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Introduction

The subgradient method for solving non-differentiable convex optimization prob-lems has its origin in the 60's, see [START_REF] Ermol'ev | Methods of solution of nonlinear extremal problems[END_REF][START_REF] Shor | Minimization methods for nondifferentiable functions[END_REF]. Over the years it has been the subject of much interest, attracting the attention of the scientific community working on Proposition 1 The function f ∶ ℝ n → ℝ is -strongly convex with modulus ≥ 0 if and only if f (y) ≥ f (x) + ⟨v, y -x⟩ + ( ∕2)‖y -x‖ 2 , for all x, y ∈ ℝ n and all v ∈ f (x).

A function f ∶ ℝ n → ℝ is L f ,C -Lipschitz continuous on C ⊂ ℝ n if there exist a constant L f ,C > 0 such that �f (x)f (y)� ≤ L f ,C ‖x -y‖ , for all x, y ∈ C . Whenever C = ℝ n we set L f ≡ L f ,ℝ n.

Proposition 2 Let f ∶ ℝ n → ℝ be a convex. Then, for all x ∈ ℝ n the set f (x) is a non-empty, convex, compact subset of ℝ n . In addition, f is L f ,C -Lipschitz function on C ⊂ ℝ n if and only if ‖v‖ ≤ L f ,C for all v ∈ f (x) and x ∈ C.

Remark 1

In view of Proposition 2, if C ⊂ ℝ n is a compact set then f is a L f ,C -Lip- schitz function on C ⊂ ℝ n for some L f ,C > 0.

Definition 3 Let C ⊂ ℝ n be a closed convex set. The projection map, denoted by P C ∶ ℝ n ⇉ C , is defined as follows P C (y) ∶= arg min{‖y -z‖ ∶ z ∈ C}.

The next lemma presents an important property of the projection.

Proposition 4 Let y ∈ ℝ n and z ∈ C . Then, we have � � P C (y)z � � 2 ≤ ‖y -z‖ 2 .

Definition 5 Let S be a nonempty subset of ℝ n . A sequence (v k ) k∈ℕ ⊂ ℝ n is said to be quasi-Fejér convergent to S, if and only if, for all v ∈ S there exists k ≥ 0 and a summable sequence ( k ) k∈ℕ , such that ‖v k+1 -v‖ 2 ≤ ‖v k -v‖ 2 + k for all k ≥ k.

In the following lemma, we state the main properties of quasi-Fejér sequences that we will need; a comprehensive study on this topic can be found in [START_REF] Combettes | Quasi-Fejérian analysis of some optimization algorithms[END_REF].

Lemma 6 Let (v k ) k∈ℕ be quasi-Fejér convergent to S. Then, the following conditions hold:

(i) the sequence (v k ) k∈ℕ is bounded; (ii) if a cluster point v of (v k ) k∈ℕ belongs to S, then (v k ) k∈ℕ converges to v.

Subgradient method with non-monotone line search

We are interested in the following constrained optimization problem [START_REF] Beck | First-Order Methods in Optmization[END_REF] min f (x) s.t. x ∈ C, where f ∶ ℝ n → ℝ is a convex function and C ⊂ ℝ n is a closed and convex set. Denote by Ω * the optimal set of the problem [START_REF] Beck | First-Order Methods in Optmization[END_REF] and by f * the optimal value. Throughout the paper we will consider problem [START_REF] Beck | First-Order Methods in Optmization[END_REF] under the following two assumptions:

(H1) f ∶ ℝ n → ℝ is a convex function and L f ,C -Lipschitz continuous;

(H2) f * ∶= inf x∈C f (x) > -∞.
We propose the following conceptual algorithm to find a solution of problem [START_REF] Beck | First-Order Methods in Optmization[END_REF].

