

1. Does (p)ppGpp directly inhibit chloroplast transcription?

Multiple studies show that (p)ppGpp accumulation in vivo, either
artificially or during stress, results in the downregulation of
chloroplast transcript levels in plants (Maekawa et al., 2015;
Sugliani et al., 2016; Harchouni et al., 2022; Romand et al., 2022).
Direct analysis of transcription by chloroplast run-on or labelling of
nascent transcripts in Arabidopsis indicates that the reduction in
chloroplast transcript abundance caused by (p)ppGpp is due to the

inhibition of transcription (Yamburenko et al., 2015; Sugliani
et al., 2016). Chloroplast transcription is carried out by a bacterial-
like plastid-encoded polymerase (PEP) and a phage-like nucleus-
encoded polymerase (NEP). Some studies have observed a
preferential effect of (p)ppGpp on the levels of PEP transcripts
(Sato et al., 2009; Sugliani et al., 2016), while others have not
observed a clear separation between NEP and PEP transcripts
(Romand et al., 2022). The role of (p)ppGpp in regulating
chloroplast transcription is therefore established; however, it is not
yet clear exactly how (p)ppGpp is able to mediate this effect.

In E. coli, (p)ppGpp directly modulates the activity of the RNA
polymerase (RNAP) to downregulate the expression of ribosomal
RNAs (rRNA) and upregulate the expression of genes involved in
stress acclimation.The bacterial RNAP core is a complex composed
of two a subunits, a b subunit, a b0 subunit, a ω subunit and a r
subunit (a2bb’ωr) (Fig. 3a; Table 1). There are two allosteric (p)
ppGpp-binding sites on RNAP that are conserved in E. coli and
other proteobacteria. Site 1 is located at the interface between theb0

and ω subunits (Ross et al., 2013), and site 2 at the interface
between the b0 subunit and the transcription factor DksA (Ross
et al., 2016). The major transcriptional effects of (p)ppGpp
accumulation in E. coli can be explained by (p)ppGpp binding at
these two sites, although it does not explain all the effects of (p)
ppGpp on growth (Wang et al., 2019). In plants, PEP has a
bacterial-like core complex consisting of two a subunits, a b
subunit, b0 and b00 subunits, and a r subunit (a2bb0b00r) (lgloi &
K€ossel, 1992; Suzuki et al., 2003; Borner et al., 2015) (Fig. 3a;
Table 1). Theb0 andb00 subunits correspond to theN-terminal and
C-terminal portions of the bacterialb0 subunit, and the same split is
also present in the RNAP of cyanobacteria which is presumably
ancestral. The plant PEP has also acquired additional co-purifying
accessory factors called PEP-associated proteins that are not present
in bacteria or even green algae (Pfannschmidt et al., 2000; Suzuki
et al., 2004; Steiner et al., 2011). Strikingly, with regard to the
action of (p)ppGpp, PEP completely lacks site 1 and site 2: there is
no ω subunit, the conserved b0 K615 residue required for (p)
ppGpp binding (Myers et al., 2020) is lacking from the
corresponding Arabidopsis b00 subunit, and there is no orthologue
of the DksA transcription factor in plant or algal genomes (Fig. 3a;
Table 1). From an evolutionary perspective, the lack of E. coli-like
(p)ppGpp-binding sites is not surprising because the E. coli
mechanism is a relatively recent evolutionary innovation that is
restricted to the proteobacterial (Ross et al., 2016), and the RNAP
of other bacterial groups is insensitive to (p)ppGpp.

Despite the clear absence of proteobacteria-equivalent ppGpp-
binding sites for the control of PEP, several studies nevertheless
indicate that PEPmay be directly targeted by (p)ppGpp.Takahashi
et al. (2004) first showed that exogenous application of ppGpp or
pppGpp can inhibit transcription in chloroplast extracts. A follow-
on study then showed that ppGpp is able to specifically inhibit
transcription in extracts enriched for PEP and not in extracts
enriched for the alternative chloroplast RNAP NEP (Sato
et al., 2009). Furthermore, radiolabelled 6-thio-ppGpp was found
to bind to the PEP b0 subunit (Sato et al., 2009). It is therefore
reasonable to suppose that a novel ppGpp-binding site on the b0

subunit is necessary for PEP inhibition, although the exact residues
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Table 1 Bacterial (p)ppGpp effectors and their likely chloroplastic orthologues in Arabidopsis thaliana.

