PPARγ and NOTCH Regulate Regional Identity in the Murine Cardiac Outflow Tract
Mayyasa Rammah, Magali Théveniau-Ruissy, Rachel Sturny, Francesca Rochais, Robert Kelly

To cite this version:
Mayyasa Rammah, Magali Théveniau-Ruissy, Rachel Sturny, Francesca Rochais, Robert Kelly. PPARγ and NOTCH Regulate Regional Identity in the Murine Cardiac Outflow Tract. Circulation Research, 2022, 131 (10), pp.842-858. 10.1161/CIRCRESAHA.122.320766 . hal-03872770

HAL Id: hal-03872770
https://amu.hal.science/hal-03872770
Submitted on 17 Jan 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
PPARγ and NOTCH Regulate Regional Identity in the Murine Cardiac Outflow Tract

Mayyasa Rammah,* Magali Théveniau-Ruissy, Rachel Sturny, Francesca Rochais,† Robert G. Kelly†

BACKGROUND: The arterial pole of the heart is a hotspot for life-threatening forms of congenital heart defects (CHDs). Development of this cardiac region occurs by addition of Second Heart Field (SHF) progenitor cells to the embryonic outflow tract (OFT) and subsequently the base of the ascending aorta and pulmonary trunk. Understanding the cellular and genetic mechanisms driving arterial pole morphogenesis is essential to provide further insights into the cause of CHDs.

METHODS: A synergistic combination of bioinformatic analysis and mouse genetics as well as embryo and explant culture experiments were used to dissect the cross-regulatory transcriptional circuitry operating in future subaortic and subpulmonary OFT myocardium.

RESULTS: Here, we show that the lipid sensor PPARγ (peroxisome proliferator–activated receptor gamma) is expressed in future subpulmonary myocardium in the inferior wall of the OFT and that PPARγ signaling-related genes display regionalized OFT expression regulated by the transcription factor TBX1 (T-box transcription factor 1). Modulating PPARγ activity in ex vivo cultured embryos treated with a PPARγ agonist or antagonist or deleting Pparγ in cardiac progenitor cells using Mesp1-Cre reveals that Pparγ is required for addition of future subpulmonary myocardium and normal arterial pole development. Additionally, the non-canonical DLK1 (delta-like noncanonical Notch ligand 1)/NOTCH (Notch receptor 1)/HES1 (Hes family bHLH transcription factor 1) pathway negatively regulates Pparγ in future subaortic myocardium in the superior OFT wall.

CONCLUSIONS: Together these results identify Pparγ as a regulator of regional transcriptional identity in the developing heart, providing new insights into gene interactions involved in congenital heart defects.

GRAPHIC ABSTRACT: A graphic abstract is available for this article.

Key Words: aorta ■ heart defects, congenital ■ morphogenesis ■ myocardium ■ PPAR gamma

The arterial pole or outlet of the heart, which comprises the myocardial base of the ascending aorta and pulmonary trunk, is an important component of the definitive heart and a hotspot for life-threatening forms of congenital heart defects (CHDs). The arterial pole of the heart is formed by progressive addition of myocardial cells to the outflow tract (OFT) from Second Heart Field (SHF) progenitor cells.1,2 Located in the adjacent pharyngeal mesoderm, SHF cells contribute to major parts of the heart including right ventricular, OFT, and atrial myocardium.3–5 Direct or indirect perturbations of SHF deployment result in impaired embryonic OFT development and lead to a large spectrum of arterial pole defects including common arterial trunk, double outlet right ventricle, tetralogy of Fallot, and transposition of the great arteries, accounting for more than 30% of human CHDs.6,7 Understanding the cellular and genetic mechanisms driving arterial pole morphogenesis is, therefore, essential to provide further insights into the cause of CHDs.

Studies from our laboratory and others have revealed that subaortic and subpulmonary myocardium, which are prefigured in the superior and inferior regions of the arterial pole, are crucial for the development of the OFT and outflow tract.
Novelty and Significance

What Is Known?

- Development of the arterial pole of the heart occurs by the addition of Second Heart Field progenitor cells from the pharyngeal mesoderm to the outflow tract (OFT).
- The base of the ascending aorta and pulmonary trunk are prefigured in the superior and inferior OFT, respectively, displaying distinct genetic signatures.
- Hes family bHLH transcription factor 1 (Hes1) and T-box transcription factor 1 (Tbx1) encode transcription factors required for arterial pole development.
- Peroxisome proliferator–activated receptor gamma (Pparγ) is enriched in the inferior OFT.

What New Information Does This Article Contribute?

- PPARγ signaling controls cross-regulatory transcriptional programs in the OFT.
- Pparγ is required for the addition of early Second Heart Field cells to the OFT.
- Pparγ expression in the inferior OFT is Tbx1-dependent.
- The NOTCH (Notch receptor 1)/Hes1 pathway controls the molecular identity of the superior OFT through repressing Pparγ expression.
- Delta-like 1 (Dll1), a non-canonical NOTCH ligand and PPARγ antagonist, is expressed in the superior OFT and regulates OFT transcriptional domains.

We provide insights into the regulatory pathways operating in distinct OFT subdomains during mammalian heart development. We show that Pparγ is expressed in the Tbx1-dependent inferior OFT wall and is required for normal arterial pole development. We demonstrate that Pparγ expression is repressed by NOTCH/HES1 signaling in the superior wall of the OFT and identify Dlk1 (delta-like noncanonical Notch ligand 1) as an upstream NOTCH/HES1 signaling regulator in the superior OFT wall. Together these findings contribute to our understanding of the complex regulatory interactions controlling regional identity in the OFT and the origins of congenital heart defects.

Nonstandard Abbreviations and Acronyms

- **AHF** | anterior heart field
- **CHDs** | congenital heart defects
- **Cre** | cyclization recombinase
- **DLK1** | delta-like noncanonical Notch ligand 1
- **E** | embryonic day
- **HES1** | Hes family bHLH transcription factor 1
- **Hoxb1** | homeobox B1
- **iOFT** | inferior wall of the OFT
- **IPA** | Ingenuity Pathway Analysis
- **MAPK/ERK** | mitogen-activated kinase protein/extracellular regulated MAP kinase
- **Mef2c** | Myocyte-specific enhancer factor 2C
- **MESP1** | mesoderm posterior 1
- **MF20** | Myosin Heavy Chain antibody
- **NICD1** | Notch intracellular domain
- **NOTCH** | Notch receptor 1
- **OFT** | outflow tract
- **PH3** | phospho-histone 3
- **PPAR** | peroxisome proliferator–activated receptor
- **PPARγ** | peroxisome proliferator–activated receptor gamma
- **PPARGC1A** | peroxisome proliferator–activated receptor gamma coactivator 1-alpha
- **PPARγ/α/δ** | peroxisome proliferator–activated receptor gamma/alpha/delta
- **PPRE** | peroxisome proliferator response element
- **PREF1** | Pre-adipocyte factor 1
- **rDLK1** | recombinant DLK1
- **RT-qPCR** | quantitative reverse transcription polymerase chain reaction
- **SHF** | Second Heart Field
- **sOFT** | superior wall of the OFT
- **TBX1** | T-box transcription factor 1

For example, the y96-Myf5-nlacZ-16 Sema3c enhancer trap transgene is expressed in the inferior wall of the OFT (iOFT) and subsequently at the base of the pulmonary trunk, whereas the A17-Myf5-nlacZ-T55 Hes1 enhancer trap transgene (Hes1-Tg) is expressed in the superior wall of the OFT (sOFT) and later in the myocardium at the base of the ascending aorta. Moreover, retrospective clonal analysis of OFT cardiomyocytes identified regionalized clusters of clonally related cells located in the myocardium at the base...
of either the aorta or pulmonary artery, suggesting that distinct progenitor cell lineages contribute to the inferior and superior regions of the OFT.\(^\text{10}\)

