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On the long-run fluctuations of inheritance in two-sector OLG models✩
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b Aix-Marseille Univ., CNRS, AMSE & EDHEC Business School, France

abstract

This paper provides a long-run cycle perspective to explain the behavior of the annual flow of inheritance. Based on the low- and
medium frequency properties of long time bequests series in Sweden, France, UK, and Germany, we explore the extent to which a two-
sector Barro-type OLG model is consistent with such empirical regularities. As long as agents are sufficiently impatient and preferences are non-
separable, we show that endogenous fluctuations are likely to occur through two mechanisms, which can generate independently or together either
period-2 cycles or Hopf bifurcations. The first mechanism relies on the elasticity of intertemporal substitution or equivalently the sign of the
cross-derivative of the utility function whereas the second rests on sectoral technologies through the sign of the capital intensity difference
across two sectors. Furthermore, building on the quasi-palindromic nature of the degree-4 characteristic equation, we derive some
meaningful sufficient conditions associated to the occurrence of complex roots and a Hopf bifurcation in a two-sector OLG model.
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1. Introduction

In a very influential contribution, Piketty (2011) shows that
inherited wealth has again a prominent role for life-cycle income,
especially with respect to human capital and labor income. One
explanation is based on the so-called r − g theory of Piketty
2011). Especially, the gap between the (steady-state) growth rate
and the rate of return on private wealth r might explain the em-
irical dynamics of bequests.2 Based on the extensive data work

complex dynamics in optimal growth models with altruistic and non-altruistic
agents in our shared office in Marseille. She was a distinguished scholar and a
wonderful co-author. I will also greatly miss my dear friend.
2 Using a simple generic overlapping generations model of wealth accumu-

lation, growth, and inheritance, Piketty (2011) argues that the gap between
the (steady-state) growth rate g and the rate of return on private wealth r
s the core argument of this resurgence. On the one hand, when g is large
nd g > r , the new wealth accumulated out of current income, and thus
uman capital, contributes more to life-cycle income than past inherited wealth,
specially when it is grounded on low (past) income relative to today’s income.
ccordingly, inheritance flows remain a small fraction of national income. On
he other hand, when growth is low such that r > g , inherited wealth is
apitalized at a faster (growth) rate than national income and becomes dominant
ith respect to current income. Consequently, inheritance flows become a larger

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmateco.2022.102670&domain=pdf
mailto:florian.pelgrin@edhec.edu
mailto:alain.venditti@univ-amu.fr
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of Piketty (2011), particularly with long-dated administrative tax 
ecords, two key empirical features are the very pronounced U-
haped pattern of the inheritance (relative to income or wealth) 
ariable in France (Piketty, 2011), Germany (Shinke, 2012), UK
Atkinson, 2018), Sweden (Ohlsson et al., 2020), and Switzerland 
Brülhart et al., 2018) and the fact that the annual bequest flow 
s slowly recovering its level after the First World War.3

In this paper, we show that the dynamics of the inheritance 
flow can be consistent with the predictions of long-run (stochas-
tic) limit cycles and that a Barro-type bequests model can gen-
erate such endogenous fluctuations.4 Notably the economy can
converge to a stable (long-run) cyclical path where some macroe-
conomic variables oscillate indefinitely around the steady-state, 
and thus bequest flows can go back and forth to a low, steady or
high level. Moreover, when examined over long periods, historical 
series of inheritance flows (Piketty, 2011) look part of a long
ycle through its U-shaped pattern, especially when extracting 
ts medium to long-run component.5 In a broader perspective, 
his descriptive fact is to be reconciled with recent papers (e.g., 
eaudry et al. (2015, 2017, 2020) and Growiec et al. (2015, 
018)) that challenge the seminal contributions of Granger (1966) 
nd Sargent (1987): macroeconomic variables do not display 

(very) pronounced peaks at business cycles frequencies and thus 
data are not supportive of strong internal boom-bust cycles.6
For instance, Beaudry et al. (2015, 2020) show the existence of 
a recurrent peak in several spectral densities of US trendless 
macroeconomic data suggesting the presence of periodicities at 
medium term irrespective of the exogenous cyclical forces. At 
least their results run counter the empirical irrelevance of en-
dogenous fluctuations.7 We build on these results to reconcile the 
redictions of our model with empirical evidence.
Looking at long-date inheritance flows data for Sweden (Ohls-

on et al., 2020) as well as France, UK and Germany (Piketty, 
011), we first provide a quantitative assessment of the long-run

cyclical behavior of bequests as a share of national income. In so 
oing, we proceed in two steps. First, using the low-frequency 

methodology of Müller and Watson (2016, 2017) and band pass 
filters at low frequencies, we extract the long-run component 
of the inheritance variable of interest and then characterize the 
usiness, medium- and long-run fluctuations. Notably, empirical 

evidence suggest that movements of the inheritance variable are 
dominated by medium and low frequencies and are characterized
y a slow cyclical mean reversion. Second, following Beaudry

proportion of national income. These arguments have been challenged by Jones
(2015) and Acemoglu and Robinson (2015), among others. See also Piketty
2015).
3 Long series are not generally available for all OECD countries.
4 Deterministic limit cycles have a long tradition in economics. Especially the

eminal contributions of Benhabib and Nishimura (1979, 1985) have shown that
ven in standard models featuring forward-looking agents and a competitive
quilibrium structure, the steady state or balanced growth path was inherently
nstable and thus deterministic (endogenous) fluctuations were easily obtained
s soon as the fundamental nonlinear structure of the model was taken into
ccount. More recently, Beaudry et al. (2015, 2017, 2020) have put forward
he existence of endogenous stochastic limit cycles, i.e. a deterministic cycle
here the stochastic component is essentially an i.i.d. process, that can generate
lternate periods of booms and busts (see also Benhabib and Nishimura (1989)).

Recent strands of the literature that discuss the emergence of limit cycles include
contributions on innovation-cycles and growth (Matsuyama, 1999; Growiec
t al., 2018), on endogenous credit cycles in OLG models (Azariadis and Smith,
998; Myerson, 2012; Gu et al., 2013), on endogenous learning- and bounded
ationality-based business fluctuations (Hommes, 2013).
5 For further evidence, see Section 2.
6 Comin and Gertler (2006) first provide evidence of medium-term cycles

with a periodicity between 8 and 50 years). See also Correa-López and De Blas
2012) for an application to medium-term technology cycles.
7 In the same vein, Growiec et al. (2018) conclude that the labor’s share of
DP exhibits medium-run swings. See also Charpe et al. (2020).
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t al. (2015, 2020), we make use of the spectral density to identify
eak ranges over some frequency intervals, and thus to provide
ome support of recurrent (medium and long-run) cyclical fluctu-
tions at that frequency (interval). Moreover, we test the presence
f a shape restriction on the spectral density, i.e. the statistical
ignificance of the ‘‘peak range’’ of the spectral density at a given
requency interval with respect to a flat prior. Our results strongly
upport the view of medium-term business fluctuations. While
he presence of a peak range does not necessarily imply strong
ndogenous cyclical forces, it suggests that data cannot, at least,
ontradict the existence of endogenous (stochastic) limit cycles.8
e also show that the inheritance flow and the national income

xperience the same periodicity as that of the inheritance in-
ome ratio and this suggests that the cyclical component of both
he inheritance ratio and the two corresponding level variables
re dominated by medium-term fluctuations of a comparable
eriodicity.
Based on this empirical assessment, we view the existence

f such limit cycles for the inheritance flow (in level or as a
hare of national income) as a complementary interpretation of
iketty (2011) and thus model and rationalize it by formally
haracterizing the corresponding complex dynamics.
Capitalizing on Michel and Venditti (1997), we do so through

he lens of a two-sector overlapping generation (henceforth, OLG)
odel with a pure consumption good and one capital good, and
constant population of finitely-lived agents. We consider the
ecentralized problem where altruistic agents determine their
ife-cycle consumptions, savings and inheritance to their children.
s long as bequests are strictly positive across generations, the
ptimal solution is described by a dimension-four dynamical
ystem. The degree-4 characteristic polynomial associated to the
inearized dynamical system around the steady state appears to
ave a quasi-palindromic structure. It is then possible to explicitly
olve it and provide a complete assessment of its characteristic
oots.9 To the best of our knowledge, it is the first available
roposition that exploits the quasi-palindromic property of the
haracteristic equation in the literature of macroeconomic dy-
amic models.10 This result is the cornerstone of our paper. First,
e show that the steady state with strictly positive bequests
an be either saddle-point stable or (totally) unstable. In the
atter case, endogenous cycles can occur. Second, it is well-known
ince Benhabib and Nishimura (1979) that the existence of a
opf bifurcation in models featuring forward-looking agents and
competitive equilibrium structure requires the consideration of
t least three sectors and thus of dimension-four dynamical sys-
ems.11 However, as shown in several contributions, e.g. Magill
1977, 1979a,b) and Magill and Scheinkman (1979), the curse of
imensionality prevents the derivation of meaningful sufficient
onditions for the existence of complex characteristic roots.
Our paper shows that only two sectors are sufficient in an

LG economy and it makes one step further to a better under-
tanding of the occurrence of complex roots.12 We provide indeed

8 See Dufourt et al. (2015) where the Hopf bifurcation is also shown to be
elevant from an empirical perspective in two-sector infinite-horizon models
ith productive externalities and sunspot fluctuations.
9 If P(x) =

∑4
i=0aix

i is a polynomial of degree 4 and ai = an−i for i = 0, . . . , 2,
then P is palindromic (or reciprocal). If P(x) = a0x4 +a1x3 +a2x2 +a3 mx+a4m2

or some constant m ̸= 0, then P(mx) =
x4

m2 P
(m

x

)
and P is quasi-palindromic.

Importantly, using the change of variables z = x+ m
x in P(x)

x2
produces a quadratic

equation.
10 A similar characteristic polynomial has been obtained by de la Croix and
Michel (1999) in an optimal growth model with inherited tastes but they do
not refer to the quasi-palindromic property and they do not provide a complete
solving of the characteristic roots.
11 See also Cartigny and Venditti (1995) and Venditti (1996).
12 It is important to mention that both the non separability of the utility
function and the OLG structure of the model are necessary to get complex roots.
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clear-cut sufficient conditions for the existence of complex roots 
leading to a Hopf bifurcation, and as far as we know, this is the 
first time such conditions are exhibited in the literature. Third, 
we can identify two key mechanisms that lead to quasi-periodic
cycles through a Hopf bifurcation. The first one is based on the 
properties of preferences, and especially the sign of the cross-
derivative of the utility function or equivalently the elasticity of 
intertemporal substitution. The second rests on sectoral technolo-
gies through the sign of the capital intensity difference across
sectors.13

Furthermore, these preference and technology-based mecha-
nisms can either generate endogenous fluctuations independently 
or self-sustain themselves and thus amplify or mitigate (long-run) 
limit cycles. In the case of non-strictly concave preferences, mild 
perturbations of either the capital intensity difference across sec-
tors or of the elasticity of intertemporal substitution lead to a flip
bifurcation and thus to persistent period-2 cycles.14 The global
dynamics can then be described as the product of two cycles 
implying complex properties of the optimal path.15 On the one
hand, the elasticity of intertemporal substitution must be large 
enough to allow a substitution effect between the first and second 
period consumptions while satisfying the standard transversality 
conditions and the convergence towards the period-two cycle. On 
the other hand, the consumption good sector needs to be capital 
intensive to generate fluctuations of the capital stock.

In contrast, these two mechanisms can no longer be separated
in the case of strictly concave preferences, and a Hopf bifurcation 
can occur with quasi-periodic cycles under some intermediate 
and plausible values for the elasticity of current consumption, the 
elasticity of intertemporal substitution and an upper threshold 
condition for the sectoral elasticities of capital-labor substitu-
tion.16 After providing conditions for the existence of strictly
stationary bequests, we argue that both bequests and bequests 
as a share of GDP can be characterized by optimal periodic and 
quasi-periodic cycles. This sharply contrasts with the predictions 
of the standard Barro model in which the optimal path monoton-
ically converges toward the steady state if the life-cycle utility 
function of a representative generation living over two periods is 
additively separable.

These results provide a theoretical support for our empirical
findings of Section 2 suggesting the existence of medium-term 
business cycles of inheritance. They also have strong policy impli-
cations. Indeed, in contrast to Piketty (2011) where the condition 
r > g leading to an inherently unstable behavior of the dis-
tribution of wealth requires a tax on bequest to avoid such a 
pattern, the recent rise in property income can be interpreted as 
an optimal phenomenon that may reverse automatically later on. 
The rise of inequality can then be only temporary and may not 
call for any redistribution policy and bequest taxation.17

Indeed, in a standard two-sector optimal growth model with one pure con-
sumption and one investment good that can also be consumed, complex roots
cannot occur even if the utility function defined over the pair of consumptions
is non-separable and strictly concave.
13 The capital intensity difference across sectors has long been identified as a
ey driver of the dynamic properties of two-sector optimal growth models.
14 The consumption good is assumed to be more capital intensive than the
nvestment good (see Benhabib and Nishimura (1985)).
15 The quasi-palindromic polynomial can be factored as the product of
wo order-2 polynomials where one quadratic polynomial captures only the
reference-based mechanism and the other only that based on technology.
16 Kalra (1996) and Reichlin (1992) provide conditions for the existence of
opf cycles in two-sector OLG models but do not take into account bequests.
ee also Ghiglino and Tvede (1995) for the analysis of endogenous cycles in

general OLG models, and Ghiglino (2005) for the analysis of the link between
wealth inequality and endogenous fluctuations in a two-sector model.
17 Such a conclusion could be further explored in a model à la Blanchard
(1985)- Weil (1989) with heterogeneous overlapping families of infinitely-lived
agents.
3

The paper is organized as follows. Section 2 discusses the
empirical relevance of interpreting the dynamics of inheritance
flows (in level or as a share of national income) of long-dated
Sweden and France annual data as a long endogenous cycle.
Section 3 presents the two-sector model with non-additively
separable preferences, defines the decentralized solution with
altruistic agents, proves the existence of a steady state with pos-
itive bequests, and finally derives the characteristic polynomial
from which the stability analysis is conducted. The existence of
endogenous cycles is discussed in Section 4 considering succes-
sively period-two cycles under the assumption of a non-strictly
concave utility function and quasi-periodic cycles under a Hopf
bifurcation with a strictly concave utility function. In Section 5
we consider a general class of homogeneous preferences and sec-
toral Cobb–Douglas technologies to illustrate all our main results.
Concluding comments are provided in Section 6 and all the proofs
are contained into a final Appendix.

2. Long-run cycles and inheritance: an empirical assessment

In this section, we explore some empirical properties of the
inheritance variable (relative to national income) using the recent
data set in Sweden proposed by Ohlsson et al. (2020).18 Our treat-
ment is notable in three dimensions. First, we make use of the
recent low-frequency approach initiated by Müller and Watson
(2016, 2017) to identify and estimate the long-run component of
the bequests variable. Second, following the recent contributions
of Beaudry et al. (2020), Charpe et al. (2020), and Growiec et al.
(2018) for other macro variables, we highlight the frequency
decomposition of the inheritance variable and the predominance
of the medium- and long-term components and test the presence
of a significant peak at these frequency bands. We also provide
evidence for two level variables of the inheritance ratio, i.e. the
inheritance flow and the national income. At the same time, it
is worth emphasizing that we only discuss indirect empirical
evidence on the variable of interest, which is consistent with the
occurrence of endogenous fluctuations (e.g., the emergence of a
period-2 cycle or of (quasi-) periodic (long-run) cycles), and do
not attempt to explain the changes of the main determinants of
the inheritance variable, nor the comovements with other macro
variables.19

2.1. The historical series of bequests in Sweden

The annual inheritance flow as a fraction of national income
in Sweden is presented in Fig. 1.20 The sample covers the period

18 It is worth emphasizing that the bequest variable corresponds to post-
mortem transfers, rather than inter-vivos transfers. From an empirical point of
view, this choice is motivated by the absence of long-dated inter-vivos transfers
series and the fact that it is consistent with our theoretical model (see Remark 2
n Section 3.3).
19 A more structural approach will require to simulate and estimate the OLG
odel in the presence of stochastic limit cycles (i.e., a deterministic limit cycle
here the stochastic component is essentially an i.i.d. process). This could be
one by determining the topological normal form for the flip (respectively,
opf) bifurcation using Taylor expansions (see Kuznetsov (1998)) or perturbation
ethods (e.g., Galizia (2018)). We leave this issue for further research.

