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Abstract
We propose an inertial proximal point method for variational inclusion involving difference 
of two maximal monotone vector fields in Hadamard manifolds. We prove that if the 
sequence generated by the method is bounded, then every cluster point is a solution of the 
non-monotone variational inclusion. Some sufficient conditions for boundedness and full 
convergence of the sequence are presented. The efficiency of the method is verified by 
numerical experiments comparing its performance with classical versions of the method for 
monotone and non-monotone problems.

Keywords Variational inclusion · Proximal point method · Monotone vector fields · DC 
functions · Hadamard manifolds

Mathematics Subject Classification 65K05 · 90C26 · 90C48

1 Introduction

The problem of finding a zero of maximal monotone operators T , i.e.,

0 ∈ T (x) (1)

includes, as special cases, optimization and min-max problems, complementarity problems,
and variational inequalities. It finds many important applications in scientific fields such
as image processing, computer vision, machine learning and signal processing. For this
reason, in recent years much attention has been given to develop efficient and implementable
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numerical methods for solving this problem in different contexts; see for instance [1–3] and
references therein.

One of the fundamental approaches for solving (1) is the proximal point method which
its origin can be traced back to Martinet [4] in the context of convex minimization and
Rockafellar [38] in the general setting of maximal monotone operators in Hilbert space. In
the Riemannian setting this method was studied by Li et al. [5] based on first extension of
the proximal point method to the Riemannian context proposed by Ferreira and Oliveira [6]
for convex minimization problems.

The proximal point method computes at each iteration the well known resolvent operator
introduced by Moreau [7]. Unfortunately, in many interesting cases, the evaluation of the
resolvent operator is as difficult as solving the original problem. On the other hand, in many
problems, the operator T can be written as the sum of two maximal monotone operators,
namely T = A + B, such that the resolvent operator of each component is much easier to
compute than the original operator T . The so-called forward–backward methods overcome
this drawback combining the resolvents of each component to find a solution of the original
problem; for instance the Douglas–Rachford algorithm [8] among others.

It is well known that the sum of two monotone operators is a monotone operator, whereas
the difference of two monotone operators is not necessarily a monotone operator. Therefore,
the problem of finding a zero of the difference of two monotone operators can be very
difficult. It generalizes the problem of finding the critical points of the difference of two
convex functions (DC functions) and was not studied extensively yet (even in the linear
setting); see for instance [9–13]. In this direction, Souza and Oliveira [14] proposed the first
extension of the proximal point method for DC functions in Hadamard manifolds.

On the other hand, Polyak [15] introduced the so-called heavy ball method for minimizing
a smooth convex function. The difference compared to the gradient method is that each
iteration, an extrapolation point (which combines the current and the previous iterates) is
used instead of the current iterate. This minor change improves the performance of the
gradient method. Alvarez and Attouch [16] adapted this idea (called inertial method) to the
proximal point method formaximalmonotone operators. Inertial methodswere considered in
the particular case of DC functions in the linear context; see for instance [17, 18]. However,
to the best of our knowledge, there does not exist any study of inertial proximal method
for variational inclusion involving the difference two monotone vector fields in Hadamard
manifolds and, in particular, in the linear setting. The present work is a contribution towards
this goal.

The aim of this paper is to proposed an inertial version of the proximal point method for
the variational inclusion problem

0 ∈ A(x) − B(x), (2)

where A and B aremaximalmonotone vector fields on finite dimensionalHadamardmanifold
M . It is equivalent to the problem of finding x ∈ M such that

A(x) ∩ B(x) �= ∅. (3)

We illustrate with some preliminaries numerical experiments that the inertial version of 
the proximal point method has a better performance compared to its classical version.

Although we propose an inertial version of the proximal point method for variational 
inclusion involving the difference of two maximal monotone vector fields in Hadamard 
manifolds, some results related to the proposed method are new for DC functions in the linear 
setting as well as in some particular instances in Hadamard manifolds, namely, if B(x) = 0
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in (2) we have an inertial version of the proximal point method considered by Li et al. [5] for
finding a singularity of amaximalmonotone vector field; if A(x) = ∂g(x) and B(x) = ∂h(x)
in (3), where g, h are convex functions, then our method becomes an inertial version of the
proximal point method for DC functions ( f (x) = g(x) − h(x)) proposed by Souza and
Oliveira [14]; if A(x) = ∂ f (x) and B(x) = 0 in (2), where f is a convex function, then
we have an inertial version of the proximal point method proposed by Ferreira and Oliveira
[6] for convex minimization problems; and finally, if the parameter which appears in the
direction of the inertial method is zero, we have the (non-boosted) proximal point method
for difference of maximal monotone operators extending the algorithm proposed by Souza
and Oliveira [14].

In our convergence analysis, we prove that every cluster point of the sequence generated
by the inertial method, if any, is a solution of the variational inclusion problem. Furthermore,
we present some sufficient conditions for boundedness and full convergence of the method
which are new even for DC functions in Hadamard manifolds. To show the efficiency of
the method, we provide some numerical experiments solving minimization problems in a
genuine (with non-constant curvature different from zero) Hadamard manifold involving
convex and non-convex functions as well as variational inclusion involving operators which
are not the subdifferential of convex functions in Euclidean space.

The study of algorithms for solving non-monotone variational inclusion is a very difficult
problem and interesting by itself. The variational inclusion problem involving the difference
of maximal monotone vector fields generalizes the very important problem of minimizing
DC functions which has a lot of applications. Another interesting application of difference of
monotone operators in linear spaces is given by Attouch and Théra [19]. They mention that
most of the equations arising in physics, economics, among other, can be written as follows

0 ∈ C(x) = A(x) + B(x), (4)

where A, B are possiblymultivalued operators. The splitting of the operatorC into the sum of
two operators A and B has usually a deep physical or economical meaning since A and B may
have very distinct properties. Instead of directly study (4), the authors in [19] proposed an
equivalent duality transformation and they consider the following difference of multivalued
operators

0 ∈ A−1(y) − B−1(−y)

offering a new duality approach to some central questions in the theory of variational inequal-
ities and maximal monotone operators.

The remainder of this paper is organized as follows. In Sect. 2, we recall some notations,
definitions and preliminary results in Riemannian manifolds, convexity and vector fields
in Hadamard manifolds which will be used for further analysis. In Sect. 3, we present our
algorithm as well as its well definition. In Sect. 4, we establish convergence analysis of
the proposed algorithm under some mild conditions for the non-monotone case. In Sect. 5,
we present the convergence analysis of the method for the monotone case. In Sect. 6 some
numerical experiments are reported to support the theoretical results obtained and illustrate
the feasibility and efficiency of the proposed algorithm comparing its performance with
the classical version of the proximal point method in both Euclidean space and Hadamard
manifolds. Some concluding remarks are given in the last section.
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2 Notation and basic concepts

The standard notations, results and preliminary concepts of Riemannian geometry used
throughout the paper can be found, for instance, in Sakai [20], Udriste [21] and do Carmo
[22]. We follow the notation, terminology and results of [14] and [23].

Throughout this paper, we will assume that M a finite dimensional Hadamard manifold.
We denote by TxM the tangent space of M at x . Recall that the parallel transport along the
geodesic γ from γ (a) to γ (b) is denoted by Pγ,γ (b),γ (a) : Tγ (a)M → Tγ (b)M . For any a, b,
the parallel transport Pγ,γ (b),γ (a) is an isometry from Tγ (a)M to Tγ (b)M . Note that, for any
a, b, a1, b1, we have

Pγ,γ (b2),γ (b1) ◦ Pγ,γ (b1),γ (a) = Pγ,γ (b2),γ (a) and P−1
γ,γ (b),γ (a) = Pγ,γ (a),γ (b).