The origin of the subaortic and subpulmonary myocardial progenitor cells in the SHF is still under investigation, nevertheless, studies using lineage tracing, fluorescent dye labeling, and retrospective clonal analysis demonstrate that in addition to the anterior part of the SHF that gives rise to major parts of the OFT,\(^{1,15}\) a Hoxb1-expressing subpopulation of the posterior SHF contributes to the iOFT and subsequently to subpulmonary myocardium.\(^{11,16}\) SHF cells expressing the T-box transcription Tbx1 have been shown to contribute to the inferior and lateral but not superior walls of the embryonic OFT.\(^{8,17}\) Moreover, TBX1 (T-box transcription factor 1), by controlling the addition of Hoxb1-expressing cells from the posterior SHF to the iOFT, is required for the correct morphogenesis of subpulmonary myocardium in the fetal heart.\(^{9,12}\) Interestingly, conditional gene ablation corrected morphogenesis of subpulmonary myocardium from the posterior SHF to the iOFT, is required for the anterior OFT subdomains remain to be investigated.\(^{18,19}\) Nevertheless, the precise roles of Pparγ in heart morphogenesis remain to be investigated.

In this study, we demonstrate that PPARγ signaling-related genes are regionally expressed in the OFT and that the PPARγ signaling pathway is required for arterial pole development. Using mouse genetics as well as embryo and explant culture experiments we have dissected the transcriptional cross-regulatory circuitry operating in future subaortic and subpulmonary OFT myocardium. We present evidence that the DLK1 (delta-like noncanonical Notch ligand 1)/NOTCH/HES1 pathway represses Pparγ together with its downstream-related targets in the sOFT whereas TBX1 activates PPARγ signaling in the iOFT, implicating complementary PPARγ and non-canonical NOTCH signaling in regional transcriptional identity in the outflow tract.

METHODS

Data Availability

A detailed description of all experimental procedures and statistical tests can be found in the Supplemental Methods.

Transgenic Mouse Lines

The following mouse lines were used in this study: Hes1\(^{1/−}\), Tbx1\(^{−/−}\), Pparγ\(^{1/−}\). The source of the animals used in this study together with their origin, background, and original publication are listed in the Major Resources Tables in the Supplemental Material. Developmental stage was determined by considering noon on the day of appearance of a copulation plug as embryonic day (E) 0.5. Genomic DNA from yolk sacs or tail biopsies was genotyped by polymerase chain reaction using primer sequences as described in the above references and reported in the Major Resources Tables. Animal care was in accordance with national and institutional guidelines. Animals were maintained under controlled light and temperature conditions with free access to food and water. Mice were treated humanely, and all efforts were made to minimize the animals’ suffering and the number of mice used in the study. For all experiments, animals were randomly allocated into experimental groups after considering their specific genotypes when this was required. No animals were excluded from this study and male and female embryos were randomly and blindly chosen for all experiments.
Figure 1. Ingenuity analysis on the transcriptional profile of the superior and inferior outflow tract (OFT) distinguish PPAR (peroxisome proliferator–activated receptor) signaling pathway genes.

A, Embryonic day (E) 10.5 embryo schematic left and ventral (heart removed) views showing the superior (green) and inferior (red) outflow tract (OFT). B, Mechanistic network showing the molecular relationship between the predicted upstream regulators PPARγ, PPARα, and PPARGC1A (peroxisome proliferator-activated receptor gamma coactivator 1-alpha) and superior and inferior OFT differentially expressed genes based on Ingenuity Knowledge Database (Fischer exact test, P < 0.05 and Z score ≥2). PPARγ, PPARα, and PPARGC1A were predicted as upstream activators or inhibitors of inferior wall of the OFT (iOFT; red) and superior wall of the OFT (sOFT; green) enriched genes, respectively. PPARGC1A (black), did not show specific enrichment. Predicted inhibition of iOFT enriched genes or activation of sOFT enriched genes are indicated with black lines.

C–F, Enrichment of PPAR pathway–related genes in the iOFT. Left views of E10.5 wild-type (WT) embryos after in situ hybridization for Pparγ (C, N=6), Ppargc1a (D, N=6), Cd36 (E, N=6), and G0S2 (F, N=3) riboprobes showing transcript enrichment in the iOFT (arrowheads).

G–J, Sagittal sections of wild-type embryos showing the enrichment of Pparγ (G and H, N=4), Sema3c (I, N=3), and G0S2 (J, N=3) in the iOFT at E10.5. High magnification of Pparγ OFT expression is shown in H, K, and L. Immunofluorescence on sagittal sections at the level of the OFT on wild-type and Tbx1−/− E9.5 embryos. K, Wild-type embryo displaying localized expression of Pparγ in the iOFT (arrowhead) and transition zone (TZ) in ISL1 (ISLET LIM homeobox 1) positive cells (N=5). Note that Isl1 is also expressed in the Second Heart Field and sOFT (asterisks). L, Tbx1−/− embryo displaying reduced OFT Pparγ expression (arrowhead, N=3). M and N, Left views of E10.5 embryos after whole-mount in situ hybridization with Pparγ riboprobe. Pparγ expression is reduced in the iOFT of Tbx1−/− (N, arrowhead, N=6) compared to wild-type (M, arrowhead, N=5) embryos. Presented results are representative of biological replicates. At indicates atrium; LV, left ventricle; and V, ventricle.
RESULTS

Bioinformatic Pathway Analysis Implicates PPARγ Signaling in the Transcriptional Control of Distinct Superior and Inferior OFT Domains

Using microarray-based gene expression profiling, we previously established the genetic signature of future subpulmonary and subaortic domains in the inferior and superior walls of the E10.5 mouse OFT (Figure 1A). To uncover novel genetic regulatory networks that may control subaortic and subpulmonary myocardial domains, we analyzed our dataset using Ingenuity Pathway Analysis (IPA).

Mapping iOFT and sOFT enriched genes to the IPA knowledge database, signaling and metabolic pathways associated with regional OFT genetic signatures were identified. This analysis predicted that the PPAR signaling pathway is active in the iOFT, where both Pparα and Pparγ transcripts are enriched. The gene encoding PPARγ is among the most highly enriched genes.