Remark 2 It follows from [START_REF] Hiriart-Urruty | Convex analysis and minimization algorithms. I[END_REF]Theorem 4.2.3] that the set where convex functions fail to be differentiable is of zero measure. Consequently, almost every opposite direction of a subgradient is a descent direction. Therefore, we expect Algorithm 1 to be able to skip non-differentiability points that are not minimum points and then behave similarly to the gradient method with non-monotonic line search at differentiability points. It is worth to noting that the idea of using general non-monotone line searches in differentiable optimization, generalizing the non-monotone searches proposed in [START_REF] Grippo | A nonmonotone line search technique for Newton's method[END_REF][START_REF] Zhang | A nonmonotone line search technique and its application to unconstrained optimization[END_REF], have appeared in [START_REF] Grapiglia | On the worst-case evaluation complexity of non-monotone line search algorithms[END_REF][START_REF] Sachs | Nonmonotone line searches for optimization algorithms[END_REF]. A modified version of the subgradient method with the non-monotone line search proposed in [START_REF] Grippo | A nonmonotone line search technique for Newton's method[END_REF] was considered in [START_REF] Krejic | Spectral projected subgradient method for nonsmooth convex optimization problems[END_REF][START_REF] Loreto | Convergence analysis for the modified spectral projected subgradient method[END_REF][START_REF] Loreto | A numerical study of applying spectral-step subgradient method for solving nonsmooth unconstrained optimization problems[END_REF], see also [START_REF] Jerinkić | AN-SPS: Adaptive sample size nonmonotone line search spectral projected subgradient method for convex constrained optimization problems[END_REF].

In the following lemmas we establish general inequalities that are important in our analysis. We begin presenting the well definition of k defined in Step 2 of Algorithm 1 and two inequalities that follows as a consequence.

Lemma 7

There exists k satisfying [START_REF] Bertsekas | Nonlinear Programming, Athena Scientific Optimization and Computation Series[END_REF]. As a consequence, the following inequalities hold: and x k+1 ∈ C , for all k ∈ ℕ.

Proof Since f and the projection P C are continuous functions and the point

x k ∈ C , we have lim →0 + (f (P C (x k -s k )) -f (x k )+ ‖s k ‖ 2 )=0 . Hence, due to 𝛾 k > 0 , ( 3 
) k+1 ≤ c k , f (x k+1 ) ≤ f (x k ) - k+1 ‖s k ‖ 2 + k , ∀k ∈ ℕ, there exists 𝜂 k > 0 such that f (P C (x k -𝛼s k )) -f (x k )+𝜌𝛼‖s k ‖ 2 <𝛾 k , for all ∈ (0, k ] , or equivalently,
Hence, due to ∈ (0, 1) we have lim →0 + k = 0 , and since 𝜂 k > 0 , we obtain that there exists * ∈ ℕ such that ≥ * implies k ∈ (0, k ] . Therefore, due to (4) be hold for all ∈ (0, k ] , there exists k satisfying [START_REF] Bertsekas | Nonlinear Programming, Athena Scientific Optimization and Computation Series[END_REF], which proves the first statement. The inequalities in (3) and inclusion x k+1 ∈ C follow from the definitions of x k+1 and k+1 in Step 3.

◻ From now on (x k ) k∈ℕ denotes the sequence generated by Algorithm 1. In the next lemma we recall a classical inequality used in the study of subgradient methods, see for example [START_REF] Beck | First-Order Methods in Optmization[END_REF]Lemma 8.11] and se also [START_REF] Correa | Convergence of some algorithms for convex minimization[END_REF]. We give the proof here for the sake of completeness.

Lemma 8

For any x ∈ ℝ n there holds In addition, if f is a -strongly convex function then there holds Proof Since the inequality (6) becomes (5) for = 0 , it is sufficient to prove [START_REF] Cristianini | An Introduction to Support Vector Machine and other Kernel-Based Learning Methods[END_REF]. It follows from the definition of x k+1 in Step 3 of Algorithm 1, Proposition 4 and also definition of k+1 that Therefore, considering that f is a -strongly convex function, it follows from Proposition 1 that ⟨s k , x - 2 , which substituting into [START_REF] Ermol'ev | Methods of solution of nonlinear extremal problems[END_REF] yields [START_REF] Cristianini | An Introduction to Support Vector Machine and other Kernel-Based Learning Methods[END_REF]. The inequality (5) follows from ( 6) by letting = 0 . ◻ Next we present an important relationship between ( k ) k∈ℕ and ( k ) k∈ℕ .