Bacterial (p)ppGpp targets Chloroplast orthologue(s)
Escherichia

coli

Bacillus

subtilis Chloroplast References

Transcription
Core RNAP complex PEP complex * – * Takahashi et al. (2004); Sato

et al. (2009); Imamura et al. (2018)
Alpha1 (RpoA) RpoA/AtCg00740
Beta (RpoB) RpoB/AtCg00190
Beta0 (RpoC) RpoC1/AtCg00180 * Sato et al. (2009); Ross et al. (2013)

RpoC2 /AtCg00170
Omega (RpoZ) No orthologue * Ross et al. (2013)
Sigma Sig1/At1g64860, Sig2/

At1g08540, Sig3/At3g53920,
Sig4/At5g13730, Sig5/
At5g24120, Sig6/At2g36990

Transcription factor, DksA no orthologue * Ross et al. (2016)
Ribosome- and translation-associated GTPases
Translation initiation factor 2 (IF2) At1g17220/FUG1 * Legaultet al. (1972);Milon et al. (2006)
Elongation factor TU (EF-TU) At4g20360/SVR11 * Legault et al. (1972); Rojas et al. (1984)
Elongation factor G (EF-G) At1g62750/SCO1, At1g45332,

At2g45030
* Rojas et al. (1984); Mitkevich

et al. (2010)
Elongation factor 4 (EF4/LepA) At5g08650/LepA * Zhang et al. (2018)
GTPase Der (Der/EngA) At3g12080/Der * Bharat & Brown (2014)
GTPase Era (Era) At5g66470/Era1 * Corrigan et al. (2016); Zhang

et al. (2018)
GTPase Obg (ObgE/CgtA) At5g18570/ObgC * * Buglino et al. (2002); Persky

et al. (2009); Zhang et al. (2018)
GTPase HflX (Hflx) At5g57960/HflX * * Corrigan et al. (2016); Zhang

et al. (2018)
GTPase BipA (BipA/TypA) At5g13650/SVR3 * Fan et al. (2015); Kumar et al. (2015)
GTPase RsgA (RsgA) At1g67440/RsgA * Zhang et al. (2018)
GTPase RbgA (RbgA) At4g02790/RbgA * Corrigan et al. (2016)
Translation release factor RF3 No orthologue * Kihira et al. (2012); Zhang et al. (2018)
Purine metabolism
Adenylosuccinate synthetase
(PurA)

At3G57610/ADSS * Stayton & Fromm (1979)

Amidophosphoribosyltransferase
(PurF)

At2g16570/ASE1, At4g34740/
ASE2, At4g38880/ASE3

* – Wang et al. (2019)

Inosine-50-monophosphate
dehydrogenase (GuaB)

At1g16350 (*) * Pao & Dyes (1981); Kriel et al. (2012);
Wang et al. (2019)

Guanylate kinase (GmK) At3g06200/GMK3/GKpm – * Kriel et al. (2012); Liu et al. (2015);
Nomura et al. (2014)

Hypoxanthine
phosphoribosyltransferase (Hpt)

No chloroplast orthologue * * Hochstadt-Ozer & Cashel (1972); Kriel
et al. (2012); Zhang et al. (2018);
Anderson et al. (2019)

Xanthine
phosphoribosyltransferase (XpT)

No orthologue * Anderson et al. (2020)

Adenine phosphoribosyltransferase
(Apt)

No chloroplast orthologue * * Hochstadt-Ozer & Cashel (1972); Haas
et al. (2022)

Nucleotide 50-monophosphate
nucleosidase (YgdH/PpnN)

No orthologue * Zhang et al. (2018)