20 It corresponds to their Fig. 5. The methodology and data construction are
xplained in Ohlsson et al. (2020) as well as Piketty (2011). Notably, using Eq. (1)
f Piketty (2011), the inheritance flow as a ratio of national income is defined

by:
Bt
Yt

= µt × mt ×
Wt
Yt

where Bt , Yt , Wt , µt and mt denote respectively the aggregate inheritance flow,
the aggregate national income, the aggregate private wealth, the mortality rate
and the ratio between average wealth of the deceased and average wealth of the
living. For further details, see Section 3 and the technical appendix of Piketty
(2011), Piketty and Zucman (2015), and Ohlsson et al. (2020).
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Fig. 1. Inheritance as a ratio of national income in Sweden 1810–2016.

810–2016. A visual inspection suggests that the historical series
rguably looks part of a long cycle. Indeed the inheritance variable
isplays medium- to long-run swings: it was about 8–13% of
ational income between 1810 and 1915 with some marked fluc-
uations, then down to less than 5% in 1960, and back up to about
.5% by 2010 with a U-shaped curve starting from the end of
he First World War. Therefore, the inheritance variable seems to
e consistent with a persistence and long-lasting mean-reversal
rocess.21

Before turning to the extraction of the long-run component
nd its characterization, one key issue regards the stationary of
he series, especially for the existence of the spectral density.
tandard stationary tests report mixed evidence, due to the sam-
le size, the presence of a structural break and the correspond-
ng low power of unit root tests to distinguish between non-
tationary and near-stationary stochastic processes. Notably, the
sequential) multi-break points test of Bai and Perron (2003a,b,
2012) reports evidence for the presence of one structural break
in 1923.22 Accordingly, we implement the unit root test proposed
by Perron (1990), which captures the changing mean of the be-
quests variable and thus the structural break. We reject the null of
nonstationarity at conventional significance level.23 Accordingly,
the inheritance variable is specified in level, but is adjusted to
account for the presence of a breakpoint around 1923, and thus
to insure the weak stationarity of the series.24

21 It is worth noting that similar patterns are observed in France and the UK.
22 We use a 15% trimming, an upper bound of five structural breaks, and a
% significance level
23 Using the additive-outlier model and the innovational-outlier model Perron,
990, the student-based statistic of the null hypothesis of nonstationarity is
reater (in absolute value) than the critical value at 5% (−3.34) for λ = 0.5
i.e., when the structural break occurs at the middle of the sample). As a
obustness check, we also study three parametric models of persistence. First,
e estimate the local-to-unit (LTU) AR model (e.g., Phillips (1987)) in which

t = µ + ut , and ut = ρTut−1 + vt for all t with an autoregressive coefficient
T = 1 − c/T and vt is a weakly stationary process. Second, we also consider
he ‘‘local-level’’ model in which the initial series is the sum of I(0) and I(1)
rocesses. Finally, we also implement a fractional model in which (1−L)dxt = vt
here L is the lag operator, −0.5 < d < 1.5 and vt is a weakly stationary
rocess.
24 We first estimate the regression inht = α + β1 × It=1922 + β2 × It=1923 +

3 ×It=1924 +ut by the ordinary least squares method, where It=year is a dummy
ariable that equals one when t = year and 0 otherwise. Then the adjusted
nheritance variable is defined, for t = 1, . . . , T , as inh⋆

t = α̂ + ût , where α̂ is
he OLS estimate of the intercept and ût denote the residuals. Results are robust
hen considering a larger window around the structural break.
4

Fig. 2. Periodogram of the demeaned inheritance variable. Note: The black, red
and blue solid lines represent the periodogram based on Hanning, Blackman–
Tukey and Parzen window, respectively. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

In this respect, Fig. 2 reports the periodogram of the demeaned
(adjusted) inheritance variable.25 We report three nonparametric
power spectral density estimates by applying a Blackman–Tukey
window (red line), a Parzen window (blue line), and a Hanning
window (black line) to the covariogram of the filtered series
before using a fast Fourier transform algorithm. As discussed by
Comin and Gertler (2006), it is generally considered that the high-
frequency component captures the periodicity below 8 years,
i.e. business fluctuations and noise, the medium-frequency com-
ponent the periodicity between 8 and 40 to 50 years, and the
low-frequency (long-run) component the periodicity above 40
to 50 years. In this respect, as to be expected, the periodogram
displays a typical hump shape and a peak at large periodic-
ity, which are characteristic of persistent and near-stationary
stochastic processes.26 Moreover, it is clear that the inheritance
variable is driven by frequency movements beyond the business
cycle, and thus by medium and low frequencies.

2.2. The long-run component of bequests

To further discuss the relative contribution of the frequency
movements, we now proceed with the estimation of the long-
run component. Fig. 3 displays the long-run component (left
panel) of the inheritance variable using three filtered series —
the cyclical gap component (right panel), including short-run and
medium-term fluctuations, being the difference between the raw
series and the filtered series. The first long-run component is
obtained from the approximate low bandpass filter of Baxter
and King (1999).27 We filter the high- and medium-frequency

25 When the periodogram displays a substantial peak at a given frequency
or a peak range, this provides some support of recurrent (e.g., medium-term)
cyclical fluctuations at that frequency (range).
26 Conversely, the spectral density displays a peak around the zero frequency,
i.e. at low frequency.
27 We also implement the asymmetric filter proposed by Christiano and
Fitzgerald (2003, 1999). As a robustness analysis, we also transform our data
using the first difference operator and apply the Baxter–King filter. This requires
in turn to cumulate the filtered series. On the other hand, using the appropriate
asymptotic results, the low-frequency approach of Müller and Watson (2016,
2017) remains valid for I(1) models. Therefore we consider the level specification
as a more plausible way to extract the long-run component, possibly at the
expense of a loss of efficiency for the Baxter–King filter.
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Fig. 3. Long-run and cyclical component of the inheritance variable. Note: Left panel (resp., right panel) reports the long-run component (resp., the cyclical component).
The red, orange and grey solid lines represent the HP, Baxter–King, and cosine-based measures of the long-run (resp., cyclical) component. The blue dotted line is
the inheritance series. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 1
Contribution of the long-run component.

q Long-run
component

Short- to medium-term
component

Cosine projection 4 79.02% 20.98%
8 83.80% 16.20%
12 84.99% 15.01%

HP filter 87.65% 12.35%
Baxter–King filter 84.13% 15.87%
Quadratic trend 40.75% 59.25%

Note: The long-run component is estimated using the low frequency approach
of Müller and Watson (2016, 2017) using different cosine basis q = 4, 8, and
2, the HP filter, the Baxter–King filter, and a quadratic trend. The short- to
edium-term component is defined as the difference between the initial series
nd the long-run component.

ith periodicity below 40 years.28 On the other hand, the second
rend is constructed using the methodology proposed by Müller
nd Watson (2016, 2017), namely by extracting long-run sam-

ple information after isolating a small number of low-frequency
trigonometric weighted averages.29 In so doing, we project the
series into a constant and twelve (q) cosine functions with periods
2T
j for j = 1, . . . , 12 in order to capture the variability for
periods longer than 35 years (2T/q). Importantly, one advantage
of the low-frequency approach of Müller and Watson (2016,
2017) relative to bandpass or other moving average filters, is that
it is applicable beyond the I(0) assumption.30 Finally, for sake
of comparison, the third long-run component is obtained after
adjusting a standard one-sided HP filter.

Fig. 3 suggests that the long-run component, as measured by
the three filtered series, is a main driver of the total variability
of the bequests variable, and displays a nonlinear pattern. It is
further highlighted in Table 1: the contribution of the long-run
component and thus low frequencies account for a very substan-
tial part of the variance of the inheritance variable, irrespective
of the filtered series.

Interestingly, the long-run component is slowly mean-
reverting. Notably, the half-time, i.e. the time for the expected

28 Qualitative conclusions remain robust when considering other periodicities.
29 Let {xt , t = 1, . . . , T } denote a (scalar) time series. Let Ψ (s) =

Ψ1(s), . . . , Ψq(s)
]′ denote a Rq-valued function with Ψj(s) =

√
2cos(jsπ ), and

et ΨT =
[
Ψ
( 1−0.5

T

)
, Ψ

( 2−0.5
T

)
, . . . , Ψ

( T−0.5
T

)]′
denote the T × q matrix after

evaluating Ψ (.) at s =
t−0.5

T , for t = 1, . . . , T . The low-frequency projection is
he fitted series from the OLS regression of [x1, . . . , xT ] onto a constant and ΨT .
30 For an extensive discussion about the relationship of this approach with
pectral analysis, the scarcity of low-frequency information, and the relevance
f the approximation using a small q, see Müller and Watson (2016)
5

value of the inheritance ratio to reach the middle value between
the current value and the (long-run) mean, is nearby 20 years.31
It can be reconciliated with the presence of long-run cycles.

2.3. The medium-term cyclical component of bequests

Capitalizing on the long-run component, we now consider the
gap component (Fig. 3, right panel) defined as the inheritance
ratio variable in deviation of the long-run (stochastic) trend. We
then focus on the periodogram and highlight in dark (resp., light)
grey the band of frequencies corresponding to periodicities from
8 to 40 years (resp., 1 to 8 years) in Fig. 4. Irrespective of the
smoothing method (Hanning, Parzen or Blackman–Tukey), one
dominant feature is the distinct peak in the spectral density
around 25 years. This suggests that the inheritance variable ratio
exhibits important recurrent cyclical phenomena at approxima-
tively 25 to 30-year intervals. Following Beaudry et al. (2020), we
formally test the presence of a shape restriction on the spectral
density: we consider a ‘‘peak range’’ for 20–35 years and test the
null hypothesis of a flat spectral density against a ‘‘peak range’’.
We strongly reject at 5 percent level that the spectrum is flat
in the ‘‘peak range’’. This result is robust when considering a
narrow ‘‘peak range’’. Accordingly, after filtering for the long-run
component, the adjusted inheritance variable is predominantly
dominated by medium-term fluctuations.

To further explore the properties of the inheritance ratio vari-
able and some implications of our model, we now look at the
medium-term cyclical component of both the inheritance flow
and the national income. One key issue is that the raw data
is non-stationary as there is clearly an upward trend for both
variables (Fig. 5). Indeed, the spectral density requires that the
(Fourier transform of the) autocorrelation function is defined,
which is not the case for a nonstationary process.

Instead of using a first-difference transformation, we rather
capitalize on the low-frequency approach of Müller and Watson
(2016, 2017), which remains valid for non-stationary variables.32
Therefore, we proceed as before: we first implement the cosine-
based projection to extract the long-run component of both vari-
ables and then construct the cyclical component as the difference

31 The half-time is defined by HT = − log(2)/ log(̂φ) where φ̂ is the OLS
estimate of the autoregressive parameter of the regression: inhLRt = µ +

φinhLRt−1+ηt , where inhLRt is the long-run component of the adjusted inheritance
variable using the Baxter–King, HP- or cosine-based transformation.
32 One issue of the first-difference filter is that it heavily emphasizes move-
ments at the highest frequencies and deemphasizes those at lower frequencies,
and this can lead to mask some properties of the cyclical component that are
present at lower frequencies.
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Fig. 4. Short- to medium-run components. Note: The black, red and blue solid
lines represent the periodogram based on Hanning, Blackman–Tukey and Parzen
window, respectively. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 5. Inheritance flows and national income in Sweden (1810–2016). Note:
The grey and blue solid lines represent the log of national income and the log
of inheritance flows, respectively. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

between the raw series and the filtered series.33 Fig. 6 then
reports the periodogram of the cyclical component of the inheri-
tance flow and the national income. Irrespective of the smoothing
method, there is a distinct peak in the spectral density around
25 years for both variables. All in all, both variables experience
the same periodicity as that of the inheritance income ratio and
this suggests that the cyclical component of both the inheritance
ratio and the two corresponding level variables are dominated by
medium-term fluctuations of a comparable periodicity.

2.4. International evidence

Using the data set of Piketty (2011), Atkinson (2018) and
Shinke (2012), we also conduct some empirical analysis for
France, the UK and Germany. We only discuss the results for

33 Due to the non-stationarity of the two series, results are more sensitive to
he choice of the cosine basis than in the case of the inheritance ratio. Fig. 6
isplays evidence when q = 16.
6

Fig. 6. Short- to medium-run components of the inheritance flows and national
income variables in Sweden. Note: The grey, red and blue solid lines represent
the periodogram based on Hanning, Blackman–Tukey and Parzen window for
the (cosine-based) cyclical component of the inheritance flow (scaled by 10−4)
using the left y-axis. The dotted lines are those of the cyclical component of the
national income (scaled by 10−5) using the right y-axis. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 7. Inheritance ratio and long-run components in France.

rance : results are qualitatively similar for other countries.34
ig. 7 depicts the inheritance flow as a fraction of national in-
ome for France using annual data from 1897 through 2008, and
hree filter-based long-run components. The inheritance variables
isplay medium- to long-run swings: it was about 20–25% of
ational income between 1820 and 1910, down to less than 5%
n 1950, and back up to about 15% by 2010.

Using the same methodology, we extract the long-run com-
onent of the inheritance ratio variable.35 Irrespective of the
iltering method, this component strongly contributes to explain
he fluctuations of the initial series and thus low frequencies are
he main driver.

34 Empirical evidences for UK and Germany are available upon request.
35 The initial series of inheritance is also adjusted to account for the presence
of a breakpoint after the first World War.



b
m
a
s
r
f
y
t
l
r
a
w
c
a
a
b

2

i
n
a
t
i
e
w
c

3

3

t

a
s
t
a

Fig. 8. Periodogram of the inheritance ratio variable.

Finally, Fig. 8 displays the periodogram of the projection-
ased cyclical component (using q = 6), as well as nonpara-
etric power spectral density estimates. For comparison, we
lso report on the same axes the spectra when first passing the
eries through various high bandpass filters that remove some
emaining low-frequency. We highlight in dark grey the band of
requencies corresponding to periodicities from 24 to 40 (or 50)
ears. Irrespective of the method used, one dominant feature is
he distinct peak in the spectral density around 32 years and the
ocal hump in its neighborhood. This suggests that the inheritance
atio variable exhibits important recurrent cyclical phenomena
t approximatively 30-year intervals, which is again consistent
ith the occurrence of (stochastic) limit cycles.36 Finally, we
losely examine the cyclical component of the inheritance flow
nd national income for both countries and find similar evidence
s in Section 2.4: movements in both variables are mainly driven
y medium frequencies, with a periodicity nearby 30 years.37

.5. Summary

Empirical evidence provides support that movements in the
nheritance variable (as a share of national income) are domi-
ated by medium and low frequencies, and these movements
re characterized by slow cyclical mean-reversion. This is also
he case when looking at the two level variables defining the
nheritance ratio. In this respect, these results run counter the
mpirical irrelevance of endogenous fluctuations. Accordingly, it
ould be interesting to capture the existence of endogenous limit
ycles in a bequest model.