Table. List of Genes Enriched in the OFT Subdomains and Involved in the PPAR Signaling Pathway as Defined by Ingenuity Pathway Analysis

<table>
<thead>
<tr>
<th>ID</th>
<th>Symbol</th>
<th>Entrez gene name</th>
<th>Expr log2 ratio</th>
<th>Expr P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1420715_a_at</td>
<td>PPARγ</td>
<td>peroxisome proliferator–activated receptor gamma</td>
<td>1.331</td>
<td>0.002</td>
</tr>
<tr>
<td>1417812_a_at</td>
<td>LAMB3</td>
<td>Laminin subunit beta 3</td>
<td>1.169</td>
<td>0.00057</td>
</tr>
<tr>
<td>1420696_at</td>
<td>SEMA3C</td>
<td>semaphorin 3C</td>
<td>0.983</td>
<td>0.0081</td>
</tr>
<tr>
<td>1432466_a_at</td>
<td>APOE</td>
<td>Apolipoprotein E</td>
<td>0.859</td>
<td>0.0124</td>
</tr>
<tr>
<td>1436987_at</td>
<td>ISM1</td>
<td>Isthmin 1</td>
<td>0.795</td>
<td>0.00187</td>
</tr>
<tr>
<td>1450883_a_at</td>
<td>CD36</td>
<td>CD36 molecule</td>
<td>0.788</td>
<td>0.00597</td>
</tr>
<tr>
<td>1448700_at</td>
<td>G0S2</td>
<td>G0/G1 switch 2</td>
<td>0.77</td>
<td>0.02</td>
</tr>
<tr>
<td>1436168_at</td>
<td>PAQR9</td>
<td>Progestin and adipocytokine receptor family member 9</td>
<td>0.675</td>
<td>0.00297</td>
</tr>
<tr>
<td>1421818_at</td>
<td>BCL6</td>
<td>BCL6 transcription repressor</td>
<td>0.64</td>
<td>0.0226</td>
</tr>
<tr>
<td>1449450_at</td>
<td>PTGES</td>
<td>Prostaglandin E synthase</td>
<td>0.622</td>
<td>0.00424</td>
</tr>
<tr>
<td>1455918_at</td>
<td>ADRB3</td>
<td>Adrenoceptor beta 3</td>
<td>0.808</td>
<td>0.0469</td>
</tr>
<tr>
<td>1416316_at</td>
<td>SLC27A2</td>
<td>Solute carrier family 27 member 2</td>
<td>0.547</td>
<td>0.0446</td>
</tr>
<tr>
<td>1426284_at</td>
<td>KRT20</td>
<td>Keratin 20</td>
<td>0.512</td>
<td>0.0197</td>
</tr>
<tr>
<td>1427086_at</td>
<td>SLIT3</td>
<td>Slit guidance ligand 3</td>
<td>0.505</td>
<td>0.00569</td>
</tr>
<tr>
<td>1422278_at</td>
<td>INHA</td>
<td>Inhibin subunit alpha</td>
<td>0.504</td>
<td>0.00181</td>
</tr>
<tr>
<td>1417956_at</td>
<td>CIDEA</td>
<td>Cell death inducing DFFA like effector a</td>
<td>0.499</td>
<td>0.0498</td>
</tr>
<tr>
<td>1443827_x_at</td>
<td>FAM20C</td>
<td>FAM20C golgi associated secretory pathway kinase</td>
<td>0.488</td>
<td>0.0134</td>
</tr>
<tr>
<td>1418288_at</td>
<td>LPIN1</td>
<td>Lipin 1</td>
<td>0.483</td>
<td>0.00067</td>
</tr>
<tr>
<td>1439675_at</td>
<td>PPARα</td>
<td>PPARα</td>
<td>0.456</td>
<td>0.0221</td>
</tr>
<tr>
<td>1418835_at</td>
<td>PHLDA1</td>
<td>Pleckstrin homology like domain family A member 1</td>
<td>0.424</td>
<td>0.00867</td>
</tr>
<tr>
<td>1448394_at</td>
<td>MYL2</td>
<td>Myosin light chain 2</td>
<td>−0.403</td>
<td>0.0127</td>
</tr>
<tr>
<td>1416076_at</td>
<td>CCNB1</td>
<td>Cyclin B1</td>
<td>−0.439</td>
<td>0.0292</td>
</tr>
<tr>
<td>1419332_at</td>
<td>EGFL6</td>
<td>EGF-like domain multiple 6</td>
<td>−0.447</td>
<td>0.00837</td>
</tr>
<tr>
<td>1422699_at</td>
<td>ALOX12</td>
<td>Arachidonate 12-lipoxygenase, 12S type</td>
<td>−0.452</td>
<td>0.0238</td>
</tr>
<tr>
<td>1448320_at</td>
<td>STIM1</td>
<td>Stromal interaction molecule 1</td>
<td>−0.456</td>
<td>0.00301</td>
</tr>
<tr>
<td>1436475_at</td>
<td>NR2F2</td>
<td>Nuclear receptor subfamily 2 group F member 2</td>
<td>−0.499</td>
<td>0.0121</td>
</tr>
<tr>
<td>1416200_at</td>
<td>IL33</td>
<td>Interleukin 33</td>
<td>−0.516</td>
<td>0.0238</td>
</tr>
<tr>
<td>1423326_at</td>
<td>ENTPD1</td>
<td>Ectonucleoside triphosphate diphosphohydrolase 1</td>
<td>−0.578</td>
<td>0.0246</td>
</tr>
<tr>
<td>1458404_at</td>
<td>ADAMTS5</td>
<td>ADAM metallopeptidase with thrombospondin type 1 motif 5</td>
<td>−0.629</td>
<td>0.044</td>
</tr>
<tr>
<td>1426584_a_at</td>
<td>SORD</td>
<td>Sorbitol dehydrogenase</td>
<td>−0.79</td>
<td>0.0008</td>
</tr>
<tr>
<td>1435264_at</td>
<td>EMLIN2</td>
<td>Elastin microfibril interfacer 2</td>
<td>−1.154</td>
<td>0.00123</td>
</tr>
<tr>
<td>1421262_at</td>
<td>LIPG</td>
<td>Lipase G, endothelial type</td>
<td>−1.169</td>
<td>0.0482</td>
</tr>
<tr>
<td>1422789_at</td>
<td>ALDH1A2</td>
<td>Aldehyde dehydrogenase 1 family member A2</td>
<td>−1.519</td>
<td>0.00806</td>
</tr>
<tr>
<td>1449368_at</td>
<td>DCN</td>
<td>Decorin</td>
<td>−1.648</td>
<td>0.0263</td>
</tr>
<tr>
<td>1456062_at</td>
<td>NPPA</td>
<td>Natriuretic peptide A</td>
<td>−2.208</td>
<td>0.0132</td>
</tr>
</tbody>
</table>

ADAM indicates a disintegrin and metalloproteinase; adipocytokine; BCL, B cell lymphoma; DFFA, DNA fragmentation factor subunit alpha; EGF, Epidermal Growth Factor; FAM20C, Family with sequence similarity 20, member C; OFT, outflow tract; and PPAR, peroxisome proliferator–activated receptor.
in the iOFT (Log2 fold change=1.3, P<0.002) while Ppara transcripts present a lower enrichment (Log2 fold change=0.46, P<0.023) suggesting that PPARγ may act as an upstream regulator of regional transcriptional identity in the Table12). Mechanistic network analysis revealed that 16 out of the 20 genes identified by IPA analysis as being in the PPAR signaling pathway and significantly enriched in the iOFT (including Cd36, Apoe, and GOS2) are predicted to be under positive regulation of PPAR transcription factors. Conversely, 11 out of the 15 PPAR signaling pathway genes significantly enriched in the sOFT (including Nppa) are predicted to be negatively regulated by PPAR transcription factors (Figure 1B; PPARγ [P<0.001, Z score>2], PPARα [P<0.01, Z score>2] and PPARGC1A [PPAR gamma coactivator 1-alpha; P<0.001, Z score>2]). PPARγ signaling may thus be involved in the genetic control of distinct inferior and superior OFT transcriptional signatures. In situ hybridization experiments were performed at E10.5 to confirm the regionalized expression of PPARγ signaling pathway-related genes in the OFT. Our results demonstrated differential expression of Ppary, Ppargc1a as well as the downstream target genes Cd36 and GOS2 in the iOFT expressing Sema3c (Figure 1C through 1J), thus validating the IPA results and supporting a potential role for PPARγ signaling in OFT development.