Others
DNA primase (DnaG) No orthologue * Wang et al. (2007); Maciag

et al. (2010)
Lysine decarboxylase (LdcI) No orthologue * Kanjee et al. (2011a)
Lysine decarboxylase (Ldcc) No orthologue * Kanjee et al. (2011b)
Ornithine decarboxylase (SpeF) No orthologue * Kanjee et al. (2011b)
Ornithine decarboxylase (SpeC) No orthologue * Kanjee et al. (2011b)
pppGpp pyrophosphatase (GppA) No chloroplast orthologue * Keasling et al. (1993)
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involved remain to be identified and tested. ppGpp was also found
to inhibit transcription of the chloroplast 16S rRNA in crude
extracts from the unicellular red alga, Cyanidioschyzon merolae
(Imamura et al., 2018). In both plants and algae, the concentration
of ppGpp required for the in vitro inhibition of chloroplast
transcription is at the high end of ppGpp sensitivities observed for
bacterial enzymes (Steinchen et al., 2020), and is higher than the
levels estimated to naturally occur within the chloroplast under
nonstress conditions (c. 1–3 lM) (Ihara et al., 2015; Sugliani
et al., 2016; Ito et al., 2022). The authors of both the plant and algal
PEP studies therefore propose that, in vivo, other unidentified
factors may potentiate the action of ppGpp on PEP in a similar
manner to DksA (Sato et al., 2009; Imamura et al., 2018). The
possibility of very local peaks in ppGpp concentration has also been
suggested, and these findings could also point to the existence of
strong and weak targets of (p)ppGpp in the chloroplast to allow for
a graded response to (p)ppGpp levels as observed in bacteria
(Steinchen et al., 2020).

2. Purine nucleotide metabolism, a universal target of
(p)ppGpp signalling?

Purine biosynthesis has emerged as a major target of (p)ppGpp
signalling in diverse bacteria (Irving et al., 2020;Bange et al., 2021).
A large part of the purine biosynthetic pathway takes place in the
chloroplast of plants and algae and involves orthologues of the
bacterial enzymes (Fig. 3b; Table 1) (Smith & Atkins, 2002;
Kusumi & Iba, 2014; Witte & Herde, 2020). These enzymes
include orthologues of the bacterial (p)ppGpp targets adenylosuc-
cinate synthetase (PurAorADSS) (Stayton&Fromm,1979;Wang
et al., 2019; Yang et al., 2020a), amidophosphoribosyltransferase
(PurF or ASE) (Wang et al., 2019), inosine-50-monophosphate
dehydrogenase (GuaB or IMDH) (Gallant et al., 1971; Kriel

et al., 2012), guanylate kinase (GmK) (A. Kriel et al., 2012) and the
RSH enzymes themselves (Steinchen et al., 2015; Zhang
et al., 2018; Yang et al., 2020b). Currently, there is evidence that
the chloroplast guanylate kinase of plants is inhibited at physio-
logical ppGpp levels in vitro (Nomura et al., 2014). Furthermore,
there is evidence that (p)ppGpp signalling can affect plant purine
metabolism in vivo with the recent demonstration that (p)ppGpp
accumulation is required to promote a decrease in total GTP levels
during nitrogen starvation stress in Arabidopsis (Romand
et al., 2022). In addition, overexpression of RSH3 in the
conditional GmK mutant virescent-2 in rice strongly enhanced
themutant phenotype, suggesting an interaction between increased
ppGpp levels and reduced GmK function (Ito et al., 2022).
However, the situation may be more complex than it appears
because artificially increasing (p)ppGpp levels does not always
affect the total GTP pool (Bartoli et al., 2020; Avilan et al., 2021).

The inhibition of bacterial purine nucleotide metabolism by (p)
ppGpp may occur for several reasons. These include the conser-
vation of metabolic precursors to allow a rapid return to growth,
meeting the reduced demands of bulk RNA biosynthesis which
itself is also a target of inhibition by (p)ppGpp, and reducing GTP
levels to downregulate growth and potentiate the competitive
inhibition of GTP-dependent enzymes targeted by (p)ppGpp
(Wang et al., 2020). Indeed, a (p)ppGpp-mediated decrease in
GTP is required for downregulation of transcription in the
Firmicute, Actinobacteria and Deinococcus–Thermus groups of
bacteria where RNAP is (p)ppGpp insensitive (Krasny &
Gourse, 2004; Liu et al., 2015). In the model Firmicute Bacillus
subtilis, (p)ppGpp accumulation causes a drop inGTP levels via the
inhibition of guanylate kinase. This reduction in GTP levels
inhibits transcription from genes where GTP is the initiatingNTP,
which notably includes the rRNA genes. A similar mechanismmay
explain the observed downregulation of chloroplast transcription