. The model with altruistic agents and a bequest motive

.1. Production

We consider a two-sector economy with one pure consump-
ion good y0 and one capital good y. Each good is produced with

36 We also test the presence of a shape restriction on the spectral density
nd consider a ‘‘peak range’’ for 24–40 years under the null hypothesis of a flat
pectral density against a ‘‘peak range’’. We strongly reject at 5 percent level that
he spectrum is flat in the ‘‘peak range’’. This result is robust when considering
narrow ‘‘peak range’’.

37 Results are not reported but are available upon request.
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a standard constant returns to scale technology:

y0 = f 0(k0, l0), y = f 1(k1, l1)

with k0 +k1 ≤ k, k being the total stock of capital, and l0 + l1 ≤ 1,
the total amount of labor being normalized to 1.

Assumption 1. Each production function f i : R2
+

→ R+, i =

0, 1, is C2, increasing in each argument, concave, homogeneous of
degree one and such that for any x > 0, f iki (0, x) = f ili (x, 0) = +∞,
f iki (+∞, x) = f ili (x, +∞) = 0.

For any given (k, y), we define a temporary equilibrium by
solving the following problem of optimal allocation of factors
between the two sectors:

T (k, y) = max
k0,k1,l0,l1

f 0(k0, l0)

s.t. y ≤ f 1(k1, l1)
k0 + k1 ≤ k
l0 + l1 ≤ 1
k0, k1, l0, l1 ≥ 0.

(1)

The value function T (k, y) is called the social production function
and describes the frontier of the production possibility set. Con-
stant returns to scale of technologies imply that T (k, y) is concave
non strictly. We will assume in the following that T (k, y) is at least
C2.38

Let p denote the price of the investment good, r the rental rate
of capital and w the wage rate, all in terms of the price of the
consumption good, it is straightforward to show that:

Tk(k, y, ) = r(k, y), Ty(k, y) = −p(k, y) and
w(k, y) = T (k, y) − r(k, y)k + p(k, y)y.

(2)

We can also characterize the second derivatives of T (k, y).
Using the concavity property we have:

Tkk(k, y) =
∂r
∂k ≤ 0, Tyy(k, y) = −

∂p
∂y ≤ 0.

As shown by Benhabib and Nishimura (1985), the sign of the
cross derivative Tky(k, y) is given by the sign of the relative capital
intensity difference between the two sectors. Denoting a00 =

l0/y0, a10 = k0/y0, a01 = l1/y and a11 = k1/y the capital and labor
coefficients in each sector, it is easy to derive from the constant
returns to scale property that:

dp
dr = a01

(
a11
a01

−
a10
a00

)
≡ b (3)

with b the relative capital intensity difference, and thus

Tky = Tyk = −
∂p
∂r

∂r
∂k = −Tkkb.

The sign of both b and Tky is positive if and only if the investment
good is capital intensive. Note also that Tyy(k, y) can be written
as:

Tyy = −
∂p
∂r

∂r
∂y = Tkkb2.

Remark 1. The derivative dr/dp = b−1 is well-known in trade
theory as the Stolper–Samuelson effect. Similarly, at constant
prices, we can derive the associated Rybczinsky effect dy/dk =

b−1. We therefore find the well-known duality between the Ry-
bczinsky and Stolper–Samuelson effects.

38 A proof of the differentiability of T (k, y) under Eq. (1) and non-joint
roduction is provided in Benhabib and Nishimura (1979).
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3.2. Preferences

The economy is populated by a constant population of finitely-
lived agents.39 In each period t , Nt = N persons are born, and
hey live for two periods: they work during the first (with one 
nit of labor supplied) and they have preferences for consump-

tion (ct , when they are young, and dt+1, when they are old)
hich are summarized by the utility function u(ct , dt+1) such that 
ssumption 2 is satisfied.

ssumption 2. u(c, d) is increasing in both arguments (uc (c, d) >
 and ud(c, d) > 0), concave and C2 over the interior of R2

+
.

Since total labor is normalized to 1, we consider from now on
hat N = 1. We also introduce a standard normality assumption 
etween the two consumption levels.

Assumption 3. Consumptions c and d are normal goods.

We finally consider the following useful elasticities of con-
umptions:

ϵcc = −uc/uccc > 0, ϵcd = −uc/ucdd, ϵdc = −ud/ucdc,
ϵdd = −ud/uddd > 0

(4)

It is worth noting that the normality Assumption 3 implies
1/ϵcc − 1/ϵdc ≥ 0 and 1/ϵdd − 1/ϵcd ≥ 0 and concavity in
Assumption 2 implies 1/(ϵccϵdd) − 1/(ϵdcϵcd) ≥ 0. Taking these
elasticities, the elasticity of intertemporal substitution between
ct and dt+1 writes:

ς (ct , dt+1) =

ud(ct ,dt+1)/uc (ct ,dt+1)
ct/dt+1

∂(ud(ct ,dt+1)/uc (ct ,dt+1))
∂(ct/dt+1)

=
1

1
ϵcc

−
1

ϵdc

≥ 0. (5)

This elasticity will be used as a parameter driving the existence
of endogenous fluctuations.

3.3. The Barro formulation of altruism

We consider a decentralized economy composed of overlap-
ping generations of parents loving their children. As in the Barro
(1974) formulation, each agent is altruistic towards his descen-
dant through a bequest motive.40 Parents indeed care about their
child’s welfare by taking into account their child’s utility into their
own utility function. They are price-takers, considering as given
the prices pt , wt and rt+1 as defined by (2), and determine their
optimal decisions with respect to their budget constraints

wt + ptxt = ct + ζt and Rt+1ζt = dt+1 + pt+1xt+1 (6)

ith Rt+1 = rt+1/pt the gross rate of return, ζt the savings of
oung agents born in t and xt the amount of bequest transmitted

at time t by agents born in t−1. Note that bequest xt is expressed
as an investment good and requires the relative price pt to en-
er the budget constraints.41 In each period, bequests must be
on-negative:

t ≥ 0 for all t ≥ 0 (7)

Remark 2. We need here to provide comments on the difference
between inter-vivos bequests and post-mortem ones. Clearly, the

39 An increasing population could be considered without altering all our
esults.
40 The co-existence of altruistic and non-altruistic agents as in Nourry and
enditti (2001) could also be considered.
41 Formulating bequest as a consumption good with budget constraints wt +

t = ct + ζt and Rt+1ζt = dt+1 + xt+1 would not affect the results of our
nalysis. Indeed the optimality conditions (10)–(11) given below would remain
nchanged.
8

arro formulation refers to inter-vivos bequests as transmissions
o offsprings are operated while old agents are still alive. On the
ontrary, the data used in Section 2 of this paper are related
o post-mortem inheritance. However, such a difference is not
ignificant for two reasons. First, if we decompose both periods of
ife into two sub-periods, we can interpret the budget constraints
6) as bequests transmitted by an old household during the sec-
nd sub-period just before his death and which is received by
he offsprings in the second sub-period while they are close to
etirement. Such a timing is rather plausible with what is gen-
rally observed for bequest behaviors. Second, it is well-known
hat inter-vivos transfers are an increasing part of inheritance
s they benefit from decreased taxes which are supported by
he donator parents. Since there is no taxation in our model,
here is therefore no real difference between inter-vivos and
ost-mortem bequests.42

An altruistic agent has a utility function given by the following
ellman equation

t (xt ) = max
{ct ,dt+1,st ,xt+1}

{u(ct , dt+1) + βVt+1(xt+1)}

= max
{ct ,dt+1,st ,xt+1}

+∞∑
t=0

β tu(ct , dt+1)
(8)

ubject to (6) and (7), and where β ∈ (0, 1) is interpreted as
he intergenerational degree of altruism. Note that β can also be
iewed as a discount factor.
Substituting the expressions of ct and dt + 1 from the budget

onstraints (6) into the optimization problem (8) we get

max
ζt ,xt+1}

+∞∑
t=0

β tu(wt + ptxt − ζt , Rt+1ζt − pt+1xt+1) (9)

he first order conditions are given by

c(ct , dt+1)pt − ud(ct , dt+1)rt+1 = 0, (10)
βuc(ct+1, dt+2) − ud(ct , dt+1) ≤ 0 with an equality if

xt > 0, (11)

ith pt = −Ty(kt , kt+1) and rt+1 = Tk(kt+1, kt+2). Assuming a
omplete depreciation within one period,43 savings ζt is obtained
rom the production of the investment good and we get ζt =

tyt = ptkt+1. Moreover, for any t ≥ 0, total consumption is given
y the social production function, i.e. ct + dt = T (kt , yt ).44
Assuming for now that bequests are strictly positive (we will

how later on that this can be the case at the steady state), the
irst order conditions (10)–(11) can be equivalently re-written as
he following two difference equations of order two:

d(T (kt , kt+1) − dt , dt+1) − βuc(T (kt+1, kt+2) − dt+1, dt+2) = 0

uc(T (kt , kt+1) − dt , dt+1)Ty(kt , kt+1) +

βuc(T (kt+1, kt+2) − dt+1, dt+2)Tk(kt+1, kt+2) = 0.

(12)

42 A possibility to get post-mortem transfers in a two-period OLG model would
be to consider life-time uncertainty and accidental bequests (see for instance
Abel (1985) and Fuster (1999)).
43 Considering that in an OLG model one period is approximately 30 years,
complete depreciation is a realistic assumption.
44 As shown by Weil (1987), when the non-negativity constraints of bequests
(7) hold with a strict inequality in order to preserve the link across generations,
the altruistic problem is equivalent to a central planner problem maximizing a
welfare function.
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Considering some (given) initial conditions (d0, k0), any path that 
satisfies Eqs. (12) together with the following transversality con-
ditions,

lim
→+∞

β tud(ct , dt+1)pt+1kt+1 = 0 and

lim
→+∞

β tud(ct , dt+1)dt+1 = 0, (13)

is an optimal path.45
Solving Eqs. (12) and considering the transversality condi-

tions (13) then yield the equilibrium paths for capital {kt}t≥0 and
econd period consumption {dt}t≥0. The dynamics of first period
onsumption is obviously ct = T (kt , kt+1) − dt and the dynamics
f bequests is derived from the budget constraints (6) as follows

txt = rtkt − dt (14)

hereas the dynamics of bequests as a proportion of GDP is
pt xt
GDPt

=
pt xt

T (kt ,kt+1)+pt yt
= s(kt , kt+1) −

dt
T (kt ,kt+1)−Ty(kt ,kt+1)kt+1

.
(15)

with

s(kt , kt+1) =
Tk(kt ,kt+1)kt

T (kt ,kt+1)−Ty(kt ,kt+1)kt+1

the share of capital income in GDP. We will then study the local
dynamic properties of capital kt and consumption dt from the dy-
namical system (12) and derive in a second step that bequests and
bequests as a proportion of GDP have similar dynamic properties,
providing then a support for our empirical findings of Section 2.

3.4. Steady state

A steady state is defined as the stationary solution, kt = k∗,
dt = d∗, xt = x∗, for all t , of the following nonlinear system of
equations:

ud(T (k, k) − d, d)
uc(T (k, k) − d, d)

= β (16)

−
Ty(k, k)
Tk(k, k)

= β (17)

x = Tk(k, k)k − d > 0 (18)

e get the following result:

roposition 1. Under Assumptions 1–3:
i) there exists a unique stationary capital stock k∗ solution of Eq. (17)
ii) there exists a unique stationary consumption level d∗, with d∗ <

(k∗, k∗), solution of Eqs. (16) if

lim
→T (k∗,k∗)

ud(T (k∗, k∗) − d, d)
uc(T (k∗, k∗) − d, d)

= 0 and

lim
d→0

ud(T (k∗, k∗) − d, d)
uc(T (k∗, k∗) − d, d)

= +∞ (19)

iii) under conditions (19), for any given β ∈ (0, 1), the stationary
equests x∗ are positive in the economy with degree of altruism equal

to β if

lim
d→Tk(k∗,k∗)k∗

ud(T (k∗, k∗) − d, d)
uc(T (k∗, k∗) − d, d)

∈ (0, β) (20)

Proof. See Appendix A.1. □

45 It is worth noting that our model merges the formulations of Benhabib and
ishimura (1979) and Galor (1992), and is close to the optimal growth model

with fertility choice of Barro and Becker (1989) where intergenerational transfers
occur.
9

A 3-uple (k∗, d∗, x∗) is then defined to be the Modified Golden
Rule. Finally, the stationary consumption of young agents is ob-
tained from c∗

= T (k∗, k∗) − d∗ > 0. As bequests are positive at
the steady state, then by continuity they are positive in a neigh-
borhood of the steady state and we may study the local stability
properties of the equilibrium path considering the dynamical
system (12).

3.5. Characteristic polynomial

We are now in a position to derive the characteristic polyno-
mial from total differentiation of Eqs. (12). Denoting T (k∗, k∗) =

T ∗, Tk(k∗, k∗) = T ∗

k and Tkk(k∗, k∗) = T ∗

kk, let us introduce the
elasticities of the consumption good’s output and the rental rate
with respect to the capital stock, all evaluated at the steady state,
as given by:

εck = T ∗

k k
∗/T ∗ > 0, εrk = −T ∗

kkk
∗/T ∗

k > 0. (21)

Then Proposition 2 yields the degree-4 characteristic polyno-
mial and discusses the multiplicity order of the possible (charac-
teristic) roots.

Proposition 2. Under Assumptions 1–3, the degree-4 characteristic
polynomial is given by

P(λ) = λ4
− λ3B + λ2C − λ B

β
+

1
β2 (22)

ith

B = −
β

bϵcc
εck
εrk

(
ϵcc
ϵdc

−
ϵcd
ϵdd

)
+

β+b2

βb +
ϵdc
βϵcc

+
ϵcd
ϵdd

C = −
(1+β)
bϵcc

εck
εrk

(
ϵcc
ϵdc

−
ϵcd
ϵdd

)
+

β+b2

βb

(
ϵdc
βϵcc

+
ϵcd
ϵdd

)
+

2
β

(23)

r equivalently

(λ) =

[
λ2

− λ

(
ϵdc
βϵcc

+
ϵcd
ϵdd

)
+

1
β

]
(λb−1)(λβ−b)

βb

+λ(λ − 1)
(
λ −

1
β

)
β

bϵcc
εck
εrk

(
ϵcc
ϵdc

−
ϵcd
ϵdd

) (24)

f λ is a characteristic root of (24), then λ̄, (βλ)−1 and (βλ̄)−1 are
also characteristic roots of (24). Moreover, at least two roots or a pair
of complex conjugate roots have a modulus larger than one, and one
of the following cases necessarily holds:

(i) the four roots are real and distinct,
(ii) the four roots are given by two pairs of non-real complex

conjugates,
(iii) there are two complex conjugates double roots or two real

double roots.

