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Abstract: This paper addresses the problem of cyber-attacks in discrete-event systems
framework. Labeled finite state automata with inputs derived from a particular class of Petri
net, called Output Synchronized Petri nets, are used to model a given cyber-physical system
along with the information that circulate between controllers and plant. Stealthy cyber-attacks
that may alter the control symbols, i.e., the orders sent by the controllers to the actuators,
are considered. The objective is to construct an observer that uses both input and output
information to provide a state estimation of the system under such stealthy actuators attacks.
This observer provides a refined state estimation related to both normal and attack conditions.
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1. INTRODUCTION

Cyber-Physical Systems (CPSs) generally include plant
components, sensors, actuators, controllers and a com-
munication network. These critical systems can be found
in several industrial fields: flexible production workshops,
transportation systems, distributed automation systems,
medical engineering, smart power grids, and robotic sys-
tems. The growth in the use of communication networks
for data exchanges, monitoring and control of physical
systems increases the vulnerability of CPSs to different
malicious attacks. This threat shows that the implemen-
tation of detection techniques is crucial for the reliable
exploitation of such systems.

In the literature, different strategies are proposed to deal
with cyber-attacks that drive a controlled Discrete Event
System (DES) to unsafe or undesirable states by consid-
ering actuator attacks (Lin et al., 2020), sensor attacks
(Meira-Góes et al., 2020; Su, 2017), or both (Lin and
Su, 2020). These works focus on designing stealthy (i.e.,
undetectable) attack strategies by exploiting the existing
developments in the field of supervisory control theory. By
adopting an attacker viewpoint, the motivation is to pro-
vide a good understanding about the attacker’ possibilities
with the objective to provide insights about the system’s
vulnerabilities. Other works deal with attack detection
and defense strategies. In (Lima et al., 2018), attacks
on the sensor and/or actuator communication channels
are considered and, a defense strategy is established to
detect attacks or prevent damages by disabling control-
lable events. Zhang et al. (2019) carried out a study to
analyse a supervised DES under attack. The considered
attacker may corrupt the sensor reading and may also
⋆ This work has been partially supported by the CPSecurity project
(CNRS-INS2I grant).

enable events that are disabled by the supervisor. A spe-
cial automaton, called attack structure, is constructed as
the parallel composition of the attacker observer and the
supervisor under attack. The final objective is to verify
the effectiveness of an attacker, i.e., its capacity to drive
the plant to a critical state, while the operator estimates
that the plant is in a noncritical one. Recently, the authors
(Zhang et al., 2021) were interested in the state estimation
problem of partially-observed DESs under sensors attack.
The intruder is assumed to be able to insert or erase
sensor reports. An automaton, called joint estimator, is
then defined to describe the set of all possible attacks. Such
structure provides, for a given sensor outputs sequence,
the set of states consistent with the uncorrupted and
possibly corrupted sequence. In the same context, where
the attacker is able to modify a subset of sensor readings to
mislead the supervisor, Meira-Góes et al. (2020), propose
a bipartite transition structure, called Insertion-Deletion
Attack structure which captures the game-like interaction
between the supervisor and the environment. This allows
one to determine if the attacker can lead the plant to a
forbidden state without being detected by the supervisor.

Based on the Petri net formalism, few works have been
done on CPS under stealthy attacks. Dedicated to la-
beled Petri nets, Zhang et al. (2020) have extended their
previous work on attack structures for representing all
possible sensor attacks on the system. More recently, a
new Petri net formalism, called Output Synchonized Petri
net (Ammour et al., 2021b), has been defined for modeling
CPSs under attacks. The reachability of such a model is
established by a class of automata, called labeled finite
automata with inputs (LFAIs). A first study on these for-
malisms has been developed for vulnerability assessment
of CPSs under stealthy attacks (Ammour et al., 2021a).