Table 1 (Continued)

Bacterial (p)ppGpp targets Chloroplast orthologue(s)
Escherichia

coli

Bacillus

subtilis Chloroplast References

(p)ppGpp synthetase (RelA) At4g02260/RSH1, At3g14050/
RSH2, At1g54130/RSH3,
At3g17470/CRSH

* Shyp et al. (2012); Zhang et al. (2018)

Hydrogenase maturation factor
(HypB)

No orthologue * Zhang et al. (2018)

3-Hydroxydecanoyl-[acyl-carrier-
protein] dehydratase (FabA)

No orthologue Stein Jr. & Bloch (1976)

3-Hydroxyacyl-[acyl-carrier-
protein] dehydratase (FabZ)

At2g22230, At5g10160 Stein Jr. & Bloch (1976)

Acetyl coenzyme A carboxylase
(ACC)

Polakis et al. (1973)

Alpha subunit (AccA) CAC3/At2g38040
Beta subunit (AccD) ACCD/AtCg00500

A green square indicates the presence of a gene encoding the enzyme in the host genome. Lighter green indicates subunits of the same enzymatic complex. In
the case of Arabidopsis, only chloroplast-targeted (predicted or demonstrated) enzymes are shown. An asterisk indicates experimental evidence for (p)ppGpp
binding, dashes indicate experimental evidence showing a lack of (p)ppGpp binding. Brackets indicate conflicting evidence. FabA, FabZ, ACC and Arabidopsis
guanylate kinase are inhibited by (p)ppGpp but binding has not been directly shown. References for studies demonstrating inhibition, activation or binding of
the indicated enzymes by (p)ppGpp are listed to the right.
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by ppGpp in plants (Yamburenko et al., 2015; Sugliani
et al., 2016). As discussed earlier, the chloroplastic GmK is
specifically inhibited by ppGpp (Nomura et al., 2014), and GTP
levels drop in a ppGpp-dependent fashion under physiological
stress conditions (Romand et al., 2022). GTP is also the initiating
NTP for the chloroplast operon containing the 23S and16S rRNAs
in at least several plant species (Sugliani et al., 2016). Therefore,
multiple lines of evidence point to the existence of a firmicute-like
mechanism for regulating transcription in chloroplasts. However,

more detailed direct investigations into the role ofGmK inplant (p)
ppGpp signalling are required for demonstrating a direct causal
link between ppGpp-mediated inhibition of GmK and the
inhibition of chloroplast transcription.

3. A role for ppGpp in regulating chloroplast translation?

In bacteria, (p)ppGpp signalling downregulates global translation
by targeting a wide range of GTP-binding enzymes involved in
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Fig. 3 Known and potential targets of guanosine tetraphosphate and guanosine pentaphosphate ((p)ppGpp) in the chloroplast. (a) (p)ppGpp (purple circles)
maybeable tomodulate chloroplast transcription throughan interactionwith theb0 subunitof theplastidencodedpolymerase (PEP) (right). This interaction site
is distinct to those found in Escherichia coli RNA polymerase (RNAP) (left). PAPs, PEP-associated proteins. (b) Chloroplastic (p)ppGpp targets in purine
metabolism.GmK is directly inhibitedby (p)ppGpp in vitro, and other enzymesof purinemetabolismare potential targets basedon their predicted chloroplastic
localisation and targeting by (p)ppGpp in bacteria. PRPP, phosphoribosylpyrophosphate; IMP, inosine monophosphate; AdS, adenylosuccinate. The blunt-
ended arrow indicates inhibition. (c) Chloroplastic enzymes implicated in ribosome biogenesis, translation and ribosome hibernation/recycling that may be
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translation as well as in ribosome biogenesis and ribosome
hibernation/recycling (Table 1) (Irving et al., 2020; Bange
et al., 2021; Zegarra et al., 2023). (p)ppGpp is also likely to
directly regulate translation in the chloroplast: many features of the
prokaryotic translation mechanism are retained in the chloroplast
(Zoschke & Bock, 2018) and, extending on previous observations
(Masuda et al., 2008b; Masuda, 2012), we can identify chloroplast
orthologues of all the major bacterial (p)ppGpp-targeted enzymes
involved in translation regulation (Fig. 3c; Table 1).