If γ (a) = p and γ (b) = q, we will write Pq,p instead of Pγ,γ (b),γ (a) in the case when γ a
minimal geodesic joining p to q and no confusion arises. The restriction of a geodesic to a
closed bounded interval is called a geodesic segment. Given points x, y ∈ M , we denote the
geodesic segment from x to y by [x, y]. We usually do not distinguish between a geodesic
and its geodesic segment, as no confusion can arise. We denote by expx : TxM → M the
exponential map. For any x ∈ M we can define the exponential inverse mapping exp−1

x :
M → TxM which isC∞. Since d(x, x ′) = ‖ exp−1

x ′ (x)‖, then the map ρx ′ : M → R defined
by ρx ′(x) = 1

2d
2(x, x ′) is C∞ and its gradient at x , denoted by gradρx ′(x), is given by

gradρx ′(x) = − exp−1
x (x ′); see for instance [6, Proposition 3.3].

Using the properties of the parallel transport and the exponential map, we obtain the
following proposition that will be used in the next sections.

Proposition 1 Let M be a Hadamard manifold. Let x ∈ M and {xk} ⊂ M be such that
xk → x. Then the following assertions hold.

1. For any y ∈ M, we have

exp−1
xk

y → exp−1
x y and exp−1

y xk → exp−1
y x.

2. If vk ∈ Txk M and vk → v, then v ∈ TxM.
3. Given uk, vk ∈ Txk M and u, v ∈ TxM, if uk → u and vk → v, then

〈uk, vk〉 → 〈u, v〉.
4. For any u ∈ TxM, the function F : M → T M defined by F(z) = Pz,xu for each z ∈ M

is continuous on M.

Proof See [5, Lemma 2.4]. �
Let X (M) denote the set of all multivalued vector fields A : M −→ 2T M such that

A(x) ⊂ TxM , for each x ∈ M , T M = ∪x∈MTxM and the domain of A is closed and convex,
where the domain D(A) of A is defined by

D(A) = {x ∈ M; A(x) �= ∅}.
Definition 1 Let A ∈ X (M). Then A is said to be:

(i) Monotone if the following condition holds for any x, y ∈ D(A):

〈u, exp−1
x y〉 ≤ 〈v,− exp−1

y x〉, ∀u ∈ A(x), v ∈ A(y); (5)
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(ii) Strictly monotone if (5) holds with strict inequality for any x, y ∈ D(A) with x �= y,
that is,

〈u, exp−1
x y〉 < 〈v,− exp−1

y x〉, ∀u ∈ A(x), v ∈ A(y);
(iii) Strongly monotone if there exists ρ > 0 such that, for any x, y ∈ D(A), we have

〈u, exp−1
x y〉 − 〈v,− exp−1

y x〉 ≤ −ρd2(x, y), ∀u ∈ A(x), v ∈ A(y);
(iv) Maximal monotone if it is monotone and the following implication holds for any x ∈

D(A) and u ∈ TxM :

〈u, exp−1
x y〉 ≤ 〈v,− exp−1

y x〉, ∀y ∈ D(A), v ∈ A(y) �⇒ u ∈ A(x).

Definition 2 Let A ∈ X (M) and p ∈ D(A). Then A is said to be

(i) Upper semicontinuous at p if, for any open set V satisfying A(p) ⊂ V ⊂ TpM , there
exists an open neighbourhood U (p) of p such that Pp,x A(x) ⊂ V for any x ∈ U (p);

(ii) Upper Kuratowski semicontinuous at p if, for any sequences {xk} ⊆ D(A) and {uk} ⊂
T M with each uk ∈ A(xk), the relations limk→∞ xk = p and limk→∞ uk = u imply
that u ∈ A(p).

(iii) Locally bounded at p if there exists an open neighbourhood U (p) of p such that the set
∪x∈U (p)A(x) is bounded;

(iv) Upper semicontinuous (resp. upper Kuratowski semicontinuous, locally bounded) on M
if it is upper semicontinuous (resp. upper Kuratowski semicontinuous, locally bounded)
at each point p ∈ D(A).

Proposition 2 Suppose that A ∈ X (M) is maximal monotone and D(A) = M. Then A is
locally bounded on M.

Proof See [5, Lemma 3.6]. �
Remark 1 Suppose that A ∈ X (M) ismaximalmonotone and D(A) = M . If {xk} is bounded
and vk ∈ A(xk) for all k ∈ N, then {vk} is bounded. Indeed by boundedness of {xk} there
exists C > 0 such that d(x0, xk) ≤ C , for all k ∈ N. Define the open neighbourhood of x0

given by V = {x ∈ M; d(x0, x) < C + 1}. It follows from Proposition 2 and Definition 2
(iii) that ∪x∈V A(x) is bounded. Since xk ∈ V and vk ∈ A(xk), we conclude that {vk} is
bounded and the claim is proved.

Definition 3 Given λ > 0 and A ∈ X (M), the resolvent of order λ is the set-valuedmapping
J A
λ : M −→ 2M defined by

J A
λ (x) = {z ∈ M; x ∈ expz λA(z)}, ∀x ∈ M .

Remark 2 As mentioned in [24, Remark 3] by the definition of the resolvent of a vector field,
the domain of the resolvent J A

λ is the range of the vector field defined by x �→ expx λA(x).
We will denote this range as R(exp(·) λA(·)). Then we have that

D(J A
λ ) = R(exp(·) λA(·)).

Definition 4 Let K ⊆ M be a non-empty, closed and convex set. Given a mapping T :
K ⊆ M → M , we say that T is firmly non-expansive if for any x, y ∈ K , the function
� : [0, 1] → R+ defined by

�(t) = d(expx t exp
−1
x T x, expy t exp

−1
y T y), ∀t ∈ [0, 1],

is non-increasing.
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Next, we state a well known result on firmly non-expansive mappings.

Proposition 3 Let K ⊆ M be a non-empty, closed and convex set and T : K ⊆ M → M.
The following assertions are equivalent.

1. T is firmly non-expansive;
2. For any x, y ∈ K and t ∈ [0, 1], one has

d(T (x), T (y)) ≤ d(expx t exp
−1
x T x, expy t exp

−1
y T y).

Proof See [24, Proposition 5]. �
The next result establishes the relation between the firm non-expansivity of the resolvent

and the monotonicity of the corresponding vector field.

Proposition 4 Let A ∈ X (M). The following assertions hold for any λ > 0.

(i) The vector field A is monotone if and only if J A
λ is single-valued and firmly non-expansive.

(ii) if D(A) = M, the vector field A is maximal monotone if and only if J A
λ is single-valued,

firmly non-expansive and the domain D(J A
λ ) = M.

Proof See [24, Theorem 4]. �
From Proposition 4 and Remark 2, we have the following result which constitutes a

counterpart in the setting of Hadamard manifolds of the well known Minty’s theorem.

Corollary 1 Let A ∈ X (M) be monotone such that D(A) = M, and let λ > 0. Then A is
maximal monotone if and only if R(exp(·)λA(·)) = M.

3 An inertial proximal point method

Throughout this paper, we assume that M is a finite dimensional Hadamard manifold and
A, B ∈ X (M) are maximal monotone vector fields with D(A) = D(B) = M .