Based on these previous DES formalisms, this paper is
focused on actuators attacks. We assume that the intruder
can insert, replace or delete some control actions (i.e.,
actuator orders) depending on its own objectives but it
is unable to disturb the sensor reports. In the meantime,
the controller sends control inputs - referred to as symbols
in the rest of this paper - to the plant and receives sensor
reports from the plant in return - referred to as labels
in the rest of this paper. The main contributions of the
paper are: (i) to propose a composed automaton dedicated
to actuator attacks where each state is formed by the
assumed state by the controller (under the assumption
that no attack has occurred) and the actual state (that
depends on the attacker capabilities). Such an automaton
provides all the possible attacker possibilities. (ii) to design
an observer from the composed automaton that uses both
input symbols and output labels information to provide
a state estimation of the system under such stealthy
actuators attacks. Such an observer provides a refined state
estimation related to both normal and attack conditions.

The rest of the paper is organized as follows. In Section 2,
basic definitions and terminology on LFAIs are reviewed.
Section 3 is about the composed automaton for actuator
attacks obtained from the composition of two LFAIs: a
controller automaton and an attacker automaton. Sec-
tion 4 details the design of an observer that can be used
to estimate the current state of the system under normal
and attack conditions. Section 5 concludes the paper.

2. LABELED FINITE AUTOMATA WITH INPUTS

In our previous work (Ammour et al., 2021b), a particular
class of Petri nets, called output synchronized Petri nets,
that allow to model the information that circulates in a
given CPS has been defined. Then, in order to analyze
such Petri net models, labeled finite state automata 1 with
inputs (LFAIs) have been derived (Ammour et al., 2021a).
In this section, we recall the definition of a LFAI and next
introduce the reduced LFAI.

The states of a LFAI represent the global states of the sys-
tem and the transitions are associated with input/output
information.

Definition 1. A labeled finite state automaton with inputs
(LFAI) is a 6-tuple G = (X,Eλ, δ, x0, Q,Obs), where:

• X is a finite set of states,
• E is a finite set of symbols and Eλ = E ∪ {λ} where
λ is an internal and ”always occurring” event,

• δ : X × Eλ → X is a (partially) transition function,
• x0 ∈ X is an initial state,
• Q is a finite set of labels and Qε = Q ∪ {ε}, where ε
denotes the absence of label,

• Obs : X × Eλ → 2Q ∪ {ε} is a labeling function. ▲

We consider that the LFAI is deterministic with respect
to the symbols, i.e., ∀x ∈ X,∀e ∈ Eλ, δ(x, e) is at most
of cardinality 1. In such a case, we write that e is active
at state x and there exist x′ ∈ X such that x′ = δ(x, e).
Otherwise, δ(x, e) is not defined. δ(x, λ) = x′ means that
the system will move from x to x′ according to the ”always
occurring” event λ, i.e., without waiting for any symbol.
1 The reader could find details about automata in (Hadjicostis,
2020).

Definition 2. Given a LFAI G, x ∈ X is a λ-state if
δ(x, λ)!, i.e., δ(x, λ) is defined. Otherwise x is a λ̄-states.▲

In a certain sense, λ-states are ”unstable” states because
the system immediately and spontaneously switches to the
next state when it reaches a λ-state. Observe that when
a λ-transition (i.e., a transition associated with event λ)
exists from a given state x, then, it will be the unique
transition outgoing from x. Thus, the set of states of a
given LFAI may be split into two subsets X = Xλ ∪ XR

where Xλ is the set of λ-states that activate a λ-transition
and, XR = X \Xλ is the set of λ̄-states that activate one
or more transitions that need external inputs to fire. Note
that the initial state is assumed to be a λ̄-state in the rest
of this paper (i.e., x0 ∈ XR). Multiple labels (a subset of
Q) could be provided by each transition.

A control sequence of length n sent by a controller is
denoted by i = e1 . . . en with eh ∈ E, h = 1 . . . n. It
could be completed by the λ events that are generated
spontaneously by the system leading to the corresponding
executed sequence i′ = e′1 . . . e

′
m, e′h ∈ Eλ, h = 1 . . .m, with

m ≥ n. As far as we restrict the discussion to deterministic
LFAIs, a single i′ is associated with a given i.

We introduce δ∗ and Obs∗ as the trivial extensions of
the functions δ and Obs. These extensions are defined
recursively, for an executed sequence i′ by δ∗(x, ei′) =
δ∗(δ(x, e), i′) and Obs∗(x, ei′) = Obs(x, e)Obs∗(δ(x, e), i′).