x k ⟩ ≤ f (x) -f (x k ) -( ∕2)‖x k -x‖

Lemma 9

The following inequality holds:

Proof The inequality [START_REF] Goffin | Convergence of a simple subgradient level method[END_REF] immediately holds for k = 1 . Suppose by an absurd that there exists k ∈ ℕ such that (4)

f (P C (x k -s k )) ≤ f (x k ) -‖s k ‖ 2 + k , ∈ (0, k ].
(5)

2 k+1 (f (x k ) -f (x)) ≤ ‖x k -x‖ 2 -‖x k+1 -x‖ 2 + 2 2 k+1 ‖s k ‖ 2 , ∀k ∈ ℕ. (6) 
2 k+1 (f (x k ) -f (x)) ≤ (1 - k+1 )‖x k -x‖ 2 -‖x k+1 -x‖ 2 + 2 2 k+1 ‖s k ‖ 2 , ∀k ∈ ℕ. ( 7 
)
‖x k+1 -x‖ 2 = ‖P C (x k -k k s k ) -x‖ 2 ≤ ‖x k -k k s k -x‖ 2 . = ‖x k -x‖ 2 + 2 k+1 ⟨s k , x -x k ⟩ + 2 2 k+1 ‖s k ‖ 2 . ( 8 
) k ≥ min 1 , c k , k (1 + )L 2 f ,C
, ∀k ∈ ℕ.

Since we are supposing that ( k ) k∈ℕ is a non-increasing sequence, using the defini- tion of k+1 in Step 3 of Algorithm 1 together with (9), we conclude that Thus, in particular, we have Considering that f is L f ,C -Lipschitz continuous and x k ∈ C , using Proposition 4 we have Using again the L f ,C -Lipschitz continuity, it follows from Proposition 2 that ‖s k ‖ ≤ L f ,C . Thus, after some algebraic manipulations, the two previous inequalities imply that Hence, using [START_REF] Grant | Graph implementations for nonsmooth convex programs[END_REF] we obtain that f

(P C (x k -𝛽 k -1 𝛼 k s k )) -f (x k ) + 𝜌𝛽 k -1 𝛼 k ‖s k ‖ 2 < 𝛾 k , or equivalently
which, together with [START_REF] Grapiglia | On the worst-case evaluation complexity of non-monotone line search algorithms[END_REF], contradicts the definition of k in (2). Thus, [START_REF] Goffin | Convergence of a simple subgradient level method[END_REF] holds for all k and the proof is complete. ◻ Remark 3 It is worth to noting that the choice of 1 is crucial for the performance of the method. However, we are not aware of any theoretically founded criterion for choosing the initial stepsize in the context of line search methods. In the cases in which L f ,C is known, a conservative choice is since in this case it follows from Lemma 9 that the line search condition at iteration 1 of Algorithm 1 will be directly satisfied (with 1 = 0).

(9) 𝛼 k+1 < min 𝛼 1 , c𝛽𝛾 k+1 , 𝛾 k+1 (1 + 𝜌)L 2 f ,C . ( 10 
) 𝛽 k -1 𝛼 k = 𝛼 k+1 < min 𝛼 1 , c𝛽𝛾 k+1 , 𝛾 k+1 (1 + 𝜌)L 2 f ,C ≤ min c𝛽𝛾 k , 𝛾 k (1 + 𝜌)L 2 f ,C . ( 11 
) k -1 k ≤ c k . f � P C (x k -k -1 k s k ) � -f (x k ) ≤ L f ,C ‖P C (x k -k -1 k s k ) -x k ‖ ≤ L f ,C ‖x k -k -1 k s k -x k ‖ = L f ,C k -1 k ‖s k ‖. f � P C (x k -k -1 k s k ) � -f (x k ) + k -1 k ‖s k ‖ 2 ≤ L f ,C k -1 k ‖s k ‖ + k -1 k ‖s k ‖ 2 ≤ k -1 k (1 + )L 2 f ,C . f � P C (x k -𝛽 k -1 𝛼 k s k ) � < f (x k ) -𝜌𝛽 k -1 𝛼 k ‖s k ‖ 2 + 𝛾 k , 1 = min c 1 , 1 (1 + )L 2 f ,C
In the following we combine the inequalities (3) in Lemma 7 with those in Lemmas 8 and 9 to provide an inequality that will allow us to prove the convergence of (x k ) k∈ℕ and obtain some iteration-complexity bounds. For that, it is con- venient to define the following positive constants for 𝜌> 1∕2: Lemma 10 Assume that Ω * ≠ ∅ . Let (x k ) k∈ℕ be generated by Algorithm 1 and x * ∈ Ω * .Then, following inequality holds:

In addition, if f is a -strongly convex function then there holds Proof First of all, note that the inequality ( 14) becomes ( 13) for = 0 . Then, it is sufficient to prove the inequality [START_REF] Jerinkić | AN-SPS: Adaptive sample size nonmonotone line search spectral projected subgradient method for convex constrained optimization problems[END_REF]. It follows from Lemma 7 that

k+1 ‖s k ‖ 2 ≤ (f (x k ) -f (x k+1 ) + k )∕ , which combined with inequality (6) in Lemma 8 yields
On the other hand, by using Lemma 9, considering that ( k ) k∈ℕ is a non-increasing sequence and also using the first equality in [START_REF] Grippo | A nonmonotone line search technique for Newton's method[END_REF] we obtain that Besides, we know from Lemma 7 that k+1 ≤ c k , which combined with ( 15) and ( 16) yield Therefore, taking into account [START_REF] Grippo | A nonmonotone line search technique for Newton's method[END_REF], the last inequality implies ( 14) and the proof is concluded.

◻ Remark 4 It is worth to compare the classical inequalities ( 5) and ( 6) in Lemma 8 with, respectively, the inequalities ( 13) and ( 14) in Lemma 10. This comparison shows that the latter inequalities allow transfer to the sequence of non-monotonicity parameters ( k ) k∈ℕ the classical conditions usually imposed on the sequence of step sizes ( k ) k∈ℕ that control the behavior of (x k ) k∈ℕ , see for example [1, 2]. This way, (12)

Θ ∶= min 1 1 , c , 1 (1 + )L 2 f ,C , Γ ∶= Θ 2 - . ( 13 
) Γ k+1 (f (x k ) -f * ) ≤ ‖x k -x * ‖ 2 -‖x k+1 -x * ‖ 2 + 1 c 2 k , ∀k ∈ ℕ. ( 14 
) Γ k+1 (f (x k ) -f * ) ≤ (1 -Θ k+1 )‖x k -x * ‖ 2 -‖x k+1 -x * ‖ 2 + 1 c 2 k , ∀k ∈ ℕ. ( 15 
) � 2 - � k+1 (f (x k ) -f * ) ≤ (1 - k+1 )‖x k -x * ‖ 2 -‖x k+1 -x * ‖ 2 + 1 k+1 k . ( 16 
) k+1 ≥ min 1 1 , c , 1 (1 + )L 2 f ,C k+1 = Θ k+1 . � 2 - � Θ k+1 (f (x k ) -f * ) ≤ (1 -Θ k+1 )‖x k -x * ‖ 2 -‖x k+1 -x * ‖ 2 + 1 c 2 k ,
the method itself will select the step sizes k , which are usually prefixed in the classical formulations of sugbgradient method. In fact, for each prefixed non-increasing exogenous sequence ( k ) k∈ℕ , it follows from Lemmas 7, 9 and first equality in (12) that Algorithm 1, by performing a non-monotone line search, select the step sizes k satisfying the following inequalities which shows that our method is different from the ones that appeared in [START_REF] Krejic | Spectral projected subgradient method for nonsmooth convex optimization problems[END_REF][START_REF] Loreto | Convergence analysis for the modified spectral projected subgradient method[END_REF][START_REF] Loreto | A numerical study of applying spectral-step subgradient method for solving nonsmooth unconstrained optimization problems[END_REF]. Moreover, our line search allows different choices for the sequence ( k ) k∈ℕ that con- trols the non-monotonicity.