We are interested in solving the following problem:

find x∗ ∈ M such that A(x∗) ∩ B(x∗) �= ∅. (6)

A point x ∈ M satisfying (6) is said to be the critical point of the difference A − B. The set
of critical points of A − B is defined by

S = {x ∈ M; A(x) ∩ B(x) �= ∅}.
It is well known that the sum of two monotone vector fields remains monotone. However,
the difference of two monotone vector fields is possibly non-monotone even in the Euclidean
setting as we can see in the following simple example.

Example 1 Let g, h : R → R be convex functions given by g(x) = 1
4 x

4 and h(x) = 1
2 x

2.
Recall that the subdifferential of a convex function is amonotone operator, i.e., A(x) = ∇g(x)
and B(x) = ∇h(x) are monotone operators. However, we can easily see that the function f
given by f (x) = g(x) − h(x) is not convex and its subdifferential is not monotone. On the
other hand, the set of critical points of f satisfies (6).

In this paper, we suppose that S �= ∅ and A or B is ρ-strongly monotone.
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Remark 3 Although in our proof we need the strongly monotonicity of only one of the vector
fields A and B, it is worth to mention that the strongly monotonicity of both A and B is not
a restrictive assumption. In fact, if it does not hold for A and B, then we can obtain another
decomposition satisfying this condition as follows

T (x) = A(x) − B(x) = [A(x) − ρ exp−1
x y] − [B(x) − ρ exp−1

x y],
for ρ > 0 arbitrary and y ∈ M fixed. One has that Ã(x) = A(x) − ρ exp−1

x y and B̃(x) =
B(x) − ρ exp−1

x y are ρ-strongly monotone; see [5, Remark 4.4].

Inertial proximal point method (IPPM)
Step 1: Given an initial point x0 ∈ M , γk ∈ [0, ρ

2 ) and a bounded sequence of positive
numbers {μk} (to be specified latter). Define x−1 = x0.

Step 2: Given xk ∈ M , define dk = γk exp
−1
xk

xk−1. Find

wk ∈ B(xk) and set yk = expxk μk(w
k + dk). (7)

Step 3: Compute xk+1 ∈ M such that

0 ∈ A(xk+1) − 1

μk
exp−1

xk+1 y
k . (8)

If xk+1 = xk and dk = 0, stop. Otherwise, set k = k + 1 and return to Step 2.

Remark 4 The well definition of the sequences {yk} and {xk} directly follows from the fact
the the exponential map is a global diffeomorphism in Hadamard manifolds and the vector
field defined by x �→ A(x) − 1

μk
exp−1

x yk is strongly monotone, and hence, it has a unique
singularity, respectively; see [5, Theorem 4.3 and Remark 4.4]. Moreover, from (7) and (8),
we have

1

μk
exp−1

xk
yk − dk ∈ B(xk) and

1

μk
exp−1

xk+1 y
k ∈ A(xk+1).

Thus, if xk+1 = xk and dk = 0, we obtain

1

μk
exp−1

xk
yk ∈ B(xk) and

1

μk
exp−1

xk
yk ∈ A(xk).

Therefore, 1
μk

exp−1
xk

yk ∈ A(xk)∩B(xk), i.e., A(xk)∩B(xk) �= ∅ and hence xk is a solution
of (6).

Remark 5 In the linear setting, Alimohammady and Ramazannejad [11] proposed an inertial
proximal point algorithm for the difference of maximal monotone operators based on the
method considered by Moudafi [12]. These methods are based on the resolvent operator and
the Yosida approximate. It is worth tomention that in the linear setting ourmethod is different
from the algorithms proposed in [9, 11, 12]. Note that if γk = 0, for all k ∈ N in IPPM, then
dk = 0 and (7) becomes

wk ∈ B(xk) and yk = expxk μkw
k .

Since, xk+1 ∈ M is defined as (8), if B(x) = ∂h(x) and A(x) = ∂g(x), where g, h : M → R

are convex functions, then (8) is equivalent to

xk+1 = arg min
x∈M{g(x) + 1

μk
d2(x, yk)}
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which is the proximal point method for DC functions proposed by [14]. Therefore, IPPM
with γk = 0, for all k ∈ N, ca be viewed as an extension to difference of maximal monotone
vector fields of the method considered in [14] for difference of convex functions. In this case,
our method is different from the regularizedmethods for the difference of maximal monotone
operators proposed by Moudafi [9, 12] in the linear setting.

It isworth tomention that IPPMis new, in theHadamard setting, even for solvingmonotone
vector fields. Therefore, we consider a monotone version of IPPM by doing B(x) = 0. Then,
IPPM becomes the following:
IPPM: monotone version (mIPPM)
Step 1: Given an initial point x0 ∈ M , γk ∈ [0, ρ

2 ) and a bounded sequence of positive
numbers {μk} (to be specified latter). Define x−1 = x0.
Step 2: Given xk ∈ M , define dk = γk exp

−1
xk

xk−1. Find

yk = expxk μkd
k . (9)

Step 3: Compute xk+1 ∈ M such that

0 ∈ A(xk+1) − 1

μk
exp−1

xk+1 y
k . (10)

If xk+1 = xk and dk = 0, stop. Otherwise, set k = k + 1 and return to Step 2.
In the sequel, we present a convergence analysis for both algorithms IPPM for the dif-

ference of maximal monotone vector fields (which is a possibly non-monotone vector field)
and mIPPM for finding a zero of a monotone vector field. To this end, we will consider their
convergence analysis separately.

4 Convergence analysis: possibly non-monotone case

From now on, we consider {xk} the sequence generated by IPPM and we assume that xk+1 �=
xk , for all k ∈ N, otherwise the algorithm returns a solution of the problem. Now we shall
establish its convergence properties.

Proposition 5 Suppose that A or B is ρ-strongly monotone. Then,(
ρ + 1

b

)
d(xk+1, xk) ≤ ‖Pxk ,xk+1uk+1 − vk‖ + ρ

2
d(xk, xk−1), (11)

for any vk ∈ A(xk) and uk+1 ∈ B(xk+1).

Proof We will suppose that A is monotone and B is ρ-strongly monotone. The other case is
analogous. By (7) e (8), we have

1

μk
exp−1

xk
yk − dk ∈ B(xk) and

1

μk
exp−1

xk+1 y
k ∈ A(xk+1).

Given x ∈ M , since B is ρ-strongly monotone, then

〈 1

μk
exp−1

xk
yk − dk, exp−1

xk
x〉 − 〈u,− exp−1

x xk〉 ≤ −ρd2(x, xk), ∀ u ∈ B(x). (12)

It follows from monotonicity of A that

〈 1

μk
exp−1

xk+1 y
k, exp−1

xk+1 x〉 ≤ 〈v,− exp−1
x xk+1〉, ∀ v ∈ A(x). (13)
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Taking x = xk+1 in (12), x = xk in (13) and summing up these inequalities, we have

1

μk
[〈exp−1

xk
yk − dk, exp−1

xk
xk+1〉 + 〈exp−1

xk+1 y
k, exp−1

xk+1 x
k〉]

≤ 〈uk+1,− exp−1
xk+1 x

k〉 + 〈vk,− exp−1
xk

xk+1〉 − ρd2(xk+1, xk) + 〈dk, exp−1
xk

xk+1〉,
(14)

for any vk ∈ A(xk) and uk+1 ∈ B(xk+1). Let �(yk, xk, xk+1) be the geodesic triangle
with θ = ∠(exp−1

xk
yk, exp−1

xk
xk+1). Then, by the Comparison Theorem for Triangles [20,

Proposition 4.5], we have

d2(yk, xk) + d2(xk, xk+1) − 2〈exp−1
xk

yk, exp−1
xk

xk+1〉 ≤ d2(yk, xk+1). (15)