Proof. See Appendix A.2. □

Proposition 2 is of critical importance and several points are
worth commenting. First, as initially proved by Levhari and Livi-
atan (1972) in multisector optimal growth models, it shows that if
there exists a pair of complex characteristic roots (λ, λ̄) solutions
of the quartic polynomial (24), then a second pair of complex
characteristic roots, (βλ)−1 and (βλ̄)−1, are also solutions of (24).
Therefore, Proposition 2 proves that the 4 characteristic roots are
either all real or all complex. Second, Proposition 2 also implies
hat at most two characteristic roots can have a modulus lower
han 1 and thus that the steady state can be either saddle-point
table or totally unstable. Of course in this last case, endogenous
ycles can occur. Third, under Assumption 2, the sign of the
xpression ϵcc

ϵdc
−

ϵcd
ϵdd

is given by the sign of the cross derivative
ucd, i.e. by the opposite of the sign of ϵcd, ϵdc , which is a crucial
ngredient to determine the local stability properties of the steady
tate. Fourth, using Eq. (24), when the utility function is non-
trictly concave, i.e. if ϵcc

ϵdc
−

ϵcd
ϵdd

= 0, then the degree-4 polynomial
simplifies to a product of two degree-2 polynomials.
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Remark 3. The degree-4 characteristic polynomial (22) is a 
uasi-palindromic equation that can be solved explicitly, and 
ts roots can be determined using only quadratic equations (see
ppendix A.8 for details.). The same type of characteristic poly-
omial has been studied by de la Croix and Michel (1999) in an 
ptimal growth model with inherited tastes. However, since they 

focus on the saddle-point property of the steady state, they do 
ot consider the possibility of bifurcating complex roots and they 
o not need to refer to the quasi-palindromic structure in order 
o explicitly compute the four characteristic roots (see a more 
etailed discussion in Appendix A.8). As far as we know, this is the
irst time this type of detailed methodology is applied to macroe-
conomic dynamic models. Using the quasi-palindromic structure 
of the characteristic polynomial will allow us to provide explicit 
sufficient conditions for the occurrence of complex characteristic 
roots and prove the existence of a Hopf bifurcation.

Remark 4. If b = 0, the two sectors are characterized by the 
same technology and one gets the one-sector formulation with 
a two-dimensional dynamical system as considered in Michel 
nd Venditti (1997). Indeed, the characteristic polynomial can be 
implified as follows

P(λ) = λ2
− λ

ϵdc
βϵcc +

ϵcd
ϵdd

−
(1+β)
ϵcc

εck
εrk

(
ϵcc
ϵdc

−
ϵcd
ϵdd

)
1− β

ϵcc
εck
εrk

(
ϵcc
ϵdc

−
ϵcd
ϵdd

) +
1
β

The same conclusions on the existence of period-2 cycles as in
Michel and Venditti (1997) are obviously derived.

Similarly, if the utility function is additively separable, i.e.
ucd = udc = 0, we get the two-sector optimal growth formu-
lation with a two-dimensional dynamical system as considered
in Benhabib and Nishimura (1979). The characteristic polynomial
can indeed be simplified as follows

P(λ) = λ2
− λ(1 + β)

β
ϵcc

εck
εrk

+(β+b2)
β

ϵcc
εck
εrk

+(1+β)b
+

1
β

he same conclusions on the existence of period-2 cycles as in
enhabib and Nishimura (1979) are then derived. In the limit case
ith b = 0 and ucd = udc = 0, we are obviously back to the

standard Ramsey (1928) model where the unique optimal path
converges monotonically to the steady state.

4. Optimal endogenous fluctuations

As shown by Proposition 2, the structure of the characteristic
polynomial crucially depends on whether the utility function is
non-strictly concave, i.e. ϵcc

ϵdc
−

ϵcd
ϵdd

= 0, or strictly concave,
.e. ϵcc

ϵdc
−

ϵcd
ϵdd

̸= 0. We then consider these two configurations
uccessively in the following two Sections.

.1. Period-two cycles under non-strictly concave preferences: A
eparated mechanism

In this section we assume that the utility function is non-
trictly concave.

ssumption 4. The utility function u(c, d) is concave non-
trictly, i.e. ϵcc

ϵdc
−

ϵcd
ϵdd

= 0.

In so doing, one can show that the characteristic roots cannot
e complex.

emma 1. Under Assumptions 1–4, the characteristic roots are real.

roof. See Appendix A.3. □
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Following simultaneously the same methodologies as in the
two-sector optimal growth model and the optimal growth solu-
tion of the aggregate OLG model, we discuss the local stability
properties of equilibrium paths depending both on the sign of
the capital intensity difference across sectors b and the sign of
the cross derivative ucd, i.e. of the two elasticities ϵcd and ϵdc .

As a first step, Proposition 3 provides some simple conditions
ensuring the saddle-point property with monotone convergence.

Proposition 3. Under Assumptions 1–4, if b ≥ 0 and ϵcd, ϵdc ≥

0, i.e. ucd ≤ 0, then the equilibrium path is monotone and the
steady-state (k∗, d∗) is a saddle-point.

Proof. See Appendix A.4. □

We now show that convergence with oscillations and persis-
tent competitive equilibrium cycles may occur under a quite large
set of circumstances.

Proposition 4. Under Assumptions 1–4, the following results hold:
(i) When the investment good is capital intensive, i.e. b ≥ 0, let

ϵcd, ϵdc < 0, i.e. ucd > 0. Then the steady state (k∗, d∗) is saddle-
oint stable with damped oscillations if and only if the elasticity of
ntertemporal substitution satisfies ς ∈ (0, ς ) ∪ (ς̄ , +∞) with

ς ≡
ϵccβ
1+β

and ς̄ ≡
ϵcc
2

Moreover, when ς crosses the bifurcation values ς or ς̄ , (k∗, d∗)
undergoes a flip bifurcation leading to persistent period-2 cycles.

(ii) When ϵcd, ϵdc ≥ 0, i.e. ucd ≤ 0, let the consumption good
be capital intensive, i.e. b < 0. Then the steady state (k∗, d∗) is
saddle-point stable with damped oscillations if and only if b ∈

(−∞, −1) ∪ (−β, 0). Moreover, if there is some β∗
∈ (0, 1) such

that b ∈ (−1, −β∗), then there exists β̄ ∈ (0, 1) such that, when β

crosses β̄ from above, (k∗, d∗) undergoes a flip bifurcation leading to
persistent period-2 cycles.

(iii) When the consumption good is capital intensive, i.e. b < 0,
and ϵcd, ϵdc < 0, i.e. ucd > 0, the steady state (k∗, d∗) is saddle-
point stable with damped oscillations if and only if b ∈ (−∞, −1)∪
(−β, 0) and ς ∈ (0, ς )∪ (ς̄ , +∞). Moreover, if there is some β∗

∈

(0, 1) such that b ∈ (−1, −β∗), then there exists β̄ ∈ (0, 1) such
that, when β crosses β̄ from above or ς crosses the bifurcation values
ς or ς̄ , (k∗, d∗) undergoes a flip bifurcation leading to persistent
period-2 cycles.

Proof. See Appendix A.5. □

Proposition 4 provides two independent mechanisms leading
to the existence of endogenous fluctuations. The first one is based
on the properties of preferences through the sign of the cross
derivative ucd and is the most interesting in our context since it
allows to generate period-2 cycles in a two-sector model even
under a capital intensive investment good sector—a condition
which is known since Benhabib and Nishimura (1985) to ensure
monotone convergence in a standard two-sector optimal growth
model.

To provide further economic insights, let us consider an in-
stantaneous increase in the capital stock kt . Using ct + dt =

T (kt , yt ) and Tk > 0, it follows that ct increases, and thus, taking
that the marginal utility of second period consumption ud is larger
as udc > 0, a constant utility level u(ct , dt+1) can be obtained from
a decrease of dt+1. Using then the first equation in (12) and taking
dt+2 as given, we get
∆ct+1
∆ct

=
udc
uccβ

+
udd
uccβ

∆dt+1
∆ct

< 0.

Finally, since ct+1 + dt+1 = T (kt+1, yt+1), total consumption
at time t + 1 is lower, which in turn implies a lower capital
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stock kt+1 when yt+1 holds constant. Endogenous fluctuations
are thus generated from intertemporal consumption allocations 
based on some substitution effects between the first and second 
eriod consumptions. The important result is that the elasticity 
f intertemporal substitution needs to be large enough to allow 
ufficient substitution between ct and dt+1 to generate aggregate 
scillations, but should not be too large to be compatible with the 
ransversality conditions (13) and a convergence process towards 
he period-two cycle.

The second mechanism is, as in the two-sector optimal growth 
odel, based on the properties of sectoral technologies through 

he sign of the capital intensity difference across sectors. Follow-
ng Benhabib and Nishimura (1985), we can use the Rybczinski 
nd Stolper–Samuelson effects to provide a simple economic 
ntuition for this result. Assume indeed that the consumption 
ood is capital intensive, i.e. b < 0, and consider an instantaneous
ncrease in the capital stock kt . This results in two opposing 
echanisms:
- On the one hand, the trade-off in production becomes more

avorable to the consumption good, and the Rybczinsky effect 
mplies a decrease of the output of the capital good yt . This tends 
o lower both the investment and the capital stock in the next 
eriod kt+1.
- On the other hand, in the next period the decrease of kt+1

mplies again through the Rybczinsky effect an increase of the 
utput of the capital good yt+1. Indeed the decrease of kt+1

improves the trade-off in production in favor of the investment
ood which is relatively less intensive in capital and this tends to 
ncrease the investment and the capital stock in period t +2, kt+2.

Of course, under both mechanisms, the existence of persistent
luctuations requires that the oscillations in consumption and 
elative prices must not present intertemporal arbitrage oppor-
unities. Consequently, a minimum level of myopia, i.e. a low 
nough value for the degree of altruism (or discount rate) β , is 
hus necessary.

Note finally that in case (iii) of Proposition 4, both mechanisms
old at the same time. Interestingly, using both β and ς as 
wo bifurcation parameters allows to consider a co-dimension 
 bifurcation which corresponds to the flip bifurcation with a 
:2 resonance where two characteristic roots are equal to −1 
imultaneously. As shown in Kuznetsov (1998), in such a con-
iguration, under non-degeneracy conditions, the steady state is 
ither saddle-point stable or elliptic. This last case may give 
ise to the existence of quasi-periodic cycles which are usually 
ssociated to a Hopf bifurcation.

.2. Quasi-periodic cycles under strictly concave preferences: A
ixed mechanism

As explained above, using a non-strictly concave utility func-
ion is convenient in the sense that it reduces the degree-4 char-
acteristic polynomial to the product of two degree-2 polynomials. 
In such a framework, we have shown that the preference and 
technology mechanisms are separated and lead independently 
to the occurrence of endogenous fluctuations through period-
two cycles. Relaxing this simplifying assumption, our objective 
here is to prove that the preference and technology mechanisms
can mix together, and then complexify and amplify the possi-
ble endogenous fluctuations in the context of strictly concave
preferences.

We start by providing general sufficient conditions allowing to
rule out the existence of complex roots.

Proposition 5. Under Assumptions 1–3, let the utility function
u(c, d) be strictly concave. Then the roots of the characteristic poly-

nomial (24) are necessarily real in the following cases:

11
11
(i) for any sign of ϵcd, ϵcd if the investment good sector is capital
ntensive, i.e. b > 0,

(ii) if ϵcd, ϵcd > 0 and the consumption good sector is capital
ntensive, i.e. b < 0.

roof. See Appendix A.6. □

Necessary conditions for the existence of complex roots are
herefore based on the two mechanisms that generate endoge-
ous fluctuations in the non-strictly concave case, namely b < 0
nd ϵcd, ϵcd < 0. It is also important to notice that both the
on separability of the utility function and the OLG structure are
ecessary to get complex roots.
In order to provide clear-cut conditions for the existence of

omplex characteristic roots and a Hopf bifurcation with quasi-
eriodic cycles, we consider a general class of homogeneous of
egree γ ≤ 1 utility functions. We introduce the share of first
eriod consumption within total utility φ(c, d) ∈ (0, γ ) defined
y:

(c, d) =
uc (c,d)c
u(c,d) . (25)

Accordingly, the share of second period consumption within total
utility is defined as γ − φ(c, d) ∈ (0, 1), and the first order
condition (17) gives
c
d =

βφ

γ−φ
(26)

Considering that c + d = T (k, y) we get

=
(γ−φ)T (k,y)
γ−φ(1−β) (27)

oreover, using (4), the elasticities of interest are given by

cd = −
ϵcc

1−ϵcc (1−γ ) , ϵdc = −
(γ−φ)ϵcc

φ[1−ϵcc (1−γ )] ,

ϵdd =
(γ−φ)ϵcc

φ−ϵcc (1−γ )(2φ−γ )

(28)

e then need to impose a restriction on ϵcc to ensure concavity
nd the normality assumptions, namely ϵcc ≤ γ /[φ(1 − γ )] ≡

¯cc . Strict concavity is obtained if and only if γ < 1 and it is
traightforward to get ϵdd > 0 while ϵcd, ϵcd < 0 if and only
f ϵcc < 1/(1 − γ ) ≡ ϵ̃cc(< ϵ̄cc). Moreover, the elasticity of
ubstitution between the two life-cycle consumption levels is
ow defined by:

(φ) =
ϵcc (γ−φ)

γ−φϵcc (1−γ ) ∈ (0, +∞) (29)

Notably, if ϵcc < ϵ̃cc , then ς (φ) ∈ (0, ϵcc).
We first derive sufficient conditions to ensure saddle-point

property of the steady state with real characteristic roots.

Proposition 6. Let the utility function be homogeneous of degree
γ < 1, and assume that ϵcc < ϵ̃cc , b ∈ (−∞, −1) ∪ (−β, 0) and

−
εck
bεrk

> 1 (30)

Then there exist 0 < ς ≤ ς̄ < ϵcc and ϵ̂cc ∈ (0, ϵ̃cc) such that
when ς ∈ (0, ς ) ∪ (ς̄ , ϵcc) the characteristic roots are real and the
steady-state is saddle-point stable. Moreover,

(i) when ς ∈ (0, ς ), the optimal path converges towards the
steady state with oscillations if ϵcc ∈ (0, ϵ̂cc) or monotonically if
ϵcc ∈ (ϵ̂cc, ϵ̃cc),

(ii) when ς ∈ (ς̄ , ϵcc), the optimal path converges towards the
steady state with oscillations.

Proof. See Appendix A.7. □

Condition (30) allows to get the existence of the bound ϵ̂cc
and thus the occurrence of oscillations when the elasticity of
intertemporal substitution is low, i.e. ς ∈ (0, ς ). This restriction
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can be easily interpreted. Denoting σi the elasticity of capital-
abor substitution in sector i = 0, 1 and using Drugeon (2004), we
can relate the ratio of elasticities εck/εrk to an aggregate elasticity 
of substitution between capital and labor, denoted Σ , which is
obtained as a weighted sum of the sectoral elasticities σi:46

εck
εrk

=

(
T
l20

)
s

1−s
Σ
GDP with Σ =

GDP
pykT (pyk0l0σ0 + Tk1l1σ1) , (31)

DP = T + py and s = rk/GDP the share of capital income
in GDP. Therefore, oscillations when φ ∈ (φ̄, γ ) are associated
with a large aggregate elasticity of substitution between capital
and labor i.e., large enough sectoral elasticities of capital-labor
substitution.

Proposition 6 implies that the existence of complex roots,
if any, requires to consider intermediate values for the elastic-
ity of intertemporal substitution ς between the first and sec-
nd period consumptions, i.e. ς ∈ (ς, ς̄ ). As mentioned pre-
iously, the degree-4 characteristic polynomial (22) is a quasi-
alindromic equation that can be solved explicitly, and its roots
an be determined using only quadratic equations. As shown in
ppendix A.8, we apply this methodology in order to provide
ufficient conditions for the occurrence of complex roots and a
opf bifurcation.
We can indeed derive the following result:

roposition 7. Let the utility function be homogeneous of degree
< 1, and assume that ϵcc < ϵ̃cc and b ∈ (−β, 0). Then there

xist b̄ ∈ (−β, 1), γ ∈ (0, 1), ϵcc, ϵ̄cc ∈ (0, ϵ̃cc), ε̄ > 0 and four
ritical values (ς ≤)ς c < ςH < ς̄H < ς̄ c(≤ ς̄ ) such that when
b ∈ (−β, b̄), γ ∈ (γ , 1), ϵcc ∈ (ϵcc, ϵ̄cc) and

εck
bεrk

< ε̄ (32)

he following results hold:
(i) the steady state (k∗, d∗) is saddle-point stable with damped

oscillations if ς ∈ (ς c, ςH ) ∪ (ς̄H , ς̄ c),
(ii) when ς crosses the bifurcation values ςH or ς̄H , (k∗, d∗)

undergoes a Hopf bifurcation leading to persistent quasi-periodic
cycles.