We previously demonstrated the Tbx1 dependency of gene expression in the iOFT.12 Therefore, we investigated whether Ppary expression in the developing OFT is regulated by Tbx1. Immunofluorescence and in situ hybridization experiments performed on wild-type embryos at E9.5 and E10.5, respectively, confirmed that Ppary expression is regionalized in the iOFT, in addition to expression in SHF progenitor cells in the dorsal pericardial wall close to the junction with the OFT, a region termed the transition zone (Figure 1K and 1M). Ppary expression was not observed in the OFT or SHF of Tbx1−/− embryos (Figure 1L and 1N). Quantitative reverse transcription polymerase chain reaction (RT-qPCR) analysis performed on RNA prepared from isolated OFTs of wild-type and Tbx1−/− embryos confirmed that Ppary expression is significantly reduced in the Tbx1−/− OFT (Figure S1). Interestingly, the absence of Tbx1 led to the upregulation of Nppa expression that was previously shown to be enriched in the sOFT.13 Together, these results confirmed that Ppary is preferentially enriched in a Tbx1-dependent region of the iOFT.

Inhibition of PPARγ Activity Impairs OFT Morphogenesis

To address the role of Ppary in the regulation of the genetic signature of the OFT domains, inferior and superior OFT explant culture experiments were performed in the presence or absence of pharmacological modulators of PPARγ activity. OFTs were microdissected from E10.5 embryos and maintained in culture on collagen-coated dishes. Modulation of PPARγ signaling was examined in the presence of the PPARγ antagonist GW9662 or PPARγ ligand Rosiglitazone while control explants were cultured with vehicle solution (dimethyl sulfoxide [DMSO]). After 24 hours of treatment, the explants were processed for RT-qPCR to investigate the expression of PPARγ target genes identified in the IPA analysis. Inhibiting PPARγ activity with GW9662 in the iOFT explants leads to the downregulation of Cd36 and upregulation of Nppa (Figure 2A). In contrast, PPARγ activation with Rosiglitazone in the sOFT displayed Cd36 upregulation and Nppa downregulation (Figure 2A). Additional identified iOFT markers Nrp2, Bax1, and Sema3c also exhibited decreased expression upon PPARγ inhibition in the iOFT (Figure 2B), suggesting that PPARγ signaling is a major regulator of regionalized gene expression in the OFT.

To further study the role of PPARγ in the OFT morphogenesis, we performed rolling bottle culture of E8.5 embryos for 24 hours in the presence of the PPARγ antagonist GW9662. Pharmacological treatment did not affect the global development of the embryos. However, GW9662-treated embryos displayed impaired OFT morphogenesis (Figure 2C and 2D). Measurements of OFT length revealed that inhibition of PPARγ activity leads to a significantly shorter OFT compared to embryos exposed to vehicle (Figure 2E). This result suggests a role for PPARγ in the process of heart tube elongation from SHF progenitors, consistent with Ppary expression in the distal OFT and transition zone. We next evaluated whether pharmacological modulation of PPARγ activity in embryo culture impacts the addition of the Hoxb1 genetic lineage to the inferior wall of the OFT.11 Our results using Hoxb1IRcEs£Rosa26-YFP£/£ embryos revealed that GW9662-treated embryos display a reduced number of Hoxb1 lineage labeled cells in the iOFT wall compared to vehicle-exposed embryos (Figure 2F and 2G). Consistent with these observations, whole-mount in situ hybridization revealed reduced transcript accumulation of the iOFT enriched gene Sema3c in the SHF and OFT of GW9662-treated embryos (Figure 2H and 2I). Together, these results indicate that PPARγ activity is required for the normal addition of SHF cells to the iOFT.

Mesodermal Ppary Is Required for Normal Heart Development

To address the in vivo role of PPARγ in early cardiac progenitor cell deployment, conditional ablation of Ppary was achieved using the Mesp1-Cre (early deletion in cranial and cardiac mesoderm) and Met2C-AHF-Cre (deletion in SHF mesoderm) transgenic mouse lines. Using RT-qPCR experiments, we first validated that Ppary is efficiently deleted in SHF from E9.5 Mesp1-Cre,Ppary£/£ (Figure S2A) and demonstrated no compensatory changes in expression of other PPAR family genes including Ppara...
and \(\text{Ppar}^\delta \) (Figure S2A). Analysis of E10.5 and E15.5 \(\text{Mesp}^1\text{-Cre;}\text{Ppar}^\delta/\delta \) mutant embryos showed no significant embryonic lethality. However, morphological and histological examinations of \(\text{Mesp}^1\text{-Cre;}\text{Ppar}^\delta/\delta \) embryos revealed anomalies in heart development. At E10.5, a significant shortening of the OFT was observed in \(\text{Mesp}^1\text{-Cre;}\text{Ppar}^\delta/\delta \) mutant hearts (N=11) compared to control littermates (N=8; Figure 3A through 3C). The observed decrease in OFT length suggests a defect in SHF deployment. We therefore evaluated SHF proliferation in E9.5 control and conditional mutant embryos by scoring the number of cells positive for the mitotic marker PH3 (phospho-histone 3). Our results revealed that \(\text{Isf}^\delta \) and MF20 (myosin heavy chain antibody)\(^+\) SHF cells in the dorsal pericardial wall and pharyngeal mesenchyme displayed a significant reduction in proliferative activity in conditional mutant (N=5) compared to control embryos (N=4; Figure 3D through 3F). In situ hybridization analysis of conditional mutant embryos revealed a substantial reduction of \(\text{Sema3c} \) transcript accumulation in the SHF.
Rammah et al. PPAR γ and Non-canonical NOTCH Signaling in the OFT (Figure 3G and 3H), consistent with our ex vivo results (Figure 2I). Histological analysis of E15.5 Mesp1-Cre;Pparγfl/fl hearts revealed conotruncal CHD in 21% of the Mesp1-Cre;Pparγfl/fl hearts including overriding aorta (1/24), double outlet right ventricle (1/24) and ventricular septal defects (5/24) while no defects were observed in Pparγfl/fl control littermates (0/9; P<0.05; Figure 3I through 3M). We further investigated the role of Pparγ in OFT development using the Mef2c-AHF-Cre (Mef2c-Cre) line in which Cre is expressed in the SHF. Surprisingly, while efficient Pparγ deletion is observed in SHF from E9.5 Mef2C-AHF-Cre;Pparγfl/fl (Figure S2B)