Similarly, to the geodesic triangle �(yk, xk+1, xk) with θ = ∠(exp−1
xk+1 y

k, exp−1
xk+1 x

k), we
have

d2(yk, xk+1) + d2(xk+1, xk) − 2〈exp−1
xk+1 y

k, exp−1
xk+1 x

k〉 ≤ d2(yk, xk). (16)

Adding (15) and (16), we obtain

d2(xk+1, xk) ≤ 〈exp−1
xk

yk, exp−1
xk

xk+1〉 + 〈exp−1
xk+1 y

k, exp−1
xk+1 x

k〉. (17)

Since μk > 0, for all k ∈ N, and using (17) in (14), we have

1

μk
d2(xk+1, xk)

≤ 〈uk+1,− exp−1
xk+1 x

k〉 + 〈vk,− exp−1
xk

xk+1〉 − ρd2(xk+1, xk) + 〈dk, exp−1
xk

xk+1〉.
(18)

Thus, using the fact that 0 < μk ≤ b, we obtain
(

ρ+ 1

b

)
d2(xk+1, xk)≤〈uk+1,− exp−1

xk+1 x
k〉 + 〈vk,− exp−1

xk
xk+1〉+〈dk, exp−1

xk
xk+1〉,

(19)

for any vk ∈ A(xk) and uk+1 ∈ B(xk+1).
On the other hand, using the parallel transport properties, we have that exp−1

xk
xk+1 =

−Pxk ,xk+1 exp−1
xk+1 x

k , and hence

〈uk+1,− exp−1
xk+1 x

k〉 + 〈vk,− exp−1
xk

xk+1〉 = 〈Pxk ,xk+1uk+1 − vk, exp−1
xk

xk+1〉
and hence, using this fact in (19), one has

(ρ + 1

b
)d2(xk+1, xk) ≤ 〈Pxk ,xk+1uk+1 − vk + dk, exp−1

xk
xk+1〉, (20)

for any vk ∈ A(xk) and uk+1 ∈ B(xk+1).
Therefore, the desired result follows applying the Cauchy-Schwarz inequality and trian-

gular inequality in (20) and using the fact that, in Hadamard manifolds, ‖ exp−1
xk

xk+1‖ =
d(xk+1, xk) and ‖dk‖ = γkd(xk, xk−1). �

9



Proposition 6 Suppose that {xk} is bounded, then there exist constants L, M ≥ 0 such
that ||Pxk ,xk+1uk+1 − vk || ≤ L and lim supk→∞ d(xk+1, xk) = M, for any vk ∈ A(xk),
uk+1 ∈ B(xk+1) and k large enough. Moreover, if A or B is ρ-strongly monotone and(

ρ

2
+ 1

b

)
M > L, (21)

then lim
k→∞ d(xk+1, xk) = 0. Consequently lim

k→∞ ‖dk‖ = 0.

Proof Since {xk} is bounded it follows from the maximal monotonicity of A and B (see
Proposition 2) that there exist constants K1, K2 > 0 such that ||vk || < K1 and ||uk || < K2

for k large enough. Thus, from triangular inequality, we have

||Pxk ,xk+1uk+1 − vk || ≤ ||Pxk ,xk+1uk+1‖ + ‖vk ||.
Using the fact that the parallel transport mapping is an isometry, we have

||Pxk ,xk+1uk+1 − vk || < L = K1 + K2, (22)

for k large enough. On the other hand, since {xk} is bounded, we have that {d(xk+1, xk)} is
also bounded, and hence, there exists M = lim supk→∞ d(xk+1, xk) and the first inequality
is proved. Now, if M = 0, then the second assertion directly follows. Otherwise, suppose
that M > 0 and, by assumption, we have that A or B is ρ-strongly monotone with ρ > 0
satisfying (21). Thus, combining (11) with (22), we have(

ρ + 1

b

)
d(xk+1, xk) ≤ ‖Pxk ,xk+1uk+1 − vk‖ + ρ

2
d(xk, xk−1) ≤ L + ρ

2
d(xk, xk−1).

Taking the lim supk→∞ in the above inequality, this implies that
(

ρ
2 + 1

b

)
M ≤ L which is a

contradiction. Therefore, the assertion is proved. �
Remark 6 If A(·) = ∂g(·) and B(·) = ∂h(·) with g and h convex functions (and hence,
maximal monotone vector fields) and f (x) = g(x) − h(x), then (21) can be replaced by
the lower boundedness of f . However, the key of the proof still follows from an inequality
like (11), more precisely, 1

b d
2(xk+1, xk) ≤ f (x0) − f ∗, where f ∗ = infx∈M f (x); see [14,

Proposition 5]. Dealing with general maximal monotone vector fields, it is worth to mention
that condition (21) is not restrictive due to the fact that the parameter ρ can be taken large
enough so that (21) holds; see Remark 3.

Next, we present partial and full convergence results for IPPM for the more general case
of difference of monotone vector fields in Hadamard manifolds. Furthermore, we introduce
an assumption on the proximal parameter {μk} and a Lipschitz continuity of B in order to
obtain full convergence of the sequence to a critical point of A − B.

4.1 Partial convergence analysis

In this subsection, we suppose that the assumptions in Proposition 6 hold, i.e., we assume that
{xk} is bounded, A or B is ρ-strongly monotone and (21) holds. Furthermore, we consider
a, b > 0 and {μk} such that

(23)a ≤ μk ≤ b.

Theorem 1 Every cluster point of {xk } is a critical point of A − B.

10



Proof Let μ, x and y be cluster points of {μk}, {xk} and {yk}, respectively. Without loss of
generality we can take subsequences {μk j }, {xk j } and {yk j } converging respectively to μ, x
and y (we can extract another subsequence if necessary). From Proposition 6, we have that
xk j+1 → x . It follows from (7) that

1

μk j
exp−1

xk j
yk j − dk j ∈ B(xk j ).

By the monotonicity of B, we have

〈 1

μk j
exp−1

xk j
yk j − dk j , exp−1

xk j
z〉 ≤ 〈u,− exp−1

z xk j 〉, ∀u ∈ B(z), z ∈ M .

Letting j → +∞ in last inequality and using Proposition 1, we obtain

〈 1
μ
exp−1

x y, exp−1
x z〉 ≤ 〈u,− exp−1

z x〉, ∀u ∈ B(z), z ∈ M,

and hence, by the maximality of B, we have

1

μ
exp−1

x y ∈ B(x). (24)

Now, from (8), we have

1

μk j
exp−1

xk j+1 y
k j ∈ A(xk j+1).

Similarly, by the maximal monotonicity of A, we have

〈 1

μk j
exp−1

xk j+1 y
k j , exp−1

xk j+1 z〉 ≤ 〈u,− exp−1
z xk j+1〉, ∀u ∈ A(z), ∀z ∈ M,

and letting j → +∞, we show that

1

μ
exp−1

x y ∈ A(x). (25)

Therefore, from (24) and (25), we have that
1

μ
exp−1

x y ∈ A(x)∩ B(x) which means that (6)

holds, i.e., x is critical point of A − B. �

4.2 Sufficient conditions for boundedness

Now, for the sake of completeness, we state the following technical tool which will be used
in the sequel.

Lemma 1 Let {αk}, {βk} and {
k} three sequences of non-negative numbers satisfyingαk+1 ≤
(1 + βk)αk + 
k . If

∑∞
k=0

βk < +∞ and
∑∞

k=0

k < +∞, then {αk} is convergent.