A trajectory σ(x, i′) of m + 1 successive states could be
obtained from x as:

xj0

(e′1,Obs(xj0
,e′1))−−−−−−−−−−→ xj1 . . . xjm−1

(e′m,Obs(xjm−1
,e′m))

−−−−−−−−−−−−−→ xjm

where xj0 = x and xjm = δ∗(x, i′). The sequence
of sets of labels generated by i′ is denoted as o =
Obs∗(x, i′) = Obs(xj0 , e

′
1) . . . Obs(xjm−1 , e

′
m). We use

(xjh−1
, e′h) ∈ σ(x, i′) to refer to a transition from state

xjh−1
driven by symbol e′h in trajectory σ(x, i′).

The next definition introduces the notion of reduced labeled
finite automaton with inputs (R-LFAI) that is an LFAI
where all λ-states have been abstracted. Note also that
a LFAI may be incomplete regarding the symbols in E.
For the ease of the manipulation, the R-LFAI is defined as
a complete automaton that has the same set of possible
evolutions from the perspective of an outside observer.

Definition 3. Given a LFAI G = (X,Eλ, δ, x0, Q,Obs)
where x0 is an initial λ̄-state. Its corresponding reduced
labeled finite automaton with inputs (R-LFAI) is a 6-tuple
GR = (XR, E, δR, x0, Q,ObsR), where:

• XR is a finite set of λ̄-states,
• E is a finite set of symbols,
• δR : XR×E → XR is the completely defined transition
function that satisfies for all x ∈ XR :
(i) δR(x, e) = δ(x, e λk), x ∈ XR, e ∈ E, if ∃k ≥ 0,
such that δ(x, e λk)! and δ(x, e λk) ∈ XR;
(ii) δR(x, e) = x, otherwise;

• x0 ∈ XR is an initial λ̄-state,
• Q is a finite set of labels,
• ObsR : XR × E → 2Q ∪ {ε} is the labeling function
that satisfies for all x ∈ XR:
(i) ObsR(x, e) = Obs(x, e λk), x ∈ XR, e ∈ E, if
∃k ≥ 0, such that δ(x, e λk)! and δ(x, e λk) ∈ XR;
(ii) ObsR(x, e) = ε otherwise. ▲
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Fig. 1. A labeled finite state automaton with inputs
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Fig. 2. R-LFAI of the LFAI in Fig. 1

Example 1. Consider the LFAI represented in Figure 1.
It is defined by a set of 8 states, X = {x0, · · · , x7}, that
includes 4 λ-states x4, x5, x6, x7 (represented by dashed
states), and the initial state x0. The set of symbols is
E = {a, b} and the set of labels is Q = {A,B,C}. The
notation (b, A) means that the system switches from state
x0 to state x1 when it receives symbol b and, that this
transition delivers label A. Thus, we have δ(x0, b) = x1

and Obs(x0, b) = A.

The R-LFAI resulting from the removing of the λ-states
and from the adding of the transition δR(x3, b) = x3 (in
order to make the transition function completely defined
with respect to the symbols generated by the controller) is
reported in Figure 2. Note that the labeling function has
been also completed ObsR(x3, b) = ε. □

3. COMPOSITION DESIGN

In this section, we propose to compute a logical compo-
sition that will model the impacts of any combination of
actions from the controller and actions from the attacker
over the communication channels between the controller
and the plant. Let us recall that in this paper we consider
stealthy actuator attacks which correspond to a replace-
ment, a deletion or an insertion of control inputs.

3.1 Attack mapping

In the rest of this paper, the notation ε will be used
indifferently for the absence of label or for the absence
of symbol and we introduce Eε = E ∪ {ε}. The actions of
the attacker are defined by a mapping f within Eε × Eε.

Definition 4. An attack on the control symbols is defined
by f : Eε × Eε → {0, 1}, such that for e, e′ ∈ Eε,
f(e, e′) = 1 if e = e′ or if the attacker may replace
symbol e by e′; f(e, e′) = 0, otherwise. The mapping f
also specifies e′-insertion, i.e., f(ε, e′) = 1 and e-deletion,
i.e., f(e, ε) = 1. For each e, e′ ∈ Eε such that f(e, e′) = 1,
e′e denotes that the attacker replaces e by e′. ▲

Note that the mapping f could be used to represent the
case where the attacker may manipulate a subset of the
inputs and/or where the possible attacker actions differ
depending on the considered input. In the next, we refer
to the set of attacker actions as to EA defined by:

EA = {e′e | e, e′ ∈ Eε and f(e, e′) = 1}.