Figure 3. Cardiac development defects in conditional Pparγ mutant embryos. A and B, Ventral views of embryonic day (E) 10.5 Mesp1-Cre;Pparγfl/+ and Mesp1-Cre;Pparγfl/fl hearts. Outflow tract (OFT) elongation is affected in Mesp1-Cre;Pparγfl/+ hearts. C, Measurement of the OFT length showing that E10.5 Mesp1-Cre;Pparγfl/fl OFT is significantly shorter (N=8–13 per genotype). D and E, Immunofluorescence on transverse sections showing PH3 (phospho-Histone 3), Isl1, and MF20 staining. F, PH3 quantification in Isl1+–MF20 cells reveals decreased Second Heart Field (SHF) proliferation in Mesp1-Cre;Pparγfl/fl (N=5) compared to control (N=4) E9.5 embryos. G and H, Left views of whole-mount in situ hybridization showing reduced Sema3c expression in the inferior wall of the OFT (iOFT; arrowhead) and the SHF (asterisks) of E9.5 Mesp1-Cre;Pparγfl/+ embryo (N=3–4 per genotype). I, Cardiac defects scored after analysis of histological sections at E15.5 in Mesp1-Cre;Pparγfl/+ and Mef2c-Cre;Pparγfl/+ conditional mutants and Pparγfl/+ control littermates. J–M, Eosin-stained sections of E15.5 hearts revealing that conditional Mesp1-Cre;Pparγfl/+ mutants display congenital heart defects including an overriding aorta (asterisk) and a membranous ventricular septal defect (arrowhead). Presented results are representative of biological replicates. Statistics: 2-tailed t test (C) and Mann-Whitney U test (F); please see the Major Resources Table in the Supplemental Material. Ao indicates aorta; DORV, double outlet right ventricle; FG, foregut; LV, left ventricle; MF20, Myosin Heavy Chain Antibody (MF20); OAo, overriding aorta; RV, right ventricle; and VSD, ventricular septal defect.
no defects in cardiac morphogenesis were observed in *Mef2c-AHF-Cre;Ppar*~*γ*~/~*γ*~ mutant hearts at E10.5 or E15.5 (Figure 3I). Thus, our results suggest that *Ppar*~*γ*~ is required for arterial pole development in early cardiac progenitor cells before expression of *Mef2c-AHF-Cre*.

Hes1 Controls Ppar~γ~ Expression in the Superior Part of the OFT

We previously demonstrated that the *A17-Myf5-nlacZ-T55* transgene, which expresses a β-galactosidase reporter gene in future subaortic myocardium in the early mouse embryo, has integrated upstream of *Hes1* on chromosome 16.9,10,14 *Hes1* encodes a transcriptional repressor27 and has been shown to play an important role in arterial pole development.14,38 In other cellular contexts HES1 has been shown to directly repress *Ppar* expression.39,40 We thus hypothesized that HES1 represses *Ppar*~*γ*~, allowing enrichment of genes negatively regulated by PPARγ in the sOFT.

To precisely compare the *Hes1*-dependent *A17-Myf5-nlacZ-T55* transgene (*Hes1-Tg*) expression domain with that of *Ppar*~*γ*~ at early embryonic stages, we analyzed β-galactosidase and *Ppar*~*γ*~ expression together with SHF marker and genetic lineage analysis. Between E8.5 and E9.5, β-galactosidase expression is observed in a subpopulation of *Isl1*-expressing SHF progenitor cells in the anterior region of the dorsal pericardial wall, contiguous with sOFT myocardium (Figure 4A and 4D). In situ hybridization experiments for *Wnt11* and *Sema3c*; markers of the superior and inferior OFT walls, respectively,9,20 revealed that expression of the *Hes1*-transgene and *Wnt11* overlap in the anterior SHF and sOFT (Figure S3A through S3C). This confirms expression of the *Hes1*-transgene in the sOFT but not iOFT, where *Ppar*~*γ*~ and *Tbx1* are enriched (Figure 4E and I4).

Hoxb1-expressing SHF progenitors, located in the posterior SHF, contribute to the iOFT and subsequently to subpulmonary myocardium.12 Genetic lineage tracing experiments using *Hoxb1*~*fl/+*~/*Rosa26-YFP*~*fl/+*~;*Hes1*-transgene embryos demonstrate that the *Hes1*-dependent *A17-Myf5-nlacZ-T55* transgene expression in the sOFT does not overlap with the *Hoxb1* genetic lineage in the iOFT (Figure 4B and 4C), indicating that *Hes1*-expressing subaortic myocardial progenitors are not derived from *Hoxb1*-expressing progenitor cells. *Hoxb1*-derived OFT myocardium is known to be *Tbx1*-dependent.12 Fluorescent *in situ* hybridization performed at E8.5 and E9.5 established that *Hes1*-expressing cells are localized in the sOFT, in contrast to *Tbx1* or *Ppar* expressing cells in the iOFT (Figure S3D through S3F). These results confirm that the *Hes1*-expressing domain defines a *Wnt11* positive subpopulation of SHF cells that is independent of the *Hoxb1*-lineage and *Tbx1* negative.

To determine whether HES1 controls *Ppar*~*γ*~ expression in the OFT, RT-qPCR analyses were performed on isolated OFTs from E10.5 wild-type and *Hes1*~*−/−*~ mutant embryos. *Ppar*~*γ*~ levels were significantly increased in the absence of *Hes1* (Figure 4F). In addition, the PPARγ target genes *ApoE* and *Cd36*, which are normally expressed in the iOFT,12 are significantly upregulated in *Hes1*~*−/−*~ mutant OFTs (Figure 4F). In situ hybridization experiments performed on E10.5 *Hes1*~*−/−*~ mutant embryos support this result by showing the expansion of *Ppar*~*γ*~ expression in the sOFT of *Hes1*~*−/−*~ compared to wild-type embryos (Figure 4G and 4H). Moreover, immunofluorescence experiments performed at E9.5 on wild-type and *Hes1*~*−/−*~ mutant embryos demonstrate that the absence of *Hes1* leads to the accumulation of PPARγ in the sOFT (Figure 4I and 4J), as well as expression in the iOFT. Taken together, these results suggest that *Hes1* regulates the transcriptional identity of the OFT subdomains by repressing *Ppar*~*γ*~ expression.

Hes1 Is Required for the Development of the Arterial Pole of the Heart

We initially identified *Hes1* as a regulator of arterial pole development.14 Indeed, *Hes1*~*−/−*~ embryos display defects in OFT elongation and alignment resulting in conotruncal defects. However, *Hes1* conditional deletion in cardiac neural crest cells or in pharyngeal ectoderm does not impair elongation of the OFT.38 This suggests that specific expression of *Hes1* in the SHF may contribute to OFT morphogenesis. To evaluate the specific requirement of *Hes1* in SHF progenitors, we conditionally ablated *Hes1* using *Mesp1-Cre* and *Mef2c-AHF-Cre*. *Mesp1-Cre;Hes1*~*−/−*~ and *Mef2c-AHF-Cre;Hes1*~*−/−*~ mice were crossed with *Hes1*~*−/+*~ mice and OFT morphogenesis and cardiac defects were assessed (Figure 5). Two out of 22 analyzed E15.5-E16.5 *Mesp1-Cre;Hes1*~*−/−*~ hearts (9% penetrance) displayed conotruncal defects including overriding aorta, double outlet right ventricle and ventricular septal defects (Figure 5A through 5J). Analysis of E10.5 *Mesp1-Cre;Hes1*~*−/−*~ compared to control *Hes1*~*+/−*~ embryos revealed that the OFT was significantly shorter and straighter than in control embryos (Figure 5K through 5N). Elevated numbers of normal *Mesp1-Cre;Hes1*~*−/−*~ hearts were obtained at fetal stages suggesting thus a degree of phenotypic recovery. The analysis, in E9.5 embryos, of SHF progenitor (*Isl1*~*−*~ and *Mf20*~*−*~) cell proliferation, by scoring the mitotic marker PH3 (Figure 5O through 5P), revealed significantly reduced SHF proliferative activity in *Mesp1-Cre;Hes1*~*−/−*~ compared to control *Hes1*~*−/+*~ embryos (Figure 5Q). Despite efficient *Hes1* deletion in the E9.5 *Mef2c-AHF-Cre;Hes1*~*−/−*~ SHF (Figure S4), no cardiac defects were observed in hearts obtained from the *Mef2c-AHF-Cre;Hes1*~*−/−*~ embryos (N=11; Figure 5J). Together with our observations on *Ppar*~*γ*~ conditional mutant embryos, these data suggest that early roles of *Hes1* and *Ppar*~*γ*~ during SHF development are required for subsequent OFT development.
NOTCH/HES1 Signaling Regulates \(Ppar \gamma \) Expression in the OFT