Proof See Polyak [25]. �
Recently, some works have proved the convergence of the whole sequence for several meth-
ods applied to DC functions supposing the Kurdyka–Łojasiewicz property of the objective
function; see [26–29]. However, even in this case, it is supposed that the sequence generated
by the method is bounded. The aim of this subsection is to introduce sufficient conditions in
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order to guarantee the boundedness of the sequence generated by our method. It is worth to
mention that this result is new even for DC problems in the Euclidean setting.

In the remain of this section, we consider Algorithm IPPM with the following condition
instead of (23):

0 < μk ≤ b, k ∈ N. (26)

Furthermore, we consider the following assumptions in the vector field B, the proximal
parameters μk and to sequence of non-negative numbers {γkd(xk, xk−1)}.
(A1) Given x, y ∈ M , there exists a constant L > 0 such that ‖u − Px,yv‖ ≤ Ld(x, y), for
any u ∈ B(x) and v ∈ B(y).

(A2) The sequence of positive numbers {μk} satisfies
∑∞

k=0
μk < ∞.

(A3) The sequence {γkd(xk, xk−1)} is bounded.
Remark 7 Note that (A1) is Lipschitz type assumption for vector fields. It is worth to mention
that assumption (A1) is a natural extension of the Lipschitz continuity of the gradient function
from DC function to difference of maximal monotone vector fields. In the literature of
algorithm for DC functions some papers have considered the non-smooth case where f (x) =
g(x) − h(x) with g, h convex function, g possibly non-smooth and h a function C1,1, i.e.,
h is differentiable and its gradient is Lipschitz continuous; see for instance [26–29]. In the
context of vector fields, condition (A1) implies that the vector field B is single-valued. On
the other hand, (A2) is a classical assumption on proximal point methods; see for instance
[6]. Dealing with DC functions it has been natural to suppose boundedness assumption of the
sequence for different methods; see for instance [14, 17, 18, 23, 26–30]. Some works have
replaced this assumption by the concept of Kurdyka–Łojasiewicz inequality; see for instance
[26–29]. Here, we consider the boundedness assumption (A3) in order to obtain that {xk}
is bounded. It is quite natural because γk ∈ [0, ρ

2 ), for all k ∈ N, and the proximal point
method and its variants usually have the property that {d(xk, xk−1)} converges to zero.

Theorem 2 Suppose that assumptions (A1), (A2) and (A3) hold. Then, {d(xk, x∗)} is con-
vergent for every x∗ ∈ S. In particular, {xk} is bounded.
Proof By (8), we have that exp−1

xk+1 y
k ∈ μk A(xk+1) and hence

yk ∈ expxk+1 μk A(xk+1).

This means that xk+1 = J A
μk

(yk) and from (7), we have

xk+1 = J A
μk

(expxk μk(w
k + dk)),

where wk = B(xk). Let x∗ ∈ S be fixed and take w∗ ∈ A(x∗) ∩ B(x∗) such that

x∗ = J A
μk

(expx∗ μkw
∗).

Since A is maximal monotone from Proposition 4 its resolvent is firmly nonexpansive. Thus,
from Proposition 3, we have

d(xk+1, x∗) = d(J A
μk

(expxk μk(w
k + dk)), J A

μk
(expx∗ μkw

∗))
≤ d(expxk μk(w

k + dk), expx∗ μkw
∗)

≤ d(expxk μk(w
k + dk), x∗) + d(x∗, expx∗ μkw

∗)
≤ d(xk, x∗) + d(expxk μk(w

k + dk), xk) + ‖μkw
∗‖

12



= d(xk, x∗) + μk‖wk + dk‖ + μk‖w∗‖
≤ d(xk, x∗) + μk(‖wk − Pxk ,x∗w∗‖ + ‖Pxk ,x∗w∗‖ + ‖dk‖) + μk‖w∗‖
≤ d(xk, x∗) + μk(Ld(xk, x∗) + ‖w∗‖ + ‖dk‖) + μk‖w∗‖
= (1 + μk L)d(xk, x∗) + μkγkd(xk, xk−1) + 2μk‖w∗‖,

where the triangular inequality was successively applied and in last inequality we used (A1).
Therefore, applying Lemma 1 with αk = d(xk, x∗), βk = Lμk and 
k =

μkγkd(xk, xk−1) + 2μk‖w∗‖ taking into account that assumptions (A2) and (A3) hold,
then we conclude that {d(xk, x∗)} is convergent and hence {xk} is bounded. �

In Proposition 6, we proved that limk→∞ d(xk+1, xk) = 0 under the assumption (21). In
the absence of this assumption, we prove in the sequel that this assertion still holds under the
conditions (A1), (A2) and (A3) for the choice of μk as in (26).

Corollary 2 If assumptions (A1), (A2) and (A3) hold, then lim
k→+∞ d(xk+1, xk) = 0.

Proof From (18), we have

1

μk
d2(xk+1, xk) ≤ 〈uk+1,− exp−1

xk+1 x
k〉 + 〈vk,− exp−1

xk
xk+1〉 + 〈dk, exp−1

xk
xk+1〉,

uk+1 = B(xk+1) and vk ∈ A(xk).
Using the parallel transport, we have that exp−1

xk
xk+1 = −Pxk ,xk+1 exp−1

xk+1 x
k and then,

1

μk
d2(xk+1, xk) ≤ ‖Pxk ,xk+1uk+1 − vk + dk‖ ‖ exp−1

xk
xk+1‖.

This implies that

0 ≤ d(xk+1, xk) ≤ μk(‖uk+1‖ + ‖vk‖ + γkd(xk, xk−1)) (27)

taking into account that ‖ exp−1
xk

xk+1‖ = d(xk+1, xk) > 0. Since, from Theorem 2,

{xk} is bounded, we have from Proposition 2 and (A3) that the sequences {uk}, {vk} and
{γkd(xk, xk−1)} are bounded. Therefore, letting k → +∞ in (27) taking into account that
from (A2) we have that limk→+∞ μk = 0, we obtain that lim

k→+∞ d(xk+1, xk) = 0 and the

assertion is proved. �

4.3 Sufficient condition for full convergence

In this section, we provide a sufficient condition to obtain the convergence of the whole
sequence generated by our method. Under the assumption (A1), (A2) and (A3) we proved
that lim

k→+∞ d(xk+1, xk) = 0 which is a classical behaviour of the proximal point method. It

follows from (A2) that lim
k→+∞ μk = 0. Since this auxiliary sequence of parameters is freely

chosen satisfying some suitable conditions we will take it in such a way that it does not go
to zero faster than d(xk+1, xk). This leads us to the following condition:

(A3∗) Suppose that lim
k→∞

d(xk+1, xk)

μk
= 0.

Remark 8 Note that under assumption (A2), condition (A3∗) implies (A3). Indeed, (A3∗)
implies that limk→∞ d(xk+1, xk) = 0 due to the fact that limk→∞ μk = 0 from (A2).
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Since 0 ≤ γk <
ρ
2 , we have that limk→∞ γkd(xk, xk−1) = 0 and hence, it is bounded.

Therefore, replacing assumption (A3) by (A3∗) the results of Sect. 4.2 remain true and we
additionally obtain the convergence of the method as stated in the next result. Recall that we
are considering algorithm IPPM with (26).

Theorem 3 If assumptions (A1), (A2) and (A3∗) hold, then {xk} converges to a critical point
of A − B.

Proof In view of Theorem 2 it is enough to show that every cluster point of {xk} belongs to S.
Indeed, if x∗ is a cluster point of {xk}which belongs to S, then there exists a subsequence {xk j }
such that {d(xk j , x∗)} converges to zero. Since from Theorem 2, we have that {d(xk, x∗)} is
convergent, thus it converges to zero, and hence, {xk} converges to x∗ ∈ S.