Despite the promising theoretical situation, there is still
relatively little experimental evidence on the effects of (p)ppGpp
on chloroplast translation. Using an in vitro chloroplast translation
system from pea (Pisum sativum), ppGpp was found to inhibit the
peptide elongation cycle of chloroplast translation by c. 50% at
400 lM(Nomura et al., 2012). This is consistent with the presence
of LepA (Ji et al., 2012) and SNOWY COTYLEDON1 (Albrecht
et al., 2006) in the chloroplast, orthologues of EF4 andEF-Gwhich
participate in polypeptide elongation in bacteria and are well-
known targets of inhibition by (p)ppGpp (Fig. 3c; Table 1) (Bange
et al., 2021). Artificial accumulation of ppGpp in vivo was also
found to have amajor effect on chloroplast translation, asmeasured
by the incorporation of the antibiotic puromycin (a structural
analogue of aminoacyl-tRNA) into nascent peptide chains
(Sugliani et al., 2016). However, the observed inhibition was
difficult to separate from the transcriptional downregulation of
rRNA and tRNA that is also caused by ppGpp.

Recently, the role of (p)ppGpp in promoting the stress-induced
hibernation of bacterial ribosomes has received particular attention
(Prossliner et al., 2018; Tr€osch & Willmund, 2019; Irving
et al., 2020; Bange et al., 2021). Under stress conditions, bacterial
70S ribosomes are inactivated as monomers or dimers that are also
known as 100S ribosomes. Inactivation contributes to the down-
regulation of translation and also allows rapid re-activation of
translation upon return to favourable conditions. Notably, (p)
ppGpp accumulation promotes the transcriptional upregulation of
hibernation factors such as ribosome-associated inhibitor A,
ribosome modulation factor and hibernation promoting factor
(HPF) that trigger ribosome inactivation. The chloroplasts of
plants and algae possess an HPF orthologue named plastid-specific
ribosomal protein 1 (PSRP1, Fig. 3c) that can trigger the formation
of inactive 70S monomers (Sharma et al., 2010). However, the
physiological function of PSRP1 is not yet elucidated (Swift
et al., 2020), and it is unlikely to be transcriptionally regulated by
(p)ppGpp as it is encoded on the nuclear genome. The ribosome-
associated GTPase high frequency of lysogeny X (HflX) is also
implicated in ribosome inactivation in bacteria. In Staphylococcus
aureus, HflX is able to dissociate the hibernating 100S complex and
this activity is inhibited by (p)ppGpp binding (Basu&Yap, 2017).
Hflx and other GTPases involved in ribosome biogenesis and
assembly (RsgA, RbgA, Era, Obg) are all inhibited by (p)ppGpp to
reduce subunit maturation or prevent 70S assembly in the
translation cycle (Bennison et al., 2019). Notably, and as discussed
earlier, Obg and its chloroplast orthologue ObgC share conserved
interactions with RSH enzymes (Wout et al., 2004; Bang
et al., 2012; Chen et al., 2014), indicating that there is a profound
link between (p)ppGpp signalling and ribosome biogenesis that

appears to have beenmaintained over a vast expanse of evolutionary
time.