Since \(Hes1 \) is a downstream target of the NOTCH signaling pathway, we addressed the role of the NOTCH/HES1 pathway in the regulation of \(Ppar \gamma \) expression in SHF progenitors and OFT wall. Activation of NOTCH receptors leads to a \(\gamma \)-secretase mediated proteolytic cleavage and release of the NICD1 (NOTCH intracellular domain) which then translocates to the nucleus to transcriptionally activate downstream target genes, including \(Hes1 \).\(^{41} \) Active NOTCH signals have already been described in the OFT, endocardium and arterial endothelial cells\(^{13} \) and important roles for NOTCH signaling have also been identified in the SHF.\(^{43,44} \) In addition, recent evidence demonstrated a requirement for NOTCH signaling in SHF progenitor cell proliferation.\(^{45} \) Immunofluorescence experiments using an antibody detecting NICD1 revealed that active NOTCH signaling occurs preferentially in the sOFT wall coincident with the \(Hes1 \)-transgene expressing domain (Figure 6A and 6B). Indeed, NICD1 is enriched in \(Isl1 \) positive (Figure 6C), \(Hoxb1 \)-lineage negative (Figure 6D), cells in the sOFT, confirming spatially restricted active NOTCH signaling in the future subaortic myocardial domain. Therefore, active NOTCH signaling in the superior part of the OFT may operate upstream of \(Hes1 \) expression.

We then investigated the role of regionalized NOTCH signaling in the regulation of \(Hes1 \) expression in the OFT. E8.5 embryos expressing the \(Hes1 \)-transgene were cultured for 24 hrs in the presence of DAPT (\((2S)\)-N-\{3,5-Difluorophenyl\}acetyl\}-L-alanyl-2-phenyl\)glycine 1,1-dimethyl ester), a \(\gamma \)-secretase complex inhibitor. While DAPT treatment had no impact on global embryonic growth, NOTCH signaling inhibition results in reduced transgene expression as depicted by \(\beta \)-galactosidase staining (Figure 6E through 6H). Immunofluorescence analysis revealed a striking decrease in the number of \(\beta \)-galactosidase-expressing cells in the superior wall of the OFT myocardium (Figure 6I and 6J).
Figure 5. Impaired outflow tract development in Hes1 conditional mutant embryos.

A–C, Ventral views of embryonic day (E) 18.5 hearts and (D–I), eosin-stained sections showing that Mesp1-Cre;Hes1^{−/−} mutants display congenital heart defects including ventricular septal defects (VSD; arrowhead), overriding aorta (arrowhead) and dextraposed aorta (asterisks) with double outlet right ventricle. Black squares identify the position of high magnification views shown in the bottom panels.

J, Scoring of cardiac defects in E15.5–E18.5 conditional mutant and control littermate hearts analyzed by histological sections.

K and L, Ventral views of E10.5 Hes1^{+/−} and Mesp1-Cre;Hes1^{−/−} hearts. Outflow tract (OFT) length and angle landmarks used for OFT measurements are indicated.

M, Histograms showing E10.5 Hes1^{+/−} (N=3) and Mesp1-Cre;Hes1^{−/−} (N=6) OFT length. N, Histograms showing E10.5 Hes1^{+/−} (N=3) and Mesp1-Cre; Hes1^{−/−} (N=7) OFT angle measurements. Mutant hearts display a shorter and straighter OFT.

O and P, Immunofluorescence on transverse sections showing PH3 (phospho-Histone 3), Isl1, and MF20 (myosin heavy chain antibody) staining. Q, PH3 quantification in Isl1^{+} MF20 cells reveals decreased Second Heart Field proliferation in Mesp1-Cre;Hes1^{−/−} (N=6) compared to control (N=3) E9.5 embryos. Presented results are representative of biological replicates. Statistics: Mann-Whitney U test; please see the Major Resources Table in the Supplemental Material. Ao indicates aorta; DORV, double outlet right ventricle; LV, left ventricle; OAo, overriding aorta; PT, pulmonary trunk; and RV, right ventricle.
In contrast, the complementary OFT domain, characterized by *Sema3c* expression, was unaffected (Figure 6K and 6L). These results suggest that *Hes1*-transgene expression in future subaortic myocardial cells is regulated by Notch signaling.

To investigate NOTCH/HES1 control of *Pparγ* OFT expression, OFT explant cultures were treated with DAPT (Figure 6M). RT-qPCR measurements obtained from DAPT-treated OFT explants identified a decrease in *Hes1* expression and an increase in expression of *Pparγ* and the *PPARγ* direct downstream target *Cd36*. Thus, NOTCH signaling inhibition leads to changes in the expression of OFT regionalized genes suggesting that NOTCH/HES1 signaling may determine the sOFT transcriptional identity by controlling *Pparγ* expression.

Delta-Like 1 Regulates Notch/Hes1-Dependent Repression of *Pparγ*

DLK1 (*PREF1* [preadipocyte factor 1]) is a noncanonical NOTCH ligand, known to be involved in the repression of *Pparγ* expression.⁴⁶ We investigated whether DLK1 may contribute to the control of regional transcriptional identity in the OFT. Using in situ hybridization we found that DLK1 is regionally expressed in the OFT at early developmental stages. At E8.5, *Dlk1* expression is observed in cells at the cranial side of the arterial pole and in cells in the pharyngeal region (Figure 7A) close to the arterial pole that also expresses the *Hes1*-transgene and *Wnt11* (Figure S3). At E9.5 and E10.5, *Dlk1* expression is observed in the sOFT, but not iOFT (Figure 7B and 7C), thus showing a strikingly complementary expression pattern to that of *Pparγ* (Figure 1). Consistently and similarly to the *Hes1*-transgene expression domain, at E12.5 *Dlk1* is expressed in myocardium at the base of the aorta (Figure 7D and 7E). In addition, the *Dlk1* expression domain is expanded in *Tbx1*⁻/⁻ hearts except for a small negative myocardial domain on the left side of the common trunk (Figure 7F). This is consistent with expression of the *Hes1*-transgene in *Tbx1* null hearts and highlights the *Tbx1*-dependence of iOFT and subpulmonary myocardium development.⁹ Thus, colocalization of *Dlk1* with NICD1 and the *Hes1*-transgene in the sOFT suggests that activation of NOTCH signaling in these cells may be autocrine, consistent with previously documented autocrine NOTCH signaling in the SHF.⁴³

As shown above, *Hes1* negatively regulates *Pparγ* expression in the sOFT downstream of NOTCH signaling.
Figure 7. Delta-like noncanonical Notch ligand 1 (Dlk1) is expressed in the superior wall of the OFT (sOFT) and subaortic myocardium.