Now, we shall prove that an arbitrary cluster point x of {xk} belongs to S. Let {xk j } be a
subsequence of {xk} such that xk j → x . From Corollary 2, we have that lim j→∞ xk j+1 = x .
Moreover, combining (7) with Theorem 2 and Proposition 2, we have that {wk} is bounded.
Therefore, without loss of generality, we may assume that there exists a subsequence {wk j }
converging to w. Since wk j = B(xk j ) from the monotonicity of B, we have

〈wk j , exp−1
xk j

z〉 ≤ 〈u,− exp−1
z xk j 〉, ∀u = B(z), z ∈ M .

Letting j → ∞, we obtain that w = B(x). On the other hand, from (8), we have

1

μk j
exp−1

xk j+1 y
k j ∈ A(xk j+1),

where yk j = exp
xk j

μk j w
k j . We claim that lim j→∞ 1

μk j
exp−1

xk j+1 y
k j = w, and thus, w ∈

A(x). Indeed,

‖ 1

μk j
exp−1

xk j+1 y
k j − P

xk j+1
,x

w‖

≤ ‖ 1

μk j
exp−1

xk j+1 y
k j −P

xk j+1
,xk j

(wk j + dk j )‖+‖P
xk j+1

,xk j
(wk j + dk j ) − P

xk j+1
,x

w‖.
(28)

Let us prove that the right-hand side of the above inequality vanishes as j → ∞. First,
note that

‖ 1

μk j
exp−1

xk j+1 y
k j − P

xk j+1
,xk j

(wk j + dk j )‖2

= 1

μ2
k j

‖ exp−1
xk j+1 y

k j ‖2 + 1

μ2
k j

‖ exp−1
xk j

yk j ‖2 − 2
1

μk j

〈
exp−1

xk j+1 y
k j , P

xk j+1
,xk j

(wk j + dk j )

= 1

μ2
k j

(
d2(xk j+1, yk j ) + d2(yk j , xk j )

)
− 2

1

μk j

〈
exp−1

xk j+1 y
k j , P

xk j+1
,xk j

(wk j + dk j )

= 1

μ2
k j

(
d2(xk j+1, yk j ) + d2(yk j , xk j )

)

− 2

μk j

〈
P
yk j ,xk j+1 (exp−1

xk j+1 y
k j ), P

yk j ,xk j+1 (Pxk j+1
,xk j

(wk j + dk j ))

= 1

μ2
k j

(
d2(xk j+1, yk j ) + d2(yk j , xk j )

)
− 2

μk j

〈
− exp−1

yk j
xk j+1, P

yk j ,xk j
(
1

μk j
exp−1

xk j
yk j )
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= 1

μ2
k j

(
d2(xk j+1, yk j ) + d2(yk j , xk j )

)
− 2

1

μk j

〈
− exp−1

yk j
xk j+1,− 1

μk j
exp−1

yk j
xk j

= 1

μ2
k j

(
d2(xk j+1, yk j ) + d2(yk j , xk j )

)
− 2

1

μ2
k j

〈
exp−1

yk j
xk j+1, exp−1

yk j
xk j . (29)

From the geodetic triangle �(xk j+1, yk j , xk j ), we have

d2(xk j+1, yk j ) + d2(yk j , xk j ) − 2〈exp−1
yk j

xk j+1, exp−1
yk j

xk j 〉 ≤ d2(xk j+1, xk j ).

From the geodetic triangle �(xk j+1, yk j , xk j ), we have

d2(xk j+1, yk j ) + d2(yk j , xk j ) − 2〈exp−1
yk j

xk j+1, exp−1
yk j

xk j 〉 ≤ d2(xk j+1, xk j ).

Using last inequality in (29), we have

‖ 1

μk j
exp−1

xk j+1 y
k j − P

xk j+1
,xk j

(wk j + dk j )‖ ≤ 1

μk j
d(xk j+1, xk j )

which from (A4) implies

lim
j→∞ ‖ 1

μk j
exp−1

xk j+1 y
k j − P

xk j+1
,xk j

(wk j + dk j )‖ = 0. (30)

Now, by (A1) and triangular inequality, we have that

‖P
xk j+1

,xk j
(wk j + dk j )P

xk j+1
,x

w‖ = ‖P
xk j+1

,xk j
(wk j + dk j ) − P

xk j+1
,xk j

(P
xk j ,x

w)‖
= ‖wk j + dk j − P

xk j ,x
w‖ ≤ Ld(xk j , x̄) + γk j d(xk j , xk j−1).

From Corollary 2 and xk j → x , letting j → ∞ in the above equality we obtain

lim
j→∞ ‖P

xk j+1
,xk j

(wk j + dk j ) − P
xk j+1

,x
w‖ = 0. (31)

Therefore, using (30) and (31) in (28), we have

lim
j→∞

1

μk j
exp−1

xk j+1 y
k j = w.

Using now the monotonicity of A, we have

〈 1

μk j
exp−1

xk j+1 y
k j , exp−1

xk j+1 z〉 ≤ 〈u,− exp−1
z xk j+1〉, ∀u ∈ A(z), z ∈ M .

Letting j → ∞ and using the maximality of A, we have that w ∈ A(x) and thus w ∈
A(x) ∩ B(x) implying that x ∈ S. This completes the proof. �

5 Convergence analysis: monotone case

As we mention before, IPPM is new even for finding a zero of a maximal monotone vector
field. In this section, we consider the variational problem (2) with B(x) = 0 and the algorithm
mIPPM. Here, we will not need to suppose assumption (A1).

In order to prove the convergence of mIPPM let us consider A−1(0) ⊂ M the set of
singularities of A and assume that A−1(0) �= ∅, i.e., A−1(0) = {x ∈ M; 0 ∈ A(x)}.
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In this section, we will consider two possible choices for {μk} (26) and (23) as in the
non-monotone case, i.e., 0 < μk ≤ b and 0 < a ≤ μk ≤ b. In the first case, we assume that
assumptions (A2) and (A3∗) hold. In the second one, we replace these assumptions by

∞∑
k=0

γkd(xk, xk−1) < ∞. (32)

Remark 9 In the linear setting, condition (32) is considered for instance by Alimohammady
and Ramazannejad [11]. In Alvarez and Attouch [16], a similar condition is proposed in
Hilbert spaces. More precisely, it is assumed that

∑∞
k=0 γk‖xk − xk−1‖2 < ∞; see [16,

Theorem 2.1]. Furthermore, such a condition holds for some special cases which can be
verified a priori; see [16, Proposition 2.1].

Next results ensure that the sequence {xk} generated by mIPPM converges to a singularity
of A. We will consider both possible choices of μk as mentioned before.

Theorem 4 The sequence {d(xk, x∗)} is convergent for every x∗ ∈ A−1(0) and, in particular,
{xk} is bounded.
Proof By (10), we have that exp−1

xk+1 y
k ∈ μk A(xk+1) and hence

yk ∈ expxk+1 μk A(xk+1).

This means that xk+1 = J A
μk

(yk) and from (9), we have

xk+1 = J A
μk

(expxk μk(d
k)).

Let x∗ ∈ A−1(0) be fixed, then 0 ∈ A(x∗) such that

x∗ = J A
μk

(expx∗ μk0) = J A
μk

(x∗).