Convergence analysis

In this section we analyze the behavior of the sequence (x k ) k∈ℕ under assumptions (H1), (H2) and more two additional assumptions. The additional assumptions will be used separately and only when explicitly stated. The new assumptions are as follows:

(H3) The sequence of non-monotonicity parameters ( k ) k∈ℕ satisfies (H4) The sequence of non-monotonicity parameters ( k ) k∈ℕ satisfies Theorem 11 Assume that Ω * ≠ ∅ . Let (x k ) k∈ℕ be generated by Algorithm 1 with 𝜌 > 1∕2 and x * ∈ Ω * . Then, for each fixed N ∈ ℕ , the following inequality hold:

Consequently, if (H3) holds then lim N→+∞ min f (x k ) -f * ∶ k = 1, … , N = 0.
Proof Let k ≤ N . Using the inequality (13) in Lemma 10 and taking into account that min

� f (x k ) -f * ∶ k = 1, … , N � ∑ N k=1 k+1 ≤ ∑ N k=1 k+1 (f (x k ) -f * ) , we obtain that (17) Θ k+1 ≤ k+1 ≤ c k , k ∈ ℕ, lim N→+∞ ∑ N k=1 2 k ∑ N k=1 k+1 = 0. lim N→+∞ ∑ N k=1 2 k N N+1 = 0. ( 18 
) min � f (x k ) -f * ∶ k = 1, … , N � ≤ 1 Γ � ‖x 1 -x * ‖ 2 + -1 c N � k=1 2 k � 1 ∑ N k=1 k+1 . Γ min � f (x k ) -f * ∶ k = 1, … , N � N � k=1 k+1 ≤ ‖x 1 -x * ‖ 2 + 1 c N � k=1 2 k ,
which implies [START_REF] Loreto | Convergence analysis for the modified spectral projected subgradient method[END_REF]. For concluding the proof, first note that assumption (H3) implies that lim N→+∞ ∑ k N =1 k+1 = +∞ . Thus, using [START_REF] Loreto | Convergence analysis for the modified spectral projected subgradient method[END_REF], the last statement follows. ◻

Let us state and prove a special instance of Theorem 11. For that we need a result, which can be found in [START_REF] Beck | First-Order Methods in Optmization[END_REF]Lemma 8.27].

Lemma 12 Let a > 0 , d ≥ 0 and N ≥ 1 . Then, Remark 5 If ( k ) k∈ℕ satisfies (H4), then ( k ) k∈ℕ also satisfies (H3). The sequence ( k ) k∈ℕ with k = 1∕(k 1-∕2 ) and ∈ (0, 1) satisfies (H4). Using Lemma 12 we can also prove that sequence

( k ) k∈ℕ with k = 1∕ √ k satisfies (H3).
The proof of the next theorem follows by combining inequality [START_REF] Loreto | Convergence analysis for the modified spectral projected subgradient method[END_REF] of Theorem 11 with Lemma [START_REF] Grippo | A nonmonotone line search technique for Newton's method[END_REF].

Theorem 13 Let x * ∈ Ω * , (x k ) k∈ℕ be generated by Algorithm 1 with 𝜌 > 1∕2 and Then, for each fixed N ∈ ℕ , the following inequality hold:

Consequently, lim N→+∞ min f (x k ) -f * ∶ k = 1, … , N = 0.
Remark 6 Since Lemma 12 implies that sequence ( k ) k∈ℕ with k = 1∕ √ k satisfies (H3), we conclude that the inequality in Theorem 13 is an explicit rate of convergence, namely, O(ln(N)∕

√ N).