A–C, In situ hybridization showing Dlk1 expression in the Second Heart Field and sOFT (arrowheads, N=5 per stage). A, Sagittal section at embryonic day (E) 8.5 showing Dlk1 expression in the sOFT (arrowhead) close to the arterial pole. B, E9.5 Transverse section showing Dlk1 expression in the sOFT (arrowhead) and pharyngeal mesoderm (asterisks). C, E10.5 truncal section showing Dlk1 expression in the sOFT (arrowheads). D–F, Superior views of E12.5 hearts. D, In situ hybridization of wild-type (WT) heart with localized enrichment of Dlk1 at the base of the aorta (N=3). E, Superior view of a X-gal (β-galactosidase labelling)-stained Hes1-Tg heart showing LacZ-expressing cells at the base of the aorta (N=3). F, In situ hybridization showing enrichment of Dlk1 around the common arterial trunk (CAT) of a Tbx1−/− heart with a negative region at the right dorsal location (arrowhead, N=3). G–H, Immunofluorescence of sagittal sections of E9.5 control (CTRL) and rDlk1 (recombinant DLK1)-treated embryos showing an increase in NICD1 (Notch intracellular domain 1) in the sOFT and inferior wall of the OFT (iOFT; arrowheads) of rDlk1-treated embryo (N=3–5 per condition). I and J, Immunofluorescence on sagittal sections from CTRL and rDlk1-treated E8.5 embryos showing increased Hes1-Tg cell numbers in the iOFT of rDlk1-treated (arrowheads, N=5) compared to control (N=8) embryos. K, Quantitative reverse transcription polymerase chain reaction for Hes1 transcripts in rDlk1-treated iOFT explants relative to control showing a significant increase in transcript level upon rDlk1 treatment (N=4–5 per condition). L, Histogram showing that, compared to controls (N=10), rDlk1-treated embryos display a shorter distal OFT (N=10). M and N, Fluorescent in situ hybridization on sagittal sections at the level of the OFT on CTRL (N=3) and rDlk1-treated E9.5 embryos (N=3) showing reduced Pparγ expression in the rDlk1-treated iOFT. Presented results are representative of biological replicates. Statistics: 2-tailed t test (L) and Mann-Whitney U test (K); please see the Major Resources Table in the Supplemental Material. Ao indicates aorta; FG, foregut; Hes1-Tg, A17-Myf5-nlacZ-T55 transgene; and PT, pulmonary trunk.

Indeed, increased Pparγ expression was observed in Hes1−/− (Figure 4F through 4J) and DAPT-treated OFTs (Figure 6M). Given these results and that Dlk1 encodes a noncanonical ligand for NOTCH receptors and given that Dlk1 is strictly expressed in the cells with active NOTCH signaling, we hypothesized that Dlk1 may be an upstream activator of NOTCH/HES1 signaling in the sOFT. To address this point, E8.5 embryos were cultured in rolling bottles for 24 hours in the presence of recombinant Dlk1 protein and the impact on NOTCH signaling activation was monitored using NICD1 immunofluorescence experiments (Figure 7G and 7H). Compared to controls, Dlk1-treated embryos display a significant increase in NICD1 signals. NICD1 positive cells were observed in the sOFT and iOFT after exposure to recombinant Dlk1 (Figure 7H), consistent with ectopic activation of NOTCH signaling in the iOFT by Dlk1. RT-qPCR and immunofluorescence experiments revealed that treatment with recombinant Dlk1 protein for 24 hours also led to an increase in Hes1 transcript levels in iOFT explants and activation of the Hes1 enhancer trap transgene in the iOFT wall (Figure 7I through 7K). To investigate the impact of regional Dlk1/NOTCH/HES1 signaling alteration on OFT morphogenesis, OFT length measurements were performed and revealed that treatment with recombinant Dlk1 leads to a significantly shorter OFT compared to embryos exposed to vehicle (Figure 7L and Figure S5). Finally, the evaluation of Pparγ expression using fluorescent in situ hybridization demonstrated that upregulated Dlk1/NOTCH/HES1 signaling in the iOFT results in reduced Pparγ expression (Figure 7M and 7N). Together, these results demonstrate that Dlk1 participates in the activation of regional NOTCH/HES1 signaling that may be critical for PPARγ pathway regulation in the developing OFT.

DISCUSSION

Here we provide new insights into the regulatory pathways operating in subdomains of the developing cardiac OFT. In particular, we show that Pparγ is expressed in Tbx1-dependent future subpulmonary myocardial cells in the inferior wall of the OFT and is required in early cardiac mesoderm for normal outflow tract development. Pparγ expression is repressed by NOTCH/HES1 signaling in the superior wall of the OFT. We identify the noncanonical NOTCH ligand Dlk1 as a potential upstream NOTCH/HES1 signaling regulator in the sOFT wall.

Our findings extend previous results establishing that the inferior and superior walls of the OFT display distinct genetic signatures and are added at different developmental stages from the SHF. Using IPA bioinformatic
analysis, we first identified specific enrichment of PPAR signaling pathway related genes in the inferior OFT. This is consistent with earlier identification of Ppara being among the top 5 transcripts enriched in the inferior versus superior OFT. Further analysis identified regionalized enrichment of potential positive and negative PPARγ targets in the inferior and superior OFT, respectively, including Cd36, involved in fatty acid cell transport,\(^{47}\) G0S2, required in terminal adipogenic process\(^{48}\) and the PPARγ cofactor, PPARGC1A, a transcriptional target of Ppara.\(^{48-50}\) The regional transcriptional control of this PPARγ related-gene network in the OFT is the result of dual regulation of Ppara expression by Tbx1 and Hes1, regulators of complementary populations of arterial pole progenitor cells in the SHF.\(^{8,14}\) Ppara is expressed in a Tbx1-dependent domain of the OFT. This may result from direct transcriptional activation of Ppara by Tbx1 in the iOFT and/or inhibition by Hes1 in the sOFT. In support of direct regulation by Tbx1, reduced Ppara expression has been observed in Tbx1 siRNA knockdown mouse stromal vascular cells.\(^{51}\) Moreover, T-box binding elements are present at the Ppara locus\(^{52}\) and reduced Ppara transcript levels are observed in the Tbx1\(^{+-}\) OFT (data not shown). Ppara inhibition by Hes1 most likely occurs through direct transcriptional regulation due to evidence for HES1 binding to target regulatory elements in the Ppara promoter.\(^{39,40}\) Studies have also shown that HES1 can directly repress the gene encoding the transcriptional coactivator of PPARγ, PPARGC1A.\(^{53}\) Consistent with our observations, the Ppargc1a locus was recently shown to be bound and potentially regulated by Tbx1\(^{54}\) suggesting that Ppargc1a acts together with Ppara in regulating regional transcription in the OFT. Together these observations implicate PPARγ as a component of cross-regulatory transcriptional programs operating in distinct OFT subdomains.