Since A is maximal monotone from Proposition 4 its resolvent is firmly nonexpansive. Thus,
from Proposition 3, we have

d(xk+1, x∗) = d(J A
μk

(expxk μkd
k), J A

μk
(x∗))

≤ d(expxk μkd
k, x∗)

≤ d(xk, x∗) + d(expxk μkd
k, xk)

= d(xk, x∗) + μk‖dk‖
= d(xk, x∗) + μkγkd(xk, xk−1),

where the triangular inequality was applied. Therefore, the desired result follows from
Lemma 1 with αk = d(xk, x∗), βk = 0 and 
k = μkγkd(xk, xk−1) taking into account
that

∑∞
k=0 
k < ∞ for both possible choices of μk . Indeed, if 0 < μk ≤ b, then assump-

tions (A2) and (A3∗) hold, and hence, {γkd(xk, xk−1)} is bounded and∑∞
k=0 μk < ∞which

implies that
∑∞

k=0 
k < ∞. If 0 < a ≤ μk ≤ b, then {μk} is bounded and from (32) we
obtain that ∞

k=0 
k < ∞. This completes the proof. �
As mentioned in Remark 8, under assumption (A2) we have that condition (A3∗) implies 

limk→∞ d(xk+1, xk ) = 0. This is the case if {μk } is given by (26), namely, 0 < μk ≤ b. 
On the other hand, if {μk } is  given by (23), i.e., 0 < a ≤ μk ≤ b, we prove next that this 
condition still holds under assumption (32).
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Corollary 3 Let {xk} be a sequence generated by mIPPM with {μk} given by (23). Then,
limk→+∞ d(xk+1, xk) = 0.

Proof From (10), we have that exp−1
xk+1 y

k ∈ μk A(xk+1). Take x∗ ∈ A−1(0). By monotonic-
ity of A, we have

〈 1

μk
exp−1

xk+1 y
k, exp−1

xk+1 x
∗〉 ≤ 〈0,− exp−1

x∗ xk+1〉 = 0. (33)

From the geodetic triangle �(yk, xk+1, x∗) with θ = ∠(exp−1
xk+1 y

k, exp−1
xk+1 x

∗), we obtain

d2(yk, xk+1) + d2(xk+1, x∗) − 2〈exp−1
xk+1 y

k, exp−1
xk+1 x

∗〉 ≤ d2(yk, x∗). (34)

Combining (33) with (34), we have

d2(yk, xk+1) + d2(xk+1, x∗) ≤ d2(yk, x∗)

which applying the triangular inequality leads to

d2(yk, xk+1) ≤ d2(yk, xk) + 2d(yk, xk)d(xk, x∗) + [d2(xk, x∗) − d2(xk+1, x∗)]. (35)
Since yk = expxk μkdk , one has d(yk, xk) = μkγkd(xk, xk−1). Thus, we obtain that

lim
k→∞ d(yk, xk) = 0

taking into account that {μk} is bounded and limk→∞ γkd(xk, xk−1) = 0 from (32). There-
fore, letting k → ∞ in (35) and using the fact that {d(xk, x∗)} is convergent, we have that
lim
k→∞ d(yk, xk+1) = 0. Thus, from triangular inequality, we have

0 ≤ lim
k→∞ d(xk+1, xk) ≤ lim

k→∞[d(xk+1, yk) + d(yk, xk)] = 0,

and hence, lim
k→∞ d(xk+1, xk) = 0. �

Theorem 5 The sequence {xk} converges to a singularity of A.

Proof In view of Theorem 4 it is enough to show that every cluster point of {xk} belongs
to S. Indeed, if x∗ is a cluster point of {xk} which belongs to A−1(0), then there exists
a subsequence {xk j } such that {d(xk j , x∗)} converges to zero. Since from Theorem 4, we
have that {d(xk, x∗)} is convergent, thus it converges to zero, and hence, {xk} converges to
x∗ ∈ A−1(0).

Now, we shall prove that an arbitrary cluster point x of {xk} belongs to A−1(0). Let
{xk j } be a subsequence of {xk} such that xk j → x . From assumption (A3∗) and Corol-
lary 3, for both possible choices of μk , we have that limk→∞ d(xk+1, xk) = 0 and hence
lim j→∞ xk j+1 = x . From the definition of mIPPM, we have that dk j = γk j exp

−1
xk j

xk j−1

and yk j = exp
xk j

μk j d
k j . Thus,∥∥∥∥ 1

μk j
exp−1

xk j+1 y
k j

∥∥∥∥ = 1

μk j
d(xk j+1, yk j ) ≤ 1

μk j
d(xk j+1, xk j ) + 1

μk j
d(xk j , yk j )

≤ 1

μk j
d(xk j+1, xk j ) + ||dk j ||,

for both choices of μk . The right-hand side of the above inequality goes to zero as j → ∞
from (A3∗), for 0 < μk ≤ b, and from 1

μk j
d(xk j+1, xk j ) ≤ 1

a d(xk j+1, xk j ), for 0 < a ≤

17



μk ≤ b, taking into account that limk→∞ d(xk+1, xk) = 0 in both cases. Now using the
monotonicity of A for 1

μk j
exp−1

xk j+1 y
k j ∈ A(xk j+1), we have

〈 1

μk j
exp−1

xk j+1 y
k j , exp−1

xk j+1 z〉 ≤ 〈u,− exp−1
z xk j+1〉, ∀u ∈ A(z), z ∈ M .

Letting j → +∞ in last inequality and using the fact that 1
μk j

exp−1
xk j+1 y

k j → 0 ∈ TxM

together with Proposition 1 and the maximality of A, we obtain that 0 ∈ A(x) and the proof
is completed. �

6 Numerical experiments

In this section, we solve unconstrained minimization DC problems in a genuine Hadamard
manifold considered by Almeida et al. [23]. We run IPPM and mIPPM comparing its perfor-
mance with proximal point methods [6] (PPM in the convex case) and [14] (DCPPM in the
non-convex DC case). We also present some experiments for monotone and non-monotone
operators including an operator which its components are not the subdifferential (or gradient)
of a convex function and an example of a point-to-set operator in the Euclidean setting.

Let P
n be the set of the symmetric matrices, P

n+ be the cone of the symmetric positive
semi-definite matrices and P

n++ be the cone of the symmetric positive definite matrices both
n × n. Let M = (Pn++, 〈·, ·〉) be the Riemannian manifold endowed with the Riemannian
metric given by

〈U , V 〉 = tr(V X−1UX−1), X ∈ M, U , V ∈ TXM, (36)

where tr(X) denotes the trace of X ∈ P
n and TXM ≈ P

n , with the corresponding norm
denoted by ‖ . ‖; see Rothaus [31]. In this case, for any X , Y ∈ M the unique geodesic
joining those two points is given by:

γ (t) = X1/2 (
X−1/2Y X−1/2)t X1/2, γ ′(0) = X1/2 ln(X−1/2Y X−1/2)X1/2, t ∈ [0, 1],

see, for instance, Nesterov and Todd [32] and Bento et al. [30]. More precisely, M is a 
Hadamard manifold; see, for instance, [33, Theorem 1.2., page 325]. One can compute the 
curvature of M and verify that it has non-constant curvature; see Lenglet et al. [34, page  
428]. We consider the exponential map and its inverse as follows

expX V = X1/2eX
−1/2V X−1/2 

X1/2, expX
−1 V = X1/2 ln(X−1/2V X−1/2)X1/2;

see Bhatia [35, Chapter 6].
The numerical experiments are coded in MATLAB R2020b on a machine with a Intel(R) 

Core(TM) i7, 2.3 GHz CPU and 8 GB memory. We consider two kind of problems. In 
Problems 1 and 2, we consider minimization problems in the Riemannian manifolds M 
described above with n × n matrices for n = 5, n = 25, n = 50 and n = 100. We perform 
the methods performed using “MANOPT” which is a toolbox for optimization on manifolds; 
see Boumal et al. [36]. We generate random matrices using “manifold.rand” to start the 
method. The subproblems are solved using the routine “steepestdescent” with the inner loop 
stopping if the norm of the gradient drops below ε = 10−5 as well as the stopping criterion 
used to the outer loop was d(xk+1, xk) < ε. In Problem 3 and 4, we consider examples 
in R2 with operators which are not the subdifferential of a convex function or multi-valued
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operators. In this context, we use the same stopping rule where the Riemannian distance is
the Euclidean norm.