Observe that attack actions may be separated into two
groups. On one hand, anytime actions, i.e., symbols in-
sertion may occur at any time whatever the actions of
the controller. On the other hand, reactive actions, i.e.,
symbols replacement or deletion occurs only in reaction to
some controller actions. Thus, EA = EAA ∪ ERA, where
EAA = {e′ε | e′ ∈ E and f(ε, e′) = 1} and ERA = {e′e | e′ ∈
Eε, e ∈ E and f(e, e′) = 1}.

3.2 Controller automaton

The controller automaton describes the system evolution
from the perspective of the controller. It is obtained from
the R-LFAI and from the attack mapping f .

Definition 5. Given a R-LFAI GR = (XR, E, δR, x0, Q,
ObsR) and an attack mapping f , the controller automaton
GC(f) associated with GR and f is a 6-tuple GC(f) =
(XR, E ∪ EA, δC , x0, Q,ObsC), where:

• XR is a finite set of λ̄-states,
• E is the finite set of controller symbols and EA is the
finite set of attacker actions,

• δC : XR× (E ∪EA) → XR is the controller transition
function that satisfies for x ∈ XR:
(i) δC(x, e) = δR(x, e) if e ∈ E;
(ii) replacement: δC(x, e

′
e) = δR(x, e), e′e ∈ ERA,

e ∈ E ;
(iii) deletion: δC(x, εe) = δR(x, e), e ∈ E, εe ∈ ERA ;
(iv) insertion: δC(x, e

′
ε) = x, e′ε ∈ EAA ;

• x0 ∈ XR is an initial λ̄-state,
• Q is a finite set of labels,
• ObsC : XR × (E ∪ EA) → 2Q ∪ {ε} is the controller

labeling function that satisfies for x ∈ XR:
(i) ObsC(x, e) = ObsR(x, e), e ∈ E;
(ii) ObsC(x, e

′
e) = ObsC(x, εe) = ObsR(x, e), e′e ∈

EA, εe ∈ ERA, e ∈ E ;
(iii) ObsC(x, e

′
ε) = ε, e′ε ∈ EAA. ▲

3.3 Attacker automaton

The attacker automaton describes the system evolution
from the perspective of the attacker. It is also obtained
from the R-LFAI and from f .

Definition 6. Given a R-LFAI GR = (XR, E, δR, x0, Q,
ObsR) and an attack mapping f , the attacker automaton
GA(f) associated with GR and f is a 6-tuple GA(f) =
(XR, E ∪ EA, δA, x0, Qϵ, ObsA), where:

• XR is a finite set of λ̄-states,
• E is the finite set of controller symbols and EA is the

finite set of attacker actions,
• δA : XR× (E ∪EA) → XR is the controller transition

function that satisfies for x ∈ XR:
(i) δA(x, e) = δR(x, e) if e ∈ E;
(ii) replacement: δA(x, e

′
e) = δR(x, e

′), e′e ∈ ERA,
e′ ∈ E;
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Fig. 3. Controller automaton GC(f)

(iii) deletion: δA(x, εe) = x, e ∈ E, εe ∈ ERA;
(iv) insertion: δA(x, e

′
ε) = δR(x, e

′), e′ε ∈ EAA ;
• x0 ∈ XR is an initial λ̄-state,
• Q is a finite set of labels,
• ObsA : XR × (E ∪ EA) → 2Q ∪ {ε} is the attacker
labeling function that satisfies for x ∈ XR:
(i) ObsA(x, e) = ObsR(x, e), e ∈ E;
(ii) ObsA(x, e

′
e) = ObsR(x, e

′), e′e ∈ EA

(iii) ObsA(x, εe) = ObsA(x, e
′
ε) = ε, εe ∈ ERA, e

′
ε ∈

EAA. ▲

In the rest of the paper and for the ease of representation,
an (e, ε)-transition with e ∈ (E ∪ EA) will be represented
by an arc tagged only with the symbol e.