Proof. See Appendix A.8. □

From a theoretical point of view, Proposition 7 provides a
strong conclusion as it shows that a Hopf bifurcation and quasi-
periodic cycles can occur in a two-sector optimal growth frame-
work as long as it is based on an OLG structure with non-
separable and strictly concave preferences. The preference mech-
anism based on a substitutability effect between first and second
period consumptions, and the technology mechanism based on a
capital intensive consumption good sector feed each other when
the utility function is strictly concave and amplify the endogenous
fluctuations of capital and consumption. More complex quasi-
periodic fluctuations can thus occur for intermediate values for
the elasticity ϵcc and the elasticity of intertemporal substitution
ς between the first and second period consumptions, together
with, using (31), a not too large value for the sectoral elasticities
of capital-labor substitution.

Propositions 4 and 7 have provided conditions for the exis-
tence of persistent cycles in output, capital and consumptions.
However, as discussed in the data section, there is some evidence
that the inheritance ratio and the inheritance flow are also driven
by endogenous fluctuations. In this respect, Proposition 8 now
shows that both variables are characterized by persistent cycles

46 The expression of Σ is derived from Proposition 2 in Drugeon (2004).
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Proposition 8. Under Assumptions 1–3, the local stability prop-
erties provided in Propositions 4 and 7 hold for both bequests as
defined by (14) and bequests as a proportion of GDP as defined by
(15). In particular, bequests and bequests as a proportion of GDP can
be characterized by optimal periodic and quasi-periodic cycles.

Proof. See Appendix A.9. □

Proposition 8 proves the existence of long-run fluctuations of
both bequests and bequests as a proportion of GDP, and provides
a theoretical basis to explain the empirical evidence derived in
Section 2 showing that the annual inheritance flow as a fraction of
national income displays medium- and long-run fluctuations. In
contrast to the recent conclusion of Piketty (2011), we prove here
that the recent increase of the ratio of inheritance to output can
be interpreted as a portion of a long run cycle and not necessarily
as a return to a steady state position characterizing the 19th
and first half of the 20th century. As a consequence taxation
of bequests may not be necessary as a medium- or long-lasting
reversion of the ratio may occur later on.

5. Simple illustrations

To illustrate all our results, let us consider the general class
of homogeneous of degree γ ≤ 1 utility functions as described
by the share of first period consumption within total utility
φ(c, d) ∈ (0, γ ) as defined by (25) and the elasticities (28).
For the production side, we assume as in Baierl et al. (1998)
that the consumption and investment goods are produced with
Cobb–Douglas technologies as follows:

y0 = kα0
0 l1−α0

0 , y = kα1
1 l1−α1

1 (33)

It can be shown that

b =
β(α1−α0)

1−α0
(34)

5.1. Period-two cycles

We assume here that γ is set to one, which means that
Assumption 4 and ϵcc < ϵ̃cc hold, and that the elasticity of
intertemporal substitution between c and d satisfies ς = ϵcc(1 −

φ) < ϵcc . The following Corollary provides illustrations of all the
cases of Proposition 4.47

Corollary 1. Let the utility function be homogeneous of degree 1
and the sectoral production functions be given by (33) with α0 >

(1+ α1)/2 > α1. Let β1 = (1− α0)/(α0 − α1), β2 = (1− φ)/φ and
φ∗

= (α0 − α1)/(1 − α1). Then the following cases hold:
(i) If φ ≤ 1/2, the steady state (k∗, d∗) is saddle-point stable

with damped oscillations if and only if β ∈ (β1, 1) and β1 is a flip
bifurcation value.

(ii) If φ > 1/2, the steady state (k∗, d∗) is saddle-point stable
with damped oscillations if and only if β > β = max{β1, β2}.
oreover, β1 ≥ β2 if and only if φ ≥ φ∗. Both β1 and β2 are

flip bifurcation values implying that two flip bifurcations can occur
successively when β is decreased from 1. More importantly, if φ =

∗, then β1 = β2 = β and a co-dimension 2 flip bifurcation with a
1:2 resonance generically occurs.

Proof. See Appendix A.10. □

47 All the results of this Corollary can also be obtained using instead CES
technologies with non unitary sectoral elasticities of capital-labor substitution.
It can be shown indeed that the existence of a flip bifurcation is robust to a
wide range of values for these parameters. A proof of this claim is available
upon request.
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Corollary 1 then shows that all our results on the existence of
period-two cycle easily occur with a standard homogeneous util-
ity function and Cobb–Douglas technologies. The most important
illustration is provided by case (iv) with φ = φ∗. While providing

precise dynamic analysis of this co-dimension 2 bifurcation
oes far beyond the objectives of this paper, it is worthwhile
o mention that this case provides an interesting possibility of
mooth endogenous fluctuations for the main aggregate variables
hich does not arise under a standard flip bifurcation. Indeed,
hile there does not a priori exist complex characteristic roots
nder a linear homogeneous utility function, Kuznetsov (1998)
hows that under a 1:2 resonance, the steady state can be elliptic
nd a stable limit cycle, similar to those that arise under a Hopf
ifurcation, can occur.

.2. Quasi-periodic cycles

We assume here a strictly concave homogeneous utility func-
ion with γ < 1 and we focus on the case γ = 0.98. We also
ssume a standard value ϵcc = 1 that satisfies ϵcc ∈ (ϵcc, ϵ̄cc). It
s quite difficult to properly evaluate the degree of altruism β .
owever, if we consider that the amount of bequest transmitted
o offsprings can be determined on the basis of the discounted
alue of wealth, we can use the annual discount factor which is
ften estimated to be around 0.96. Since one period in an OLG
odel is about 30 years, we may approximate the degree of
ltruism as β = 0.9630

≈ 0.294. For the sectoral Cobb–Douglas
echnologies we consider α0 = 0.6 and α1 = 0.21 so that the
onsumption good is capital intensive with b ≈ −0.28665 close
o −β .48 The bounds exhibited in Proposition 7 are equal to ς c

≈

.1194 and ς̄ c
≈ 0.6083. We then find that the characteristic

polynomial (44) admits four characteristic roots λ1, λ2, λ3, λ4
hat are complex conjugate by pair with λ1λ2 > 1 and λ3λ4 < 1
f ς ∈ (ς c, ςH ) ∪ (ς̄H , ς̄ c) while λ3λ4 > 1 if ς ∈ (ςH , ς̄H ), with
H

≡ 0.3193 and ς̄H
≡ 0.426. Moreover λ3λ4 = 1 when ς = ςH

r ς̄H . As a result ςH and ς̄H are Hopf bifurcation values giving
rise to quasi-periodic cycles in their neighborhood.

5.3. Positive bequests and endogenous fluctuations

Consider first the case of a linear homogeneous utility function
(γ = 1) and assume as in Corollary 1 that α0 > (1 + α1)/2 > α1.
sing Eq. (27) and the expressions for the capital stock k∗, the
nterest rate r∗ and the output for total consumption T (k∗, k∗) in
Appendix A.10, we derive that r∗k∗ > d∗ and thus x∗ > 0 if and
only if

α0βφ > (1 − φ) (1 − α0 − βα1) (35)

We get the following results:
(i) If 2α1 > α0 > 1 − α1 and β > (1 − α0)/α1 ≡ β3, then

β1 > β3 and x∗ > 0 for any φ ∈ (0, 1). Then case i) of Corollary 1
holds with positive bequests. Moreover, if φ ∈ (1/2, φ1) with
φ1 ≡ α1/(1 − α0 + α1), then φ∗

∈ (1/2, φ1), β1, β2 > β3 and
he case ii) of Corollary 1 holds with positive bequests.

(ii) If α0 < 1−α1, φ > 1/2 and β > (1−φ)/[α0φ+α1(γ −φ)] ≡

β4, then x∗ > 0. Moreover, if min{2α1, 1 − α1} > α0 > α1 then
1, β2 > β4 and the case ii) of Corollary 1 holds with positive
equests.

48 The existence of a Hopf bifurcation can also be obtained using instead CES
echnologies with non unitary sectoral elasticities of capital-labor substitution.
s in the case with period-two cycles, our conclusions are robust to a wide
ange of values for these parameters. A proof of this claim is also available
pon request.
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We have then proved that with a linear homogeneous utility
function, the existence of period-two cycles and possibly of a co-
dimension 2 flip bifurcation with a 1:2 resonance is compatible
with positive bequests.

Let us finally illustrate the existence of quasi-periodic cycles
under positive bequests when the utility function is homoge-
neous of degree γ < 1. The necessary and sufficient condi-
tion (35) for positive bequests x∗ > 0 becomes

α0φβ > (γ − φ) (1 − α0 − βα1) > 0 (36)

Considering the particular illustration in Section 5.2 with 1−α0−

βα1 > 0 and α0 > α1, it follows from (36) that bequests are
positive if and only if

φ >
γ (1−α0−βα1)

1−α0+β(α0−α1)
≡ φ̃γ

hich is equivalent to

<
α0βϵcc

1−α0+β(α0−α1)−ϵcc (1−γ )(1−α0−βα1)
≡ ς̃γ

his condition can be satisfied only if

cc <
1−α0+β(α0−α1)
(1−γ )(1−α0−βα1)

With γ = 0.98, β = 0.294, ϵcc = 1, α0 = 0.6 and α1 = 0.21, we
et ς̃γ ≈ 0.3566 ∈ (ςH , ς̄H ). It follows that positive bequests are

compatible with quasi-periodic cycles. Indeed, the steady state,
which is characterized by strictly positive bequests if ς < ς̃γ ,
is saddle-point stable with damped oscillations if and only if
ς ∈ (ς c, ςH ). Moreover, when ς crosses the bifurcation values ςH

rom below, the steady state undergoes a Hopf bifurcation leading
o persistent quasi-periodic cycles and thus long-run fluctuations
f bequests.

emark 5. The conditions for bifurcating eigenvalues associated
o both period-two cycles and quasi-periodic cycles, and which
re based on the first-order approximation of the dynamical sys-
em, do not ensure the existence of stable cycles. Although some
eneric arguments allow to ensure a non-degeneracy property,
he stability properties depend on higher order terms of the
pproximated dynamical system. As shown for instance in Kalra

(1996), it is necessary to compute a projection of the dynami-
cal system on the center manifold associated to the bifurcating
eigenvalues. Besides the technical complexity of such compu-
tations, the saddle-point structure of our dimension-4 model
unfortunately prevents from getting explicit results. In the case
of a specific example with a CES utility function and Cobb–
Douglas technologies, a possibility could be to determine nu-
merically the center manifold for the flip (respectively, Hopf)
bifurcation using Taylor expansions or perturbation methods (e.g.,
Galizia (2018)). However this is beyond the scope of the current
paper.

6. Concluding comments

This paper explores the existence of limit cycles to explain the
behavior of the annual flow of inheritance (in level or as a share
of national income).

We have first provided some empirical evidence for medium-
and long-run swings in the inheritance flows (in level and as
a fraction of national income) in Sweden, France, UK, and Ger-
many.49 Notably, the contribution of the medium term compo-
nent does not run counter the existence of endogenous (stochas-
tic) cycles.

49 For UK and Germany, empirical evidences are available upon request.
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Based on this, using a two-sector Barro-type (Barro, 1974) OLG
odel with non-separable preferences and bequests, we have
hown that two endogenous mechanisms, which can operate
ndependently or together, can be identified as long as agents are
ufficiently altruistic. The first mechanism relies on the elasticity
f intertemporal substitution or equivalently the sign of the cross-
erivative of the utility function whereas the second rests on
ectoral technologies through the sign of the capital intensity
ifference across the two sectors. Accordingly, mild and plausi-
le perturbations of these parameters can lead to endogenous
luctuations through period-2 cycles or Hopf bifurcations.

From a methodological point of view, we have exploited the
uasi-palindromic nature of the characteristic equation associ-
ted to the optimal solution of a two-sector OLG model with al-
ruistic parents and positive bequests to derive some meaningful
ufficient conditions for the occurrence of complex roots.
A first avenue of future research would be to consider a

tochastic version of our model and thus to characterize the
xistence of stochastic limit cycles. Another research perspec-
ive would be to study more deeply the econometrics of long-
un/endogenous cycles.

ppendix

.1. Proof of Proposition 1

Consider in a first step Eq. (16). Notice that the steady state
alue for k only depends on the characteristics of the technologies
nd is independent from the utility function. Moreover, this equa-
ion is equivalent to the equation which defines the stationary
apital stock of a standard two-sector optimal growth model. The
roof of Theorem 3.1 in Becker and Tsyganov (2002) restricted to
he case of one homogeneous agent applies so that there exists
ne unique k∗ solution of this equation.
Consider now Eq. (17) evaluated at k∗. We get:

ud(T (k∗,k∗)−d,d)
uc (T (k∗,k∗)−d,d) ≡ h(d) = β (37)

The function h(d) is defined over (0, T (k∗, k∗)) and satisfies

h′(d) =

udd
ud

−
ucd
uc +

ucc
uc −

ucd
ud

ucud
= −β

[
1
d

(
1

ϵdd
−

1
ϵcd

)
+

1
c

(
1

ϵcc
−

1
ϵdc

)]
ssumption 3 implies that h′(d) < 0. This monotonicity prop-
rty together with the boundary conditions (19) finally ensure
he existence and uniqueness of a solution d∗

∈ (0, T (k∗, k∗))
f Eq. (37).
Consider finally Eq. (18). Note that k∗ does not depend on

he utility function u(c, d). The condition of positive stationary
equest (x∗ > 0) is equivalent to r∗k∗

= Tk(k∗, k∗)k∗ > d∗. Then,
nder the boundary conditions (19), for any given β ∈ (0, 1), the
tationary consumption d∗ is such that x∗ > 0 if the boundary
ondition (20) also holds. □

.2. Proof of Proposition 2

Using (4) and the fact that at the steady state −T ∗
y = βT ∗

k , total
ifferentiation of the first order Eqs. (12) gives after tedious but
14
traightforward computations:

−∆kt
βT∗

k ϵcc
ϵdc

+ ∆kt+1βT ∗

k

(
1 +

βϵcc
ϵdc

)
+ ∆dt

βϵcc
ϵdc

−∆dt+1β

(
1 +

βϵccϵcd
ϵdcϵdd

)
= ∆kt+2β

2T ∗

k − ∆dt+2
β2ϵcc
ϵdc

∆kt

(
βT∗2

k
ϵcc c∗T∗

kk
− b

)
− ∆kt+1

(
β(1+β)T∗2

k
ϵcc c∗T∗

kk
− β − b2

)
−∆dt

βT∗
k

ϵcc c∗T∗
kk

∆dt+1
βT∗

k
ϵcc c∗T∗

kk

(
1 +

βϵcc
ϵdc

)
= −∆kt+2β

(
βT∗2

k
ϵcc c∗T∗

kk
− b

)
+∆dt+2

β2T∗
k

ϵdc c∗T∗
kk

enoting ∆κt = ∆kt+1 and ∆δt = ∆dt+1, we get the following
atrix expression of the previous linear system:

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 β2T ∗

k −
β2ϵcc
ϵdc

0 0 −β

(
βT∗2

k
ϵcc c∗T∗

kk
− b

)
β2T∗

k
ϵdc c∗T∗

kk

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

∆kt+1
∆dt+1
∆κt+1
∆δt+1

⎞⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
0 0 1 0
0 0 0 1

−
βT∗

k ϵcc
ϵdc

βϵcc
ϵdc

βT ∗

k

(
1 +

βϵcc
ϵdc

)
−β

(
1 +

βϵcc ϵcd
ϵdc ϵdd

)
βT∗2

k
ϵcc c∗T∗

kk
− b βT∗

k
ϵcc c∗T∗

kk
−

β(1+β)T∗2
k

ϵcc c∗T∗

kk
+ β + b2 βT∗

k
ϵcc c∗T∗

kk

(
1 +

βϵcc
ϵdc

)
⎞⎟⎟⎟⎟⎠

×

⎛⎜⎜⎝
∆kt
∆dt
∆κt
∆δt

⎞⎟⎟⎠

⇔ A

⎛⎜⎜⎝
∆kt+1
∆dt+1
∆κt+1
∆δt+1

⎞⎟⎟⎠ = B

⎛⎜⎜⎝
∆kt
∆dt
∆κt
∆δt

⎞⎟⎟⎠ with A =

(
I 0
0 A22

)
and

B =

(
0 I

B21 B22

)
atrix A is invertible as detA = detA22 = β3bϵcc/ϵdc , and we
et

−1
=

(
I 0
0 A−1

22

)
with A−1

22 =

⎛⎜⎝
T∗
k

βbϵcc c∗T∗
kk

1
βb

ϵdc
β2ϵcc

(
βT∗2

k
bϵcc c∗T∗

kk
− 1

)
ϵdcT∗

k
βbϵcc

⎞⎟⎠
The linearized dynamical system can then be expressed as follows⎛⎜⎝∆kt+1

∆dt+1
∆ξt+1
∆ζt+1

⎞⎟⎠ = A−1B

⎛⎜⎝∆kt
∆dt
∆ξt
∆ζt

⎞⎟⎠
(

0 I
A−1

22 B21 A−1
22 B22

)⎛⎜⎝∆kt
∆dt
∆ξt
∆ζt

⎞⎟⎠ ≡ J

⎛⎜⎝∆kt
∆dt
∆ξt
∆ζt

⎞⎟⎠
sing (21), tedious but straightforward computations give the
haracteristic polynomial

(λ) = λ4
− λ3B + λ2C − λ B

+
1 (38)
β β2
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with

B = −
β

bϵcc
εck
εrk

(
ϵcc
ϵdc

−
ϵcd
ϵdd

)
+

β+b2

βb +
ϵdc
βϵcc

+
ϵcd
ϵdd

= −
(1+β)
bϵcc

εck
εrk

(
ϵcc
ϵdc

−
ϵcd
ϵdd

)
+

β+b2

βb

(
ϵdc
βϵcc

+
ϵcd
ϵdd

)
+

2
β

(39)

fter simplifications we get the expression (24). It is worth notic-
ng that B is equal to the trace of J while 1/β2 is the determinant
f J .
Consider now that λ is a root of the characteristic polynomial

24), i.e. P(λ) = 0. It follows obviously that if λ is complex then
ts conjugate λ̄ is also a characteristic root. Let us then consider
((βλ)−1), namely(

1
βλ

)
=

[
1

β2λ2
−

1
βλ

(
ϵdc
βϵcc

+
ϵcd
ϵdd

)
+

1
β

] ( b
βλ

−1
)(

1
λ
−b
)

βb

+
1

βλ

(
1

βλ
− 1

)(
1

βλ
−

1
β

)
β

bϵcc
εck
εrk

(
ϵcc
ϵdc

−
ϵcd
ϵdd

)
=

1
β4λ4

{ [
λ2

− λ

(
ϵdc
βϵcc

+
ϵcd
ϵdd

)
+

1
β

]
(λb−1)(λβ−b)

βb

+ λ(λ − 1)
(
λ −

1
β

)
β

bϵcc
εck
εrk

(
ϵcc
ϵdc

−
ϵcd
ϵdd

) }
= 0

If follows that (βλ)−1 is also a characteristic root. The same
argument applies for (βλ̄)−1. It follows that the four character-
istic roots are either all real, or given by two pairs of complex
conjugates. Moreover, at least two roots or a pair of complex
conjugate roots have a modulus larger than one. Considering that
the structure of our model is similar to a standard optimal growth
model, this result is the same as the one obtained by Levhari and
iviatan (1972).
The nature of the characteristic roots can be derived consider-

ng the following expressions:

=
256
β6 −

192B2

β5 −
128C2

β4 +
288B2C

β4 −
60B4

β4 −
80B2C2

β3 +
36B4C

β3

−
4B6

β3 +
16C4

β2 −
8B2C3

β2 +
B4C2

β2

D =
64
β2 − 16C2

+ 16B2C −
16B2

β
− 3B4

P = 8C − 3B2

R = B
[
B2

+
8
β

− 4C
]

(40)

Since we already know that the characteristic roots are either all
real, or all complex, we immediately derive that ∆ ≥ 0. Tedious
but straightforward computations also show that

D =
R
B

[
8
β

− 3B2
+ 4C

]
∆ =

(
β2C2

−4βB2+4βC+4
)
R2

β4B2

(41)

t follows that if R = 0 then D = 0 and ∆ = 0. This implies the
following characterization of the roots:

(i) when ∆ > 0 the characteristic roots are real and distinct
if P < 0 and D < 0, and given by two pairs of non-real complex
conjugates if P > 0 or D > 0;

(ii) when ∆ = R = D = 0, there are two complex conjugates
double roots or two real double roots depending on whether
P > 0 or P < 0. □

A.3. Proof of Lemma 1

Under Assumption 4, let us denote the two degree-2 polyno-
mials as follows

P (λ) = λ2
− λ

(
ϵdc +

ϵcd
)

+
1 , P (λ) =

(λb−1)(λβ−b) (42)
1 βϵcc ϵdd β 2 βb P
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The discriminant of P1(λ) is equal to:

∆1 =

(
ϵdc
βϵcc

+
ϵcd
ϵdd

+
2

√
β

)(
ϵdc
βϵcc

+
ϵcd
ϵdd

−
2

√
β

)
Using (4) we get

∆1 =

(
1
ucd

)2 (
ucc +

2ucd√
β

+
udd
β

)(
ucc −

2ucd√
β

+
udd
β

)
=

(
1
ucd

)2 (
1 1

√
β

)(ucc ucd
udc udd

)(
1
1

√
β

)
×

(
1 −

1
√

β

)(ucc ucd
udc udd

)(
1

−
1

√
β

)
nder the concavity property in Assumption 2, the Hessian ma-
rix of the utility function u(c, d) is quasi-negative definite which
mplies ∆1 ≥ 0 and the associated characteristic roots are nec-
ssarily real. From P2(λ) we obviously conclude that for any sign
f the capital intensity difference b the associated characteristic
oots are also necessarily real. □

.4. Proof of Proposition 3

Under Assumptions 1–4, let b ≥ 0 and ϵcd, ϵdc ≥ 0, i.e. ucd ≤ 0.
sing the fact that ϵcc

ϵdc
=

ϵcd
ϵdd

, we derive the following expression

P1(λ) =

(
λ −

ϵcc
ϵdc

)(
λ −

ϵdc
βϵcc

)
(43)

he associated characteristic roots λ1 and λ2 are therefore both
ositive. Moreover we get:

1(0) =
1
β

≥ 1

1(1) = −ϵccϵdc

(
1

ϵcc
−

1
ϵdc

)(
1

βϵcc
−

1
ϵdc

)
The normality Assumption 3 implies P1(1) < 0 and we conclude
that the associated characteristic roots λ1 and λ2 are such that
λ1 < 1 and λ2 > 1.

From P2(λ), the associated characteristic roots λ1 and λ2 are
oth positive. Moreover we derive:

2(0) =
1
β

≥ 1, P2(1) = −
(β−b)(1−b)

βb

From constant returns to scale, we get wa01 + ra11 = p with
a01 = l1/y and a11 = k1/y. The second equation in (17) rewrites
as p = βr . We then obtain after substitution in the previous
quation r(β − a11) = wa01 > 0 and thus

β − b =
a00(β−a11)+a10a01

a00
> 0

When b ≥ 0 we then necessarily have b < β ≤ 1. It follows
hat P2(0) < 0 and we conclude that the associated characteristic
oots λ1 and λ2 are such that λ1 < 1 and λ2 > 1. The steady state
is therefore a saddle-point. □

A.5. Proof of Proposition 4

(i) Under Assumptions 1–4, let b ≥ 0 and ϵcd, ϵdc < 0, i.e. ucd >

. As shown previously, we derive from P2(λ) = 0 that there
exist two positive characteristic roots, one being lower than 1
and the other larger. From P1(λ) as given by (43), the associated
characteristic roots λ1 and λ2 are both negative. Moreover, we
et:

1(−1) =

(
1 +

ϵcc
ϵdc

)(
1 +

ϵdc
βϵcc

)
=

(ϵcc+ϵdc )(βϵcc+ϵdc )
βϵccϵdc

We conclude easily that

P1(−1) < 0 ⇔ ϵcc ∈ (0, −ϵdc) ∪ (−ϵdc/β, +∞)
1(−1) > 0 ⇔ ϵcc ∈ (−ϵdc, −ϵdc/β)
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It follows that the steady state is a saddle-point with damped 
oscillations when ϵcc ∈ (0, −ϵdc )∪(−ϵdc /β, +∞) and there exists 
a flip bifurcation with persistent period-2 cycles when ϵcc crosses 
the bifurcation values −ϵdc or −ϵdc /β . Considering the expression
of the elasticity of intertemporal substitution in consumption (5), 
these conditions can be equivalently stated in terms of ε. Namely,
the steady state is a saddle-point with damped oscillations when 
ς ∈ (0, ς ) ∪ (ς̄ , +∞) with ς = (ϵcc β)/(1 + β) and ς̄ = ϵcc /2, 
and there exists a flip bifurcation with persistent period-2 cycles 
when ς crosses the bifurcation values ς or ς̄ .

(ii) Under Assumptions 1–4, let ϵcd, ϵdc ≥ 0, i.e. ucd ≤ 0, and 
b < 0. As shown previously, we derive from P1(λ) = 0 that there 
exist two positive characteristic roots, one being lower than 1 and 
the other larger. From P2(λ), the associated characteristic roots λ1 
and λ2 are both negative. Moreover we get:

P2(−1) =
(1+b)(b+β)

βb

e conclude easily that

1(−1) < 0 ⇔ b ∈ (−∞, −1) ∪ (−β, 0)

1(−1) > 0 ⇔ b ∈ (−1, −β)

t follows that the steady state is a saddle-point with damped
scillations when b ∈ (−∞, −1) ∪ (−β, 0). Moreover, if there
s some β∗

∈ (0, 1) such that b ∈ (−1, −β∗), then there exists
¯ ∈ (0, 1) such that, when β crosses β̄ from above, (k∗, d∗)
ndergoes a flip bifurcation leading to persistent period-2 cycles.
(iii) The case where the consumption good is capital intensive,

.e. b < 0, and ϵcd, ϵdc < 0, i.e. ucd > 0, is obviously derived from
he two previous cases. □

.6. Proof of Proposition 5

The characteristic polynomial (24) can be expressed as follows[
λ2

− λ

(
ϵdc

βϵcc
+

ϵcd

ϵdd

)
+

1
β

]
(λb − 1)(λβ − b)

βb

= −λ(λ − 1)
(

λ −
1
β

)
β

bϵcc

εck

εrk

(
ϵcc

ϵdc
−

ϵcd

ϵdd

)
r equivalently, using the notations of Lemma 1,

1(λ)P2(λ) = P3(λ)

with P3(λ) a degree-3 polynomial while P1(λ)P2(λ) is a degree-4
olynomial. If these two polynomials intersect four times, then
he four characteristic roots are real. To determine the number
f intersections of these polynomials, we can use informations
erived from the location of their respective roots. The roots of
3(λ) = 0 are quite obvious, namely λ31 = 0, λ32 = 1 and
33 = 1/β . Moreover, depending on the sign of ϵcd, ϵdc we get
if ϵcd, ϵdc < 0, then ϵcc

ϵdc
−

ϵcd
ϵdd

> 0 and limλ→+∞ P3(λ) = −∞

hile limλ→−∞ P3(λ) = +∞;
- if ϵcd, ϵdc > 0, then ϵcc

ϵdc
−

ϵcd
ϵdd

< 0 and limλ→+∞ P3(λ) = +∞

while limλ→−∞ P3(λ) = −∞;
The roots of P1(λ)P2(λ) = 0 are obviously given by the

respective roots of P1(λ) = 0 and P2(λ) = 0.
(i) Assume first that b > 0. We have shown in the proof of

Proposition 3 that b < β ≤ 1. The roots of P2(λ) = 0 are then
quite obvious, namely λ21 = 1/b > 1 and λ22 = b/β < 1.
Finally, the roots of P1(λ) = 0 are necessarily real and negative
if ϵcd, ϵdc < 0, or positive if ϵcd, ϵdc > 0. Moreover, we have
limλ→±∞ P1(λ)P2(λ) = +∞ and P1(0)P2(0) > 0.

If ϵcd, ϵdc < 0, we derive from the above informations that
P1(b/β)P2(b/β) = 0 > P3(b/β) while P1(1)P2(1) < P3(b/β)) = 0
implying a first intersection between P1(λ)P2(λ) and P3(λ) in the
positive orthant. Moreover, since P (1/β)P (1/β) < P (1/β) = 0
1 2 3
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Fig. 9. Real roots when b > 0 and ϵcd, ϵdc < 0.

hile P1(1/b)P2(1/b) = 0 > P3(b/β), we get a second intersection
P1(λ)P2(λ) and P3(λ) in the positive orthant. Since P1(0)P2(0) > 0,
1(λ)P2(λ) = 0 admits two roots in the negative orthant, P3(0) =

and P3(λ) is an increasing function in the negative orthant,
e conclude that there necessarily exists a third intersection
etween P1(λ)P2(λ) and P3(λ) in the positive orthant. The last in-
ersection, which also occurs in the negative orthant, is obtained
ecause limλ→−∞ P1(λ)P2(λ) > limλ→−∞ P3(λ). Indeed P3(λ) a
egree-3 polynomial while P1(λ)P2(λ) is a degree-4 polynomial.
e then get the following graphical illustration (see Fig. 9). It

ollows that the four roots of the characteristic polynomial (24)
re real.
If ϵcd, ϵdc > 0, the roots of P3(λ) = 0 and P2(λ) = 0

re the same as before while the roots of P1(λ) = 0 are now
eal and positive. Since P1(0)P2(0) > 0, P1(1/b)P2(1/b) = 0
nd P1(1)P2(1) > 0, there necessarily exists a second root of
1(λ)P2(λ) = 0 between 0 and 1/b implying two intersections
etween P1(λ)P2(λ) and P3(λ). The two others are obtained since
1(1/β)P2(1/β) > P3(1/β) = 0, P1(b/β)P2(b/β) = 0 < P3(b/β)
nd limλ→+∞ P1(λ)P2(λ) > limλ→+∞ P3(λ). We then get the
ollowing graphical illustration (see Fig. 10)

Here again, it follows that the four roots of the characteristic
olynomial (24) are real.
(ii) Assume now that b < 0 and ϵcd, ϵdc > 0. The roots

of P2(λ) = 0 become negative, namely λ21 = 1/b < λ22 =

b/β < 0. We easily get P1(0)P2(0) > 0, P1(1)P2(1) < P3(1) =

0, P1(1/β)P2(1/β) < P3(1/β) = 0, limλ→+∞ P1(λ)P2(λ) =

+∞ and limλ→+∞ P3(λ) = −∞. It follows that there are three
intersections between P1(λ)P2(λ) and P3(λ) in the positive or-
thant. Moreover, we have limλ→−∞ P1(λ)P2(λ) > limλ→−∞ P3(λ)
implying the existence of two additional intersections between
P1(λ)P2(λ) and P3(λ) in the negative orthant. We then get the
following graphical illustration (see Fig. 11) and it follows that
the four roots of the characteristic polynomial (24) are real. □

A.7. Proof of Proposition 6

Using a homogeneous of degree γ < 1 utility function,
the degree-4 characteristic polynomial as given by Proposition 2
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Fig. 10. Real roots when b > 0 and ϵcd, ϵdc > 0.