4. Are there chloroplast-specific targets of (p)ppGpp
signalling?

Since the original acquisition of the chloroplast, there has been
ample time for the evolution of new (p)ppGpp signalling
mechanisms. Furthermore, the cohabitation of the chloroplast
and the eukaryotic cell, the development ofmulticellularity and the
colonisation of new niches including the land would have provided
powerful selection pressures to drive the emergence of novel
mechanisms. Chloroplastic GTPases are prime candidates as
ppGpp targets simply because ppGpp has a tendency to target
GTPases in bacteria (Fig. 3c; Table 1). Outside translation, only a
handful of chloroplast GTPases are known, and these play roles in
ribosome assembly, photosynthesis, chloroplast division, vesicle
trafficking and membrane remodelling. The circularly permuted
GTPases SUPPRESSOR OF VARIEGATION 10 and BRZ
INSENSITIVE PALE GREEN2 are implicated in chloroplast
ribosome assembly (Qi et al., 2016); the GTPase PsbO is a subunit
of the oxygen evolving complex involved in the turnover of the PSII
reaction centre (Spetea et al., 2004; Lundin et al., 2007); chloro-
plast FtsZ tubulin-like GTPases ensure the formation of a
contractile ring within the stroma during chloroplast division
(Osteryoung & Vierling, 1995; Yoshida et al., 2016); the
chloroplast-localised Rab family small GTPases are implicated in
chloroplast vesicle trafficking (Ebine et al., 2011; Alezzawi, 2014;
Alezzawi et al., 2014;Karim et al., 2014;Karim&Aronsson, 2014);
and finally the GTPase vesicle-inducing protein in plastids 1
(VIPP1) is essential for the biogenesis and maintenance of
thylakoid membranes (Ohnishi et al., 2018; Gupta et al., 2021).
Interestingly, accumulation of ppGpp was shown to cause hyper-
stacking of the thylakoid membranes in the moss Physcomitrium
patens (Harchouni et al., 2022). While this might simply be
explained by an increase in the quantity of PSII antenna subunits, it
also raises the possibility that ppGpp can promote membrane
remodelling by acting on proteins like VIPP1. Beyond the
GTPases, there may be evidence that other classes of protein are
targeted by ppGpp. For example, we previously speculated that the
higher sensitivity of some chloroplast proteins to ppGpp, and
Rubisco in particular, could involve the ppGpp-mediated regula-
tion of chloroplast protein turnover (Romand et al., 2022).
However, it is clear that more intensive studies aimed specifically at
identifying chloroplast (p)ppGpp targets using both candidate-
based and more open-ended approaches will be required to move
beyond speculation.

5. A larger family of related signalling nucleotides in plants?

In this review, we have dealt exclusively with (p)ppGpp. However,
these are just two of a larger family of related nucleotides that also
include pGpp and (p)ppApp. Discovered in the 1970s (Oki
et al., 1976; Nishino et al., 1979), pGpp and (p)ppApp can be
synthesised by RSH and SAS enzymes, and their functions are
stimulating renewed interest among microbiologists. pGpp,
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ppGpp and pppGpp act in similar ways, though have preferences
for different target enzymes (Gaca et al., 2015; Yang
et al., 2020b). (p)ppApp, on the other hand, can bind RNAP
on a different site to (p)ppGpp and is able to activate transcription
(Travers, 1978; Bruhn-Olszewska et al., 2018). To our knowl-
edge, there are no reports of the detection of pGpp or (p)ppApp
in plants or algae. Furthermore, while ppGpp is now readily
detected (Ihara et al., 2015; Jin et al., 2018; Bartoli et al., 2020),
pppGpp has only been reported once (Takahashi et al., 2004)
suggesting that it is unstable or present only under certain
circumstances. In future, it will be interesting to determine
whether other members of the extended (p)ppGpp family of
nucleotides are present in plants and algae, and what role they
play.

V. Concluding remarks

(p)ppGpp was originally discovered > 50 yr ago (Cashel &
Gallant, 1969). Since that time, work on bacteria, algae, plants
and more recently animals has revealed the extraordinary diversity
and reach of (p)ppGpp signalling. Over recent years, our
understanding of (p)ppGpp signalling in plants and algae has
advanced considerably, thanks to studies of its physiological roles
in vivo notably revealing the conserved action of (p)ppGpp on
photosynthesis and its likely role in regulating cellular carbon/
nitrogen status. To understand how (p)ppGpp acts at a molecular
level, it will be necessary to build on the early in vitro experiments
and adopt new approaches including those so successfully
employed in bacteria for identifying the physiologically relevant
targets of (p)ppGpp and related nucleotides. Likewise, the
functional diversification of plant and algal members of the RSH
superfamily promises to reveal exciting new features of (p)ppGpp
signalling.
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