Example 2. Consider again the LFAI in Figure 1 and
its R-LFAI given in Figure 2. Consider an attack that
is able to insert, erase or replace the symbols a and b.
In such a case, the mapping f is given by f(e, e′) = 1
for e, e′ ∈ {a, b, ε}. The set of attacker actions is given
by EA = EAA ∪ ERA with EAA = {aε, bε} and ERA =
{ba, εa, ab, εb}. The controller automaton GC(f) and at-
tacker automaton GA(f) are respectively represented in
Figures 3 and 4. They both include the states and tran-
sitions of the R-LFAI but also all potential attacker’s
actions. In GC(f) for instance, symbols insertion could
be considered at any state as long as no label is generated.
These actions does not lead to any system evolution from
the perspective of the controller and are represented by
the self loops tagged with aε; bε. Symbols replacement
and deletion actions are also considered and associated
with the expected labels by the controller. For instance,
from state x0, (ba, A)-transition and (εa, A)-transition cor-
respond to replacement and deletion of control input a,
respectively. These two transitions indicate that even if
symbol a is replaced or deleted, the controller considers
that state x2 is reached as long as the expected label A
is received. From the attacker’s perspective who knows
the real state of the system, GA(f) models all attacker’s
possibilities. Symbols deletion are represented by the self
loops tagged with εa; εb at each state. In such a case, the
attacker knows that the system does not evolve and no
label is generated by the system. Symbols replacement and
insertion are also considered such as ab and aε from x0 that
necessarily generate label A since x0 is considered as the
real state of the system. □

Note that at this stage, the feasibility of stealthy actions
in GC(f) and GA(f) is not considered since they depend
on both the real current state of the system (known by the
attacker) and the assumed current state by the controller.
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Fig. 4. Attacker automaton GA(f)

3.4 Composition design

In the next, a logical composition G(f) is considered.
G(f) describes the interactions between the controller and
the attacker from the perspective of the system. G(f) is
obtained by a product-like composition ofGC(f) byGA(f)
where the synchronisation product 2 is only defined for
pairs of symbols and sets of labels that are identical in
both automata. For this purpose, let us first introduce for
x, x′ ∈ XR, the sets of events Γ(x, x′) and Γ̄(x, x′) as:

Γ(x, x′) = {e ∈ E ∪ EA : δC(x, e)!, δA(x
′, e)!,

ObsC(x, e) = ObsA(x
′, e)},

Γ̄(x, x′) = (E ∪ EA) \ Γ(x, x′).

Definition 7. Let GR = (XR, E, δR, x0, Q,ObsR) be a
R-LFAI, an attack mapping f with a set of attacker
actions EA, its associated controller automatonGC(f) and
its attacker automaton GA(f). The composed automaton
G(f) = GC(f) ×GA(f) is the 6-tuple G(f) = (XCA, E ∪
EA, δC×A, s0, Q,ObsCA), where:

• XCA = XR ×XR is the finite set of the composition
states,

• E∪EA is the finite set of symbols and attacker actions,
• δC×A : XCA × (E ∪EA) → XCA is a transition func-
tion that satisfies for x, x′ ∈ XR: δC×A((x, x

′), e) =
(δC(x, e), δA(x

′, e)) if e ∈ Γ(x, x′),
• s0 = (x0, x0) ∈ XR × XR is the initial composed
automaton state,

• ObsCA is the labeling function that is defined for all
s = (x, x′) ∈ XR ×XR and e ∈ E ∪ EA as:
ObsCA(s, e) = ObsC(x, e) = ObsA(x

′, e) if e ∈
Γ(x, x′). ▲

Each state s of G(f) is a pair of R-LFAI states s = (x, x′)
where x is the current state from the perspective of the
controller, and x′ is the system state from the perspective
of the attacker that coincides with the system actual state
according to the considered assumptions. Note that the
assumed state by the controller x coincides with the actual
state x′ (i.e., x = x′) as far as the system is not attacked.

The set of composition states XCA could be split into
a set of normal states (i.e., {s = (x, x), x ∈ XR}) and
a set of states that result from undetected attacks (i.e.,
{s = (x, x′), x, x′ ∈ XR, x ̸= x′}), as it is illustrated in the
next example.