Fig. 11. Real roots when b < 0 and ϵcd, ϵdc > 0.

becomes

P(λ) =

[
λ2

+ λ

(
(γ−φ)2+βφ2

−βφϵcc (1−γ )(2φ−γ )
βφ(γ−φ)[1−ϵcc (1−γ )]

)
+

1
β

]
(λb−1)(λβ−b)

βb

+ λ(λ − 1)
(
λ −

1
β

)
β

b
εck
εrk

(1−γ )[γ−ϵccφ(1−γ )]
(γ−φ)[1−ϵcc (1−γ )]

(44)

and can be expressed as Q1(λ) = Q2(λ) with

Q1(λ) ≡
1

γ−φ

[
λ2(γ − φ) + λ

(
(γ−φ)2+βφ2

−βφϵcc (1−γ )(2φ−γ )
βφ[1−ϵcc (1−γ )]

)
+

(γ−φ)
β

]
(λb−1)(λβ−b)

βb

Q (λ) ≡ −
1 λ(λ − 1)

(
λ −

1
)

β εck (1−γ )[γ−ϵccφ(1−γ )]

2 γ−φ β b εrk [1−ϵcc (1−γ )]
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Considering the limit φ → γ we immediately conclude that one
root λ1 is necessarily real and equal to ±∞ and we get

Q1(λ) = λγ
(λb−1)(λβ−b)

βb

Q2(λ) = −λγ (λ − 1)
(
λ −

1
β

)
β

b
εck
εrk

(1 − γ )

t follows that a second root λ2 is real and equal to 0. Computing
ow the derivatives Q′

1(λ) and Q′

2(λ), and evaluating them at 0
ives

′

1(0) =
γ

β

Q′

2(0) = −
γ

b
εck
εrk

(1 − γ )

t follows that Q′

1(0) ≷ Q′

2(0) if and only if ϵcc ≶ ϵ̂cc with

ˆcc ≡ −
b

(1−γ )
εrk
εck

∈ (0, ϵ̃cc)

Note that ϵ̂cc ∈ (0, ϵ̃cc) if and only if

−
εck
bεrk

> 1 (45)

We conclude therefore that under condition (45) there exist two
additional intersections between Q1(λ) and Q2(λ) implying that
the two last characteristic roots λ3, λ4 are also real. Let us then
ssume that b ∈ (−∞, −1) ∪ (−β, 0). We derive that
(i) if ϵcc < ϵ̂cc then Q′

1(0) > Q′

2(0) with Q1(1/b) = Q1(b/β) =

which implies that one intersection must occur between −1
nd 0, say λ3 ∈ (−1, 0). Moreover we derive also that λ1 = −∞

nd λ4 < −1;
(ii) if ϵcc ∈ (ϵ̂cc, ϵ̃cc) then Q′

1(0) < Q′

2(0) with Q2(1) = 0 which
mplies that one intersection must occur between 0 and 1, say
3 ∈ (0, 1). Moreover we derive λ1 = +∞ and λ4 > 1.
We then conclude by continuity that there exists 0 < φ̄ < γ

uch that when φ ∈ (φ̄, γ ), the above results hold with λ1 ∈

−∞, −1) and λ2 ∈ (−1, 0) when ϵcc < ϵ̂cc or λ1 ∈ (1, ∞) and
2 ∈ (0, 1) when ϵcc ∈ (ϵ̂cc, ϵ̃cc). Considering the expression of ς

s given by (29) which is a decreasing function of φ, we derive
hat there exists a corresponding value ς = ς (φ̄), and it follows
that the above results hold for ς ∈ (0, ς ).

Note now that the characteristic polynomial (44) can be also
expressed as Q1(λ) = Q2(λ) with

Q1(λ) ≡
1
φ

[
λ2φ + λ

(
(γ−φ)2+βφ2

−β(γ−φ)ϵcc (1−γ )(2φ−γ )
β(γ−φ)[1−ϵcc (1−γ )]

)
+

φ

β

]
×

(λb−1)(λβ−b)
βb

Q2(λ) ≡ −
1
φ
λ(λ − 1)

(
λ −

1
β

)
β

b
εck
εrk

φ(1−γ )[γ−ϵccφ(1−γ )]
(γ−φ)[1−ϵcc (1−γ )]

Considering the limit φ → 0 we immediately conclude that one
root λ1 is necessarily real and equal to −∞ as b < 0, and we get

Q1(λ) =
λγ 2

β[1−ϵcc (1−γ )]
(λb−1)(λβ−b)

βb

Q2(λ) = 0

It follows that λ2 = 0, λ3 = 1/b and λ4 = b/β with one larger
han −1 and the other lower than −1 as b ∈ (−∞, −1)∪(−β, 0).
e then conclude by continuity that there exists 0 < φ ≤ φ̄ such

hat when φ ∈ (0, φ), the above results hold with λ1 ∈ (−∞, −1)
and λ2 ∈ (−1, 0). Considering again the expression of ς as given
by (29) which is a decreasing function of φ, we derive that there
exists a corresponding value ς̄ = ς (φ) ≥ ς , and it follows that
the above results hold for ς ∈ (ς̄ , ϵ ). □
cc
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A.8. Proof of Proposition 7

The expressions in (39) become here

B = −
β

b
εck
εrk

(1−γ )[γ−ϵccφ(1−γ )]
(γ−φ)[1−ϵcc (1−γ )] +

β+b2

βb

−

(
(γ−φ)2+βφ2

−βφϵcc (1−γ )(2φ−γ )
βφ(γ−φ)[1−ϵcc (1−γ )]

)
= −

(1+β)
b

εck
εrk

(1−γ )[γ−ϵccφ(1−γ )]
(γ−φ)[1−ϵcc (1−γ )]

−
β+b2

βb

(
(γ−φ)2+βφ2

−βφϵcc (1−γ )(2φ−γ )
βφ(γ−φ)[1−ϵcc (1−γ )]

)
+

2
β

(46)

s ϵcc < ϵ̃cc and b ∈ (−∞, −1) ∪ (−β, 0), we immediately get
> 0 for any φ ∈ (0, γ ). Moreover, when ϵcc = 0, we get

=
β+b2

βb −
β

b
εck
εrk

γ (1−γ )
γ−φ

−

(
(γ−φ)2+βφ2

βφ(γ−φ)

)
< 0

or any φ ∈ (0, γ ) if and only if

εck
bεrk

<
γ−φ

βγ (1−γ )

[
(γ−φ)2+βφ2

βφ(γ−φ) −
β+b2

βb

]
(47)

s the right-hand-side of (47) is a decreasing function of φ, we
conclude that it is always satisfied if

−
εck
bεrk

< 1
β(1−γ ) ≡ ε1 (48)

ith ε1 > 1. Therefore, under condition (48) there exists ϵ̄1
cc ∈

0, ϵ̃cc) such that B < 0 for any φ ∈ (0, γ ) if ϵcc ∈ (0, ϵ̄1
cc).

Let us consider now the expression P = 8C − 3B2. We derive
rom (46) that P is a hump-shaped function of φ over (0, γ ).
hen ϵcc = 0, we get

= −
1+β

b
εck
εrk

γ (1−γ )
γ−φ

−
β+b2

βb

(
(γ−φ)2+βφ2

βφ(γ−φ)

)
+

2
β

≡ −
1+β

b x −
β+b2

βb z +
2
β

B =
β+b2

βb − z −
β

b x

(49)

nd

< −
8(1+β)

b x −

(
β+b2

βb + z
)2

− 2
[(

β+b2

βb

)2
−

8
β

+ z2
]

traightforward computations yield z ≥ 2/
√

β and thus

β+b2

βb

)2
−

8
β

+ z2 >

(
β+b2

βb

)2
−

4
β

=

(
β+b2

βb −
2

√
β

)
×

(
β+b2

βb +
2

√
β

)
=

(b−
√

β)2

βb
(b+

√
β)2

βb > 0

for any φ ∈ (0, γ ). Therefore, P < 0 for any φ ∈ (0, γ ) when
cc = 0 if and only if

εck
bεrk

<
γ−φ

8(1+β)γ (1−γ )

{(
β+b2

βb + z
)2

+ 2
[(

β+b2

βb

)2
−

8
β

+ z2
]}

(50)

We can show that the right-hand-side of (50) is a U-shaped
function of φ over (0, γ ) and there exists a unique minimum
value ε2 > 1 such that condition (50) holds if

−
εck
bεrk

< ε2 (51)

t follows that under condition (51) there exists ϵ̄2
cc ∈ (1, ϵ̄1

cc) such
that P < 0 for any φ ∈ (0, γ ) if ϵcc ∈ (0, ϵ̄2

cc).
Let us consider finally R and D as given by (40) and (41).

traightforward computations yield:

lim
φ→0

B = −∞ and lim
φ→0

C = −∞ so that lim
φ→0

R = −∞

and lim
φ→0

D = −∞
φ
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Fig. 12. The function F (φ) with its two roots φ1 and φ2 .

nd there exists γ 1
∈ (0, 1) such that when γ ∈ (γ 1, 1)

lim
φ→γ

B = −∞ and lim
φ→γ

C = −∞ so that lim
φ→γ

R = −∞

and lim
φ→γ

D = −∞

We need now to show that there exists a subset of values of φ

for which R and D can be positive. Let us consider the particular
values ϵcc = 0, and b = −β . It follows from (49) that

B2
+

8
β

− 4C =

(
z(φ) − x −

1+β

β

)2
−

8(1+β)x
β

≡ F (φ)

with

z(φ) =
(γ−φ)2+βφ2

βφ(γ−φ) and x =
εck
εrk

γ (1−γ )
γ−φ

bviously, F (φ) = 0 can be solved through the degree two
polynomial

z(φ) − x −
1+β

β
= 2

√
2(1+β)x

β

It follows therefore that there exists γ 2
∈ (0, 1) such that when

γ ∈ (γ 2, 1) the two roots for which F (φ) = 0 satisfy φ1, φ2 ∈

(0, 1). In the particular case γ = 1, these roots are indeed such
that

φ1 =
1
2 and φ2 =

1
1+β

Moreover, there exists γ 3
∈ (0, 1) such that when γ ∈ (γ 3, 1)

there is a value φ3 ∈ (φ1, φ2) such that F ′(z) = 0 when φ =

φ1, φ2, φ3. Notice indeed that in the particular case γ = 1, we
have

φ3 =
1

1+
√

β

Obviously, F (φ) > 0 when φ = φ3. Note also that limφ→0 F (φ) =

limφ→1 F (φ) = +∞. As a result, we conclude that F (φ) ≥ 0 for
any φ ∈ (0, 1) with the shape of Fig. 12.

Consider now γ < 1, ϵcc > 0 and the expressions of B and C
as given by (46), and let us define

B2
+

8
β

− 4C ≡ G(ϵcc, γ , φ) (52)

By continuity, there exists γ 4
∈ (0, 1) close to 1 and φ̃3 close to

such that for any given γ ∈ (γ 4, 1), ∂G(ϵ , γ , φ̃ )/∂φ = 0.
3 cc 3
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Fig. 13. The function G(ϵcc , γ , φ).

oreover, since G(ϵcc, γ , φ) is a decreasing function of ϵcc with
imϵcc→ϵ̄2cc

G(ϵcc, γ , φ̃3) < 0, we conclude that there exists ϵcc ∈

0, ϵ̄2
cc) such that for any given γ ∈ (γ 4, 1), when ϵcc = ϵcc and

= φ̃3 we have G(ϵcc, γ , φ̃3) = ∂G(ϵcc, γ , φ̃3)/∂φ = 0 such that
he curve on Fig. 13.

We conclude therefore that there exist b̄ ∈ (−β, 0), φc
∈

(0, φ1) and φ̄c
∈ (φ2, γ ) such that if γ ∈ (max{γ 1, γ 2, γ 3, γ 4

}, 1),
∈ (−β, b̄) and ϵcc ∈ (ϵcc, ϵ̄

2
cc), then R > 0 when φ ∈ (φc, φ̄c)

and R < 0 when φ ∈ (0, φc)∪ (φ̄c, γ ). Considering the expression
of ς as given by (29) which is a decreasing function of φ, we
derive that there exists a corresponding value ς̄ c

= ς (φc) and
ς c

= ς (φ̄c), and it follows that R > 0 when ς ∈ (ς c, ς̄ c) and
< 0 when ς ∈ (0, ς c) ∪ (ς̄ c, +∞).
Let us consider now D. We have proved that for any given
∈ (γ 4, 1), if ϵcc ∈ (0, ϵ̄2

cc) then P < 0 for any φ ∈ (0, γ ). This
mplies that −3B2 < −8C and thus

8
β

− 3B2
+ 4C < 8

β
− 4C = −4

{
−

(1+β)
b

εck
εrk

(1−γ )[γ−ϵccφ(1−γ )]
(γ−φ)[1−ϵcc (1−γ )]

−
β+b2

βb

(
(γ−φ)2+βφ2

−βφϵcc (1−γ )(2φ−γ )
βφ(γ−φ)[1−ϵcc (1−γ )]

) }
< 0

t follows that if γ ∈ (max{γ 1, γ 2, γ 3, γ 4
}, 1), b ∈ (−β, b̄) and

ϵcc ∈ (ϵcc, ϵ̄
2
cc), then D has the same sign as R for any φ ∈ (0, γ ),

nd the characteristic roots are complex when φ ∈ (φc, φ̄c) and
eal when φ ∈ (0, φc) ∪ (φ̄c, γ ). Moreover, when φ = φc or φ̄c ,
R = D = 0. It follows therefore that the characteristic roots are
complex when ς ∈ (ς c, ς̄ c) and real when ς ∈ (0, ς c)∪ (ς̄ c, ϵcc).
oreover, when ς = ς c or ς̄ c , R = D = 0.
As explained in Remark 1, the polynomial (38) belongs to the

class of quasi-palindromic equation and the exact solutions can
be computed. Dividing P(λ) by λ2 gives

P(λ)
λ2

= λ2
+

(
1

λβ

)2
− B

(
λ +

1
λβ

)
+ C = 0

nd denoting z = λ + 1/(λβ) yields to the following degree-2
olynomial in z

(z) = z2 − zB + C −
2

β
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The corresponding discriminant is then

∆z = B2
+

8
β

− 4C =
R
B

and under the previous conditions we have ∆z < 0. The roots are
then

z1 =
B+i

√
−

R
B

2 and z2 =
B−i

√
−

R
B

2

Plugging this into the definition of z gives the following two
degree-2 polynomials in λ:

λ2β − λz1β + 1 = 0 and λ2β − λz2β + 1 = 0 (53)