Cardiomyocyte-specific deletion of Ppara leads to cardiac hypertrophy\(^{25}\) while cardiac-restricted overexpression of Ppara leads to dilated cardiomyopathy associated with sudden death in young adulthood.\(^{29}\) Homozygous Ppara mutant embryos die at midgestation\(^{24}\) and cardiac defects, including ventricular septal defect and OFT defects, were observed but correlated with placental dysfunction that severely compromises maternal-fetal exchange functions leading to early embryonic lethality. We observed OFT defects in Ppara conditional mutant embryos after deletion with Mesp1 but not Mel2c-AHF-Cre, implying a role for PPARγ in early cardiac progenitor cells. Since the Mesp1 lineage also contribute to extraembryonic mesoderm,\(^{25}\) Mesp1-Cre;Ppara\(^{6,6}\) cardiac defects may alternatively result from an extraembryonic origin of Ppara deficiency. However, cardiac defects observed in Mesp1-Cre;Ppara\(^{6,6}\) conditional embryos are milder than homozygous Ppara mutant embryos that show severe myocardial defects by E9.5.\(^{24}\) More recently single-cell transcriptomic profiling of early E6.5 to E8.5 mouse embryos, reveals that among Mesp1-expressing cells which represent almost 34% of the extraembryonic mesodermal cells, only 0.4% display Ppara expression.\(^{55}\) Moreover, our results were obtained with embryos maintained in culture indicating that indirect effects of placental PPARγ on OFT morphogenesis is unlikely. Our results thus suggest a direct role of Ppara in early cardiac progenitor cells for normal OFT elongation, a crucial developmental step during arterial pole development.\(^{56}\) Early pharmacological impairment of PPARγ activity or genetic deletion of Ppara in cardiac mesodermal cells led to a reduction of Sema3c-progenitor cells in the SHF. This is consistent with a reduced contribution of SHF cells to the iOFT wall. Interestingly, CHIP-X Enrichment Analysis\(^{57}\) has identified Sema3c together with Cd36 as PPARγ targets in preadipocyte cells in mice.\(^{58}\) Our results are supported by evidence that Ppara may play a critical role in early cardiac commitment and differentiation.\(^{59}\) Indeed, gene expression analysis of cardiac derivatives from precardiac MESP1 (mesoderm posterior 1)-progenitors in induced human embryonic stem cells identified Ppara as being rapidly activated upon stem cell differentiation. Enrichment of Ppara, although less than Ppara, in the iOFT,\(^{12}\) suggests additional roles of other Ppara family members in OFT development. In particular, the phenotypic recovery of the OFT elongation defect observed between midgestation and fetal stages in Mesp1-Cre;Ppara\(^{6,6}\) conditional embryos may suggest a genetic compensation or transcriptional adaptation to Ppara knockout by other candidate genes. However, our data demonstrate that neither Ppara nor Pparδ are involved in this compensatory function at E9.5. To date, Pparδ has not been shown to be required for OFT development. Indeed, Pparδ knockout mice display adult cardiac dysfunction with no cardiac malformation.\(^{60,61}\)

The superior wall of the OFT and subaortic myocardium originate from a subpopulation of progenitors positioned anterior to future subpulmonary progenitor cells in the SHF. These cells are positive for a Hes1-enhancer trap transgene and negative for Tbx1 and Hoxb1 genetic lineages.\(^{8,12}\) Our results reinforce and support evidence for early patterning of distinct OFT myocardial progenitors along the anterior-posterior axis. Hes1\(^{1/-}\) mutant embryos display an OFT elongation defect and OFT malformations.\(^{14}\) However, a direct role of Hes1 in the SHF was not addressed. Our analysis of Hes1 conditional deletion in early cardiac mesoderm progenitors and anterior SHF mesoderm points to an early temporal window for Hes1 function in the SHF for normal OFT formation, consistent with the regionalized expression of Hes1 in the most anterior subpopulation of the SHF and evidence for temporarily distinct populations of progenitor cells contributing to the developing heart.\(^{62}\) The development of subaortic myocardium may thus result from early committed SHF progenitors that are labeled by the
Hes1-transgene and contribute to the sOFT elongation. This conclusion is consistent with recent evidence for temporally distinct contributions of Mef2c-AHF-Cre progenitor cells to subaortic and subpulmonary myocardium, although Hes1 itself appears to be required before the activation of Mef2c-AHF-Cre.

Hes1 is a target gene and effector of the NOTCH signaling pathway and deficient NOTCH signaling within SHF progenitors leads to OFT defects affecting SHF and neural crest cell contributions to the OFT as well as progenitor cell proliferation. Identification of active NOTCH signaling in the sOFT suggests that regional activation of the NOTCH/HES1 pathway in the SHF regulates subaortic myocardial progenitor deployment to the sOFT. Results from High et al support this conclusion: the authors showed that specific inactivation of NOTCH activity in the SHF leads to cardiac malformations such as persistent truncus arteriosus or double outlet right ventricle due to alterations in influx of cardiac neural crest cells. However, an expanded Sema3c expression domain in the myocardial OFT wall of mutant hearts points to a reduced or absent subaortic myocardial domain. NOTCH signaling is directly related to human CHD resulting from perturbed Jagged1/NOTCH signaling in the SHF in Alagille syndrome and tetralogy of Fallot. Moreover, the NOTCH1 locus is the most frequent site of genetic variants predisposing to non-syndromic tetralogy of Fallot. Together with our results, this suggests that NOTCH signaling regulates OFT development by controlling the regional transcriptional identity of the OFT and specifically future subaortic myocardium.

We also found that future subaortic myocardium expresses high levels of the non-canonical NOTCH ligand DLK1. Our results showing that DLK1 increases N1ICD immunoreactivity and Hes1 expression in the OFT suggest that during early heart morphogenesis, DLK1 activates the NOTCH signaling pathway. DLK1 regulation of Notch signaling is complex and seems to be context and cell type dependent. Indeed, diverse effects of DLK1 on Notch signaling have been described, and although some reports demonstrate that Dlk1 acts through alternative signaling pathways including the Akt (serine/threonine kinase) and MAPK/ERK (mitogen activated kinase protein/ extracellular regulated MAP kinase) pathways, conflicting evidence supports both activation and inactivation of the Notch pathway in different contexts. Nevertheless, the fact that a previous report in the developing heart found that Dlk1 positively regulates Notch1 signaling is in agreement with our findings. PPARγ is an early marker of adipogenesis and one of the most critical activators of the adipogenic transcriptional program. DLK1, also known as PREF1, is a marker of undifferentiated preadipocyte expression which sharply decreases during early adipogenesis (when Pparγ is expressed). We showed that through the activation of the NOTCH/HES1 pathway, DLK1 may act to inhibit Pparγ expression in the sOFT wall. Interestingly, recent studies have reinforced our results showing that Notch1 haploinsufficiency leads to Pparγ overexpression following downregulation of Hes1 and Dlk1. Together with our results, this suggests that NOTCH signaling may be a mechanism by which DLK1 restricts Pparγ expression. The strikingly complementary expression patterns of Dlk1 and Pparγ expression in sOFT and iOFT subdomains raises the possibility that PPARγ impacts lipid metabolism as progenitor cells transit to the OFT. This possibility will be addressed in future experiments.

In summary, our findings demonstrate for the first time that PPARγ signaling together with NOTCH/HES1 signaling are both required in cardiac progenitor cells for normal heart tube elongation and regulate complementary transcriptional subdomains in the arterial pole of the embryonic heart. In addition, our results suggest that Dlk1, a noncanonical NOTCH ligand, may be part of this process thus identifying a novel molecular pathway controlling arterial pole development. Our work thus unveils new insight into the molecular mechanisms involved in developmental abnormalities of the heart that may be relevant for future clinical benefits.

ARTICLE INFORMATION
Received January 11, 2022; revision received September 7, 2022; accepted September 14, 2022.

Affiliations
Aix Marseille University, CNRS UMR 7288, IBDM, Marseille, France (M.R., M.T.R., R.S., F.R., R.G.K.) and Aix Marseille Univ, INSERM, MMG, Marseille, France (M.T.R., F.R.).

Acknowledgments
We thank Linglin Xie (Department of Nutrition, Texas A&M University, United states) for sharing with us embryos displaying Pparγ conditional deletion.

Sources of Funding
This work was supported by the European Commission under the Marie Curie Initial Training Network CardioNet (ITN-2011-299960: CardioNet, Marie Curie, ITN), the Fondation pour la Recherche Médicale (DEQ20150331717, FTD20150532561), Leducq Foundation (Transatlantic Network of Excellence, 15CV01) and the Agence Nationale de la Recherche (ANR-14-CE12-0012, ANR-18-CE13-0011, ANR-20-CE13-0029-01).

Disclosures
None.

Supplemental Materials
Supplemental Methods
Figures S1–S5
References 53(12):13927–76

REFERENCES