2 The product of two automata A = (XA, EA, δA, x0A) and B =
(XB , EB , δB , x0B) is an automaton A × B = (XA × XB , EA ∩
EB , δA×B , (x0A, x0B)) where the transition function is only defined
for events in the set EA ∩ EB .
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Fig. 5. Composed automaton G(f) = GC(f)×GA(f).

Example 3. The automaton G(f), obtained by the com-
position of the controller automaton GC(f) in Figure 3
by the attacker automaton GA(f) in Figure 4, is rep-
resented in Figure 5. In this figure, the actions of the
controller are associated with transitions represented with
black edges, whereas the actions of the attacker are as-
sociated with transitions represented with red edges. The
set of normal states is {(x0, x0), (x1, x1), (x2, x2), (x3, x3)}
whereas the one resulting from undetectable attacks
is {(x1, x2), (x2, x1), (x1, x3), (x3, x1)}. For instance, from
the initial state (x0, x0), if the controller sends symbol
b and the attacker replaces it by a, then the (ab, A)-
transition drives the current state of G(f) from (x0, x0) to
(x1, x2). At this stage, the attacker knows that the current
state has changed to x2 whereas the controller estimates
that the system state is x1. In this situation, the attacker
can continue to insert symbols a, i.e., aε, without being
detected but this will not change the current state of the
system. Any other manipulation or any symbols sent by
the controller (and whatever the action of the attacker)
will lead to the attack detection because the generated
labels will not be consistent with the expected ones by the
controller. □

It is worth noting that the composition G(f) includes all
combinations of attacker and controller actions. Conse-
quently G(f) can be used to evaluate the vulnerability of
the system from a structural perspective, e.g., by searching
connected components, paths or cycles in the graph asso-
ciated to the composition. In particular, G(f) is helpful
to verify the existence of stealthy attacks that may lead
the system to some critical situations (x, x′) where the
controller assumes that the state is x whereas the attacker
led the system to x′.

4. OBSERVER DESIGN

In order to design an observer of the composed automaton
G(f) = GC(f)×GA(f), let us first introduce the function
g defined by: g : E ∪ EA → Eε, g(e

′
e) = e if e′e ∈ EA,

and g(e) = e if e ∈ E. In simple words, the function
g replaces the symbols of the attacker by the symbols
originally generated by the controller or by ε for anytime
actions. In the rest of this paper we denote by g(G(f)) the
structure obtained from G(f) by replacing the attacker
symbols by symbols in Eε according to the function g.

Definition 8. Let GR = (XR, E, δR, x0, Q,ObsR) be a R-
LFAI, f an attack mapping, GC(f) its associated con-
troller automaton, GA(f) its attacker automaton and the
composed automatonG(f) = GC(f)×GA(f) = (XCA, E∪
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Fig. 6. Modified composition g(G(f)).

EA, δC×A, s0, Q,ObsCA). The modified composed automa-
ton of composed automaton G(f) is the 6-tuple, g(G(f)) =
(XCA, E, δg, s0, Q,Obsg), where:

• δg : XCA × Eε → 2XCA is a transition function
that satisfies: for (x, x′) ∈ XCA, e ∈ E ∪ EA,
δC×A((x, x

′), e) ∈ δg((x, x
′), g(e)).

• Obsg is the labeling function defined by:
Obsg((x, x

′), g(e)) = ObsCA((x, x
′), e), for (x, x′) ∈

XCA, e ∈ E ∪ EA. ▲

An approach similar to the one already detailed in (Am-
mour et al., 2021b) can be used to design an observer
of the modified composition g(G(f)). Such an observer
is obtained with a slight modification of the standard
approach, that transforms a non deterministic automaton
into a deterministic one (Hadjicostis, 2020). Compared to
the usual observers that use only the observation labels,
the proposed observer takes advantage of the input /
output observations of g(G(f)), by using both the input
events generated by the controller (whatever the attacker
actions) and the output labels generated by the system
(that depend on the attack actions) as observations.

The initial state sIO0 is first defined by the set of states
reachable from s0 by executing zero or more silent transi-
tions in g(G(f)) (i.e., (ε,ε)-transitions that will be simply
refered to as ε-transitions in the next). Then, the states
of the observer are successively defined by computing, for
each s ∈ XCA, the two following subsets of states:

• X(s, ε) ⊆ XCA, the subset of states that are reachable
from s by executing zero or more ε-transitions in
g(G(f));

• X ′(s, e, q) ⊆ XCA, e ∈ Eε, q ∈ Qε, (e, q) ̸= (ε, ε), the
subset of states that are reachable from s by executing
exactly one (e, q)-transition in g(G(f)).