It is worth noticing that a similar characteristic polynomial P(λ)
as given by (38) has been considered by de la Croix and Michel
(1999) in an optimal growth model with inherited tastes. While
they do not refer to its quasi-palindromic structure, they find
the same degree-2 polynomials (53) (see their equation (B.1)
age 535). However, as they easily prove that the steady state is
ecessarily a saddle-point, they do not need to explicitly compute
he four characteristic roots. In this paper, we need on the con-
rary to apply in detail the technique related to quasi-palindromic
olynomials in order to provide precise conditions for bifurcating
omplex roots.
Denoting ∆1 = (z1β)2 −4β and ∆2 = (z2β)2 −4β , straightfor-

ard computations give
√

∆1 and
√

∆2 as given in Box I, and we
inally derive the characteristic roots λ1, λ2, λ3 and λ4 as given
n Box II, with λ3 = 1/(βλ1) and λ4 = 1/(βλ2). The existence
f a Hopf bifurcation amounts to show that the product λ1λ2 can
ross the value 1 when the parameter φ is varied over the interval
φc, φ̄c). Obviously we get

λ1λ2 =

⎛⎜⎝ B+

√
B2+

R
B −

16
β

+

√(
B2+

R
B −

16
β

)2
−4BR

2
4

⎞⎟⎠
2

×
B2−

R
B −

16
β

+

√(
B2+

R
B −

16
β

)2
−4BR

B2+
R
B −

16
β

+

√(
B2+

R
B −

16
β

)2
−4BR

By definition we know that if φ = φc or φ̄c , we get R = 0 and
thus

λ1λ2 =

(
B+
√
B2−

16
β

4

)2

Considering that B < 0, we then derive that λ1λ2 < 1 if and only
if

B < −
2(1+β)

β
(54)

ut since R = 0, B2
= 4C − 8/β and, using (46) and assuming

= −β , inequality (57) becomes
εck
εrk

(1−γ )[γ−ϵccφ(1−γ )]
(γ−φ)[1−ϵcc (1−γ )] +

(γ−φ)2+βφ2
−βφϵcc (1−γ )(2φ−γ )

βφ(γ−φ)[1−ϵcc (1−γ )] >
1+β

β
(55)

When ϵcc = 0, this inequality becomes
εck
εrk

γ (1−γ )
(γ−φ) +

γ−2φ
φ(1−φ)

γ−φ(1+β)
β

> 0 (56)

There exists γ 5
∈ (0, 1) such that when γ ∈ (γ 5, 1), (56) is

obviously satisfied when φ = φc or φ̄c . Since the left-hand-side of
inequality (55) is an increasing function of ϵcc , we conclude that
λ1λ2 < 1 when γ ∈ (max{γ 1, γ 2, γ 3, γ 4, γ 5

}, 1), b ∈ (−β, b̄),
ϵcc ∈ (ϵcc, ϵ̄

2
cc) and φ = φc or φ̄c .

Tedious but straightforward computations also show that λ1λ2
s a hump-shaped function of φ over (φc, φ̄c). Consider the critical
values ϵc and φ̃3 previously defined such that when ϵcc = ϵcc
and φ = φ̃ we have G(ϵ , γ , φ̃ ) = ∂G(ϵ , γ , φ̃ )/∂φ = 0 with
3 cc 3 cc 3
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√
∆1 =

β

⎛⎜⎜⎜⎜⎝
√

B2+
R
B −

16
β

+

√(
B2+

R
B −

16
β

)2
−4BR

2 +i
B
√

−R
B√ B2+

R
B −

16
β

+

√(
B2+

R
B −

16
β

)2
−4BR

2

⎞⎟⎟⎟⎟⎠
2

√
∆2 =

β

⎛⎜⎜⎜⎜⎝
√

B2+
R
B −

16
β

+

√(
B2+

R
B −

16
β

)2
−4BR

2 −i
B
√

−R
B√ B2+

R
B −

16
β

+

√(
B2+

R
B −

16
β

)2
−4BR

2

⎞⎟⎟⎟⎟⎠
2

Box I.
λ1 =

B+

√
B2+

R
B −

16
β

+

√(
B2+

R
B −

16
β

)2
−4BR

2 +i
√

−R
B

⎡⎢⎢⎢⎢⎣1+ B√ B2+
R
B −

16
β

+

√(
B2+

R
B −

16
β

)2
−4BR

2

⎤⎥⎥⎥⎥⎦
4

λ2 =

B+

√
B2+

R
B −

16
β

+

√(
B2+

R
B −

16
β

)2
−4BR

2 −i
√

−R
B

⎡⎢⎢⎢⎢⎣1+ B√ B2+
R
B −

16
β

+

√(
B2+

R
B −

16
β

)2
−4BR

2

⎤⎥⎥⎥⎥⎦
4

λ3 =

B−

√
B2+

R
B −

16
β

+

√(
B2+

R
B −

16
β

)2
−4BR

2 +i
√

−R
B

⎡⎢⎢⎢⎢⎣1− B√ B2+
R
B −

16
β

+

√(
B2+

R
B −

16
β

)2
−4BR

2

⎤⎥⎥⎥⎥⎦
4

λ4 =

B−

√
B2+

R
B −

16
β

+

√(
B2+

R
B −

16
β

)2
−4BR

2 −i
√

−R
B

⎡⎢⎢⎢⎢⎣1− B√ B2+
R
B −

16
β

+

√(
B2+

R
B −

16
β

)2
−4BR

2

⎤⎥⎥⎥⎥⎦
4

Box II.
a
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w

s

c
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c
o
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e

a
p

(.) as defined by (52). We know that φ̃3 is in a neighborhood of
3 = 1/(1 +

√
β). It follows that when ϵcc = ϵcc and φ = φ̃3 we

get again R = 0 and following the same argument as above we
conclude that λ1λ2 > 1 if and only if

B > −
2(1+β)

β
(57)

ssuming b = −β and φ = φ3, this inequality is approximated
y

εck
εrk

(1−γ )[1+
√

β−ϵccφ(1−γ )]
1−ϵcc (1−γ ) +

2−ϵcc (1−γ )(1−
√

β)
1−ϵcc (1−γ ) <

1+β
√

β
(58)

When γ = 1, this inequality is obviously satisfied. There-
fore, there exists γ 6 < 1 such that λ1λ2 > 1 when γ ∈

(γ 6, 1), ϵcc = ϵcc and φ = φ̃3. We conclude that there exists
ϵ̄3
cc ∈ (ϵcc, ϵ̄

2
cc], φH

∈ (φc, φ̃3) and φ̄H
∈ (φ̃3, φ̄

c) such that
hen γ ∈ (max{γ 1, γ 2, γ 3, γ 4, γ 5, γ 6

}, 1), b ∈ (−β, b̄), ϵcc ∈

(ϵcc, ϵ̄
3
cc) then λ1λ2 < 1 when φ ∈ (φc, φH ) ∪ (φ̄H , φ̄c) and

1λ2 > 1 when φ ∈ (φH , φ̄H ). The result follows denoting
= max{γ 1, γ 2, γ 3, γ 4, γ 5, γ 6

}, ε̄ = min{ε1, ε2
} and ϵ̄cc =

min{ϵ̄1
cc, ϵ̄

2
cc, ϵ̄

3
cc}. Considering one more time the expression of ς

s given by (29) which is a decreasing function of φ, we derive
hat there exists a corresponding value ς̄H

= ς (φH ) and ςH
=

(φ̄H ), and it follows that λ1λ2 < 1 when ς ∈ (ς c, ςH )∪ (ς̄H , ς̄ c)
nd λ λ > 1 when ς ∈ (ςH , ς̄H ). □
1 2 c
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A.9. Proof of Proposition 8

Consider Eqs. (14) and (15) that give the dynamics of bequests
nd bequests as a proportion of GDP from the equilibrium paths
f capital {kt}t≥0 and second period consumption {dt}t≥0, namely

txt = rtkt − dt
pt xt
GDPt

=
pt xt

T (kt ,kt+1)+pt yt
= s(kt , kt+1) −

dt
T (kt ,kt+1)−Ty(kt ,kt+1)kt+1

.
(59)

ith

(kt , kt+1) =
Tk(kt ,kt+1)kt

T (kt ,kt+1)−Ty(kt ,kt+1)kt+1

the share of capital income in GDP. If {kt}t≥0 and {dt}t≥0 are
haracterized by periodic or quasi-periodic dynamics, this is also
rue for bequests. Indeed, consider first the case of period-2
ycles which are characterized for {kt , dt}t≥0 by the existence
f two pairs (k1, d1) and (k2, d2) such that (kt , dt ) = (k1, d1)
nd (kt+1, dt+1) = (k2, d2). It follows that a period-2 cycle also
xists for bequests as ptxt = Tk(k1, k2)k1 − d1 and pt+1xt+1 =

Tk(k2, k1)k2−d2 since, as long as (k1, d1) ̸= (kt+1, dt+1) = (k2, d2),
we get indeed ptxt ̸= pt+1xt+1. A similar argument can be applied
for quasi-periodic cycles which are characterized by a collection
of distinct pairs {kτ , dτ }τ≥0 located on a circle (or more generally
n ellipse). Depending on some coefficients associated to the
rojection of the dynamical system on the center manifold, this
ollection of pairs may be periodic, of period T , or quasi-periodic.
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In both cases, for each pair (kτ , dτ ), we can find associated values
f pτ xτ that are also located on the ellipse and that possess the
ame periodic or quasi-periodic property.
Similarly, since the share of capital income in GDP, s(kt , kt+1), 

and the share of consumption of old agents in GDP, dt /GDPt , 
are generically non-constant and non-equal, if {kt }t≥0 and {dt }t≥0
are characterized by periodic or quasi-periodic dynamics, this is 
also true for bequests as a proportion of GDP. Indeed, consider 
gain the case of period-2 cycles for {kt , dt }t≥0 with two pairs
k1, d1) and (k2, d2) such that (kt , dt ) = (k1, d1) and (kt+1, dt+1) = 
k2, d2). It follows that a period-2 cycle also exists for bequests as 
 proportion of GDP as
pt xt
GDPt

= s(k1, k2) −
d1

T (k1,k2)−Ty(k1,k2)k2
and

pt+1xt+1
GDPt+1

= s(k2, k1) −
d2

T (k2,k1)−Ty(k2,k1)k1

As long as (k1, d1) ̸= (kt+1, dt+1) = (k2, d2), we get indeed
pt xt
GDPt

̸=
pt+1xt+1
GDPt+1

similar argument can be applied for quasi-periodic cycles. As
xplained above, for each pair (kτ , dτ ), we can find associated
alues of pτ xτ/GDPτ that are also located on the ellipse and that

possess the same periodic or quasi-periodic property. □

.10. Proof of Corollary 1

Consider the Cobb–Douglas technologies as given by (33). We
ollow the same methodology as in Baierl et al. (1998). The
Lagrangian associated with the optimization program (1) is:

L = kα0
0 l1−α0

0 + w
(
1 − l0 − l1

)
+ r

(
k − k0 − k1

)
+p

[
kα1
1 l1−α1

1 − y
] (60)

The first order conditions are:

r = α0k
α0−1
0 l1−α0

0 = pα1k
α1−1
1 l1−α1

1 (61)

w = (1 − α0)k
α0
0 l−α0

0 = p(1 − α1)k
α1
1 l−α1

1 (62)

Using k0 = k − k1, l0 = 1 − l1, and merging the above equations
gives:

l∗0 =
(1 − α0)α1(k − k∗

1)
(α0 − α1)k∗

1 + (1 − α0)α1k
(63)

l∗1 =
α0(1 − α1)k∗

1

(α0 − α1)k∗

1 + (1 − α0)α1k
(64)

∗

c = k − k∗

1 (65)

k∗

1 = g(k, y) ≡ g (66)

here

(k, y) =

{
k1 ∈ [0, kα1 ] / y =

[α0(1−α1)]1−α1 k1
[(1−α0)α1k+(α0−α1)k1]

1−α1

}
(67)

From (61), (63) and (65) we obtain:

Tk = r∗
= α0

[
(1−α0)α1

(1−α0)α1k+(α0−α1)g

]1−α0
(68)

nd from (61), (64), (66) and (68):

y = p∗
=

α0[(1−α0)α1]
1−α0 [α0(1−α1)]−(1−α1)[(1−α0)α1k+(α0−α1)g]

α0−α1

α1

(69)

y the derivation of g , we have, for any equilibrium path, the
dentity (1 − α )α k + (α − α )g = α (1 − α )(g/y)1/(1−α1).
0 1 0 1 0 1
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Substituting this into (68) and (69) gives after simplifications:

Tk(k, y) = α0

(
(1−α0)α1
α0(1−α1)

)1−α0 (
y
g

) 1−α0
1−α1

Ty(k, y) = −
α1
β1

(
(1−α0)α1
α0(1−α1)

)1−α0 (
y
g

) α1−α0
1−α1

Tkk(k, y) = −Tk(k, y)
g1
g

with g1 = ∂g(k, y)/∂k. A steady state k∗ is then defined as
Tk(k∗, k∗) + βTy(k∗, k∗) = 0. Denote g∗

= g(k∗, k∗) and y∗
= k∗.

Using the derivatives of T in the definition of k∗ gives:

g∗
= βα1k∗ (70)

Substituting (70) into the definition of g , we find

k∗
=

α0(1−α1)(βα1)

1
1−α1

α1[1−α0+β(α0−α1)]
(71)

Considering (67), we easily derive

g1 =
βα1(1−α0)(1−α1)
1−α0+β(α0−α1)

(72)

From all these results and (3), we get

c∗
+ d∗

= T (k∗, k∗) =

(
α0(1−α1)
(1−α0)α1

)α0 (1−α0)(1−βα1)(βα1)

α0
1−α1

1−α0+β(α0−α1)

r∗
= Tk(k∗, k∗) = α0

(
(1−α0)α1
α0(1−α1)

)1−α0
(βα1)

−
1−α0
1−α1

Tkk(k∗, k∗) = −
Tk(k∗,k∗)

k∗
(1−α0)2

1−α0+βα1(α0−α1)

b =
β(α1−α0)

1−α0

We then easily derive

εck =
α0

1−βα1
and εrk =

(1−α0)2

1−α0+βα1(α0−α1)
(73)

Considering (29) with γ = 1, the characteristic polynomial
(24) becomes here

P(λ) =

(
λ +

ϵcc−ς

ς

)(
λ +

ς

β(ϵcc−ς )

)
(λb−1)(λβ−b)

βb (74)

and the characteristic roots are

λ1 = −
ϵcc−ς

ς
= −

φ

1−φ
, λ2 = −

ς

β(ϵcc−ς ) = −
1−φ

βφ
,

λ3 =
1
b =

1−α0
β(α1−α0)

and λ4 =
b
β

=
α1−α0
1−α0

(75)

Assume that α0 > (1 + α1)/2 > α1, then λ3 ∈ (−1, 0) if and
only if β > (1 − α0)/(α0 − α1) ≡ β1(∈ (0, 1)) while λ4 < −1.
The critical value β1 is thus a flip bifurcation value. Moreover, we
then have the following cases:

(a) If φ ≤ 1/2 then λ1 > −1 and λ2 < −1 for any β ∈ (0, 1).
(d) If φ > 1/2 then λ2 > −1 if and only if β >

1−φ

φ
≡ β2 while

1 < −1. The critical value β2 is thus a flip bifurcation value.
We notice that if φ > 1/2, then β1 ≥ β2 if and only if
≥

α0−α1
1−α1

≡ φ∗(> 1/2). In this case, there are two flip
bifurcation values for β implying that two flip bifurcations can
occur successively when β is decreased from 1. More importantly,
if φ =

α0−α1
1−α1

≡ φ∗, then β1 = β2 = β and two characteristic roots
are simultaneously equal to −1 when β = β . This corresponds to
a co-dimension 2 flip bifurcation with a 1:2 resonance. □
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