For each problem below, we perform the algorithms 100 times using different random
starting points. In all problems, we compare the performance of the methods using random
initial starting points but the same at each running for all the methods. We compare the
performance of the methods for different choices of the parameters μk and γk .

Problem 1 In this problem, we consider the convex minimization problem

min
X∈M f (X),

where f (X) = 1
2 ln(det(X))2. Clearly, this problem can be seen as 0 ∈ A(X) − B(X) for

A(X) = grad f (X) and B(X) = 0,where A is amaximalmonotone vector field. The solution
of the equation 0 = grad f (X∗) is a matrix such that det(X∗) = 1, and hence, f (X∗) = 0.
Note that the Euclidean gradient and hessian of f , denoted by f ′(X) and f ′′(X), are given
by f ′(X) = ln(det(X))X−1 and f ′′(X)V = tr (X−1V )X−1 − ln(det(X))X−1V X−1. Thus,
one can verify that f is not convex in the Euclidean sense while it is in the Riemannian
setting using the metric given in (36) and having in mind that the Riemannian gradient and
hessian of f , denoted by grad f (X) and hess f (X), are given by grad f (X) = ln(det(X))X
and hess f (X)V = tr (X−1V )X .

Problem 2 In this problem, we consider the non-convex DC problem

min
X∈M f (X) = g(X) − h(X),

where f (X) = ln(det(X))4 − 2 ln(det(X))2 + 1 with g(X) = ln(det(X))4 + 1 and h(X) =
2 ln(det(X))2. Clearly, this problem can be seen as 0 ∈ A(X)− B(X) for A(X) = grad g(X)

and B(X) = grad h(X), where A, B are maximal monotone vector fields. The solution of the
equation 0 = grad f (X∗) is a matrix such that det(X∗) = 1, det(X∗) = e or det(X∗) = e−1

with minx∈M f (X) = 0. It is worth to mention that g and h are not convex functions in the
Euclidean sense and become convex in the Riemannian sense using the metric (36). Despite
the convexity of g and h in M , we have that f is a non-convex function in both Euclidean
and Riemannian setting.

Next, we consider some examples where the vector fields are defined in the Euclidean
space. In Problem 3, we have an operator which its components are not the subdifferential (or
gradient) of a convex function. In Problem 4, we have an example of a point-to-set operator.

Problem 3 Let A, B : R
2 → R

2 given by A(x) = ( x1
2 − x2, x1 + x2

2

)
and B(x) = (x2,−x1)

with x = (x1, x2). One has that A is stronglymaximal monotone and B is maximal monotone
but neither of them is the subdifferential of a convex function because they are not cyclically
monotone operators; see [38, Theorem 3]. Let us consider the problem of finding

0 ∈ C(x) = A(x) − B(x)

which is equivalent to show that A(x)∩ B(x) is non-empty, for some x ∈ R
2. One can easily

show that taking x∗ = (0, 0), we have that 0 ∈ A(x∗) ∩ B(x∗). Thus, x∗ = (0, 0) is the
solution of the above (non-monotone) variational inclusion.

Problem 4 In this problem, we consider the non-monotone variational problem

0 ∈ A(x) − B(x),
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where A(x) = ∂g(x) and B(x) = ∂h(x) with x = (x1, x2) and

g(x) = ||x ||2 + ||x ||, h(x) = 0.5||x ||2 + max{−x1, 0} + max{−x2, 0}.
Clearly, A, B are maximal monotone (point-to-set) operators and this problem can be seen
as the non-differentiable and non-convex DC problem

min
x∈R2

f (x) = g(x) − h(x) = 0.5||x ||2 + ||x || − max{−x1, 0} − max{−x2, 0}.

The results are presented in Tables 1, 2, 3 and 4 where the column n denotes the size of
the n × n matrices, the columns μk and γk present the values of these parameters used in the
algorithms, the columns min. iter. (k) (resp. min. time), max. iter. (k) (resp. max. time) and
med. iter. (k) (resp. med. time) stand to the minimal, maximal and median of iterates (resp.
CPU time in seconds) of the methods in 100 runs. The columns ||grad f (Xk)|| and | f (Xk)|
(or ||C(xk)||) show the median of these values in 100 runs. In Table 4, this last column is
considered as max ||C(xk)|| which means the maximal value for ||C(xk)|| because in this
example the methods converge to different limit points depending of the initial point, so in
this case does not make sense to consider the median.

We also present the behavior of the methods in terms of ||dk ||, d(xk+1,xk )
μk

and | f (Xk)| (or
||C(xk)||). It is shown in Figures 1, 2, 3, 4, 5 and 6.

In Tables 1, the results show that for Problem 1, the method mIPMM outperforms the non-
boosted version of the method (the case where γk = 0) in both number of iterates and CPU 
time for different choices of μk and γk in all the dimensions considered. In this example, our 
method with γk = 0 coincides with the classical proximal point method (PPM) considered 
in [6].

In Tables 2, the results show that for Problem 2, the method IPMM outperforms the non-
boosted version of the method (the case where γk = 0) in CPU time for different choices of 
μk and γk in all the dimensions considered but underperform it in number of iterates. In this 
example, our method with γk = 0 coincides with the classical proximal point method for 
DC functions (PPMDC) considered in [14].

In Tables 3, the results show that for Problem 3, the method IPMM outperforms the non-
boosted version of the method (the case where γk = 0) in both number of iterates and CPU 
time for different choices of μk and γk in all the dimensions considered.

In Tables 4, the results show that for Problem 4, the method IPMM outperforms the non-
boosted version of the method (the case where γk = 0) in both number of iterates and CPU 
time for different choices of μk and γk in all the dimensions considered. In this example, our 
method with γk = 0 coincides with the classical proximal point method for DC functions 
(PPMDC) considered in [14].

7 Conclusions

We have considered an inertial version of the proximal point method for finding a zero of 
(non-monotone) difference of two maximal monotone vector fields in Hadamard manifolds. 
We have proved that every cluster point of the sequence, if any, is a solution of the problem. 
Furthermore, we have presented some sufficient conditions for boundedness and full conver-
gence of the proximal point method for difference of monotone vector fields which are new
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(d) n= 100

Fig. 1 Computing ||dk || and d(Xk+1, Xk )/μk with PPM [6] and mIPPM for Problem 1

(a) (b) (c) (d)

Fig. 2 Computing | f (Xk )| with PPM [6] and mIPPM for Problem 1

(a) (b) (c) (d)

Fig. 3 Computing ||dk || and d(Xk+1, Xk )/μk with PPMDC [14] and IPPM for Problem 2

(a) (b) (c) (d)

Fig. 4 Computing | f (Xk )| with PPMDC [14] and IPPM for Problem 2

even for DC functions. We have illustrated the method with some numerical experiments in a
genuine (with non-constant curvature different from zero) Hadamardmanifold and Euclidean
space.
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(a) (b)

Fig. 5 Running IPPM for Problem 3

(a) (b)

Fig. 6 Running PPMDC [14] and IPPM for Problem 4
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