If for a given state sIO already computed, the set
∪s∈sIO

(
∪s′∈X′(s,e,q)X(s′, ε)

)
is not empty and differs from

all observer states already computed, then a new observer
state s′IO is created as below:

s′IO = ∪s∈sIO

(
∪s′∈X′(s,e,q)X(s′, ε)

)
The logical observer is formally defined as follows.

Definition 9. Let GR = (XR, E, δR, x0, Q,ObsR) be
a R-LFAI, f an attack mapping, GC(f) its associ-
ated controller automaton, GA(f) its attacker automa-
ton and G(f) the composed automaton. The input /
output observer of the modified composed automaton
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Fig. 7. Input/output observer of g(G(f)).

g(G(f)) = (XCA, E, δg, s0, Q,Obsg), is defined by the 4-
tuple OBSIO = (SIO, QIO, δIO, sIO0) with:

• SIO ⊆ 2XCA , the set of observer states;
• QIO ⊆ (E×(2Q∪{ε})), the set of extended controller
input symbol and associated observed label;

• δIO, the transition function defined, for all sIO ∈ SIO

and (e, q) ∈ QIO by:
δIO(sIO, (e, q)) = ∪s∈sIO

(
∪s′∈X′(s,e,q)X(s′, ε)

)
if

∪s∈sIO

(
∪s′∈X′(s,e,q)X(s′, ε)

)
̸= ∅;

• sIO0 = X(s0, ε), the observer initial state. ▲
Example 4. The automaton g(G(f)) of Figure 6 is ob-
tained from the composed automaton depicted in Figure 5.
It includes only symbols (originally) sent by the controller
even if they were manipulated by the attacker. The ob-
tained automaton is non deterministic. For instance, from
the initial state (x0, x0) the (a,A)-transition could lead
the system to two different states (x2, x2) or (x2, x1) de-
pending on whether the attacker has manipulated symbol
a or not. ε-transitions also exist in this automaton (for
instance from state (x3, x3) to state (x3, x1)) and corre-
spond to possible system state evolution caused by the
attacker without any action from the controller. Figure 7
represents the input/output observer obtained from the
modified composed automaton g(G(f)). This observer in
a deterministic automaton that indicates the states that
may be reached by the system after each controller action.
For instant, when the controller sends symbol b from the
initial state and receives label A, then the system state
could be a normal one (x1, x1) or a state that results from
an attack (x1, x2). □

The observer OBSIO provides valuable information to the
defender. In particular, assuming that the defender knows
the intruder capacities, this observer provides the system
states (the second part of the pair that forms each state
of g(G(f))) that are consistent with a given sequence of
symbols and labels observed by the defender thus far. This
information can serve to elaborate some defense strategy
against the attacker.

In addition, by considering not only the labels but also
the symbols, this observer refines the state estimation com-
pared to a standard observer based only on the observation
of the labels (for example, in the case of a system that
provides few or even not any labels, and an attacker that
can manipulate only a selection of symbols).

5. CONCLUSIONS

This paper has proposed a method to design a composed
automaton from the perspective of the input / output

channel where symbols and labels circulate between the
system and the controller. Such a composition, of a con-
troller automaton by an attacker automaton, includes all
combinations of attacker and defender actions. Then, an
input / output observer of the controlled system, possibly
under attack, has been proposed, that makes full use of the
observed symbols and labels. Such an observer provides a
refined state estimation when the system is under attack.

Future works based on these approaches include several
perspectives. One immediate future work is to handle more
damaging attack that manipulate not only the actuators
but change also the sensor reports. Another research
direction is to evaluate the vulnerability of a system
with respect to a given attack by proposing some formal
analysis of the composed automaton and its input/output
observer. Another interesting focus will be to study the
question of attack and defense strategies in the perspective
of optimization. Such a problem can be addressed by
associating each attacker and / or controller action to a
given cost related to the effort, energy or time required to
perform that action.
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