We end this section by showing that (x k ) k∈ℕ generated by Algorithm 1 converges to a solution of the problem (1) whenever Ω * ≠ ∅ . To this end, we assume that the sequence ( k ) k∈ℕ satisfies the following conditions:

(H5) ∑ +∞ k=1 2 k ≤ +∞; (H6) ∑ +∞ k=1 k = +∞.
Remark 7 If ( k ) k∈ℕ satisfies (H5) and (H6), then ( k ) k∈ℕ also satisfies (H3). The sequence ( k ) k∈ℕ with k = 1∕k satisfies (H5) and (H6).

d + a ∑ N k=1 1 k ∑ N k=1 1 √ k+1 ≤ 4(d + a + a ln(N)) √ N . k = 1 √ k , ∀k ∈ ℕ. min � f (x k ) -f * ∶ k = 1, … , N � ≤ 4 Γ ‖x 1 -x * ‖ 2 + -1 c + -1 c ln(N) √ N
. Theorem 14 Let (x k ) k∈ℕ be generated by Algorithm 1 with 𝜌 > 1∕2 . Assume that (H5) holds. If Ω * ≠ ∅ , then (x k ) k∈ℕ is bounded. Moreover, if (H6) hold, then (x k ) k∈ℕ converges to a solution of problem [START_REF] Beck | First-Order Methods in Optmization[END_REF].

Proof Let x ∈ Ω * . Using (13) in Lemma 10 we obtain after some algebraic manipu- lations that Thus, considering that f (x k )f * ≥ 0 , for all k ∈ ℕ , it follows from the last inequal- ity that Hence, (H5) together with Definition 5 implies that the sequence (x k ) k∈ℕ is quasi- Fejér convergent to Ω * . Since Ω * ≠ ∅ , the item (i) of Lemma 6 implies that (x k ) k∈ℕ is bounded and the first statement is proved. To proceed, define a subsequence (x k N ) N∈ℕ of the sequence (x k ) k∈ℕ such that Since (x k ) k∈ℕ is bounded, we conclude that (x k N ) N∈ℕ is also bounded. Without loss of generality we can assume that

(x k N ) N∈ℕ converges. Set x = lim N→∞ x k N .
Under the assumptions (H3) and (H6) we have from the last part of Theorem 11 that 0 = lim N→+∞ (f (x k N )f * ) . Thus, using that x = lim N→∞ x k N , we conclude that f (x) = f * , which implies that x ∈ Ω * . Therefore, due (x k ) k∈ℕ be quasi-Fejér conver- gent to Ω * , by applying item (ii) of Lemma 6 we obtain the (x k ) k∈ℕ converges to x , which completes the proof. ◻

Convergence analysis for compact constraint set

The aim of this section is to analyze the behavior of (x k ) k∈ℕ under assumptions (H1), (H2) (H3) and one new additional assumption. The new assumption is as follows:

(H7) The set C is compact.

To state the next theorem let us introduce the following auxiliary positive constant and to prove it we also need an additional result, which can be found in [START_REF] Beck | First-Order Methods in Optmization[END_REF]Lemma 8.27].

Lemma 15 Let a > 0 , d ≥ 0 and N ≥ 2 . Then,

‖x k+1 -x‖ 2 ≤ ‖x k -x‖ 2 -Γ k+1 (f (x k ) -f * ) + 1 c 2 k , ∀k ∈ ℕ. ‖x k+1 -x‖ 2 ≤ ‖x k -x‖ 2 + 1 c 2 k , ∀k ∈ ℕ. f (x k N ) -f * ∶= min f (x k ) -f * ∶ k = 1, … , N , N ∈ ℕ. D ≥ max x,y∈C ‖x -y‖ 2 ,
In the next theorem we show that for suitable choice of the sequence

( k ) k∈ℕ the rate of convergence of Algorithm 1 is O(1∕ √ k).
Theorem 16 Let x * ∈ Ω * , (x k ) k∈ℕ be generated by Algorithm 1 with 𝜌 > 1∕2 and

Then, for each fixed N ∈ ℕ with N ≥ 2 , the following inequality hold:

Consequently, lim N→+∞ min f (x k ) -f * ∶ k = 1, … , N = 0.
Proof It follows from [START_REF] Grant | Graph implementations for nonsmooth convex programs[END_REF] in Lemma 13 and definition of k in ( 19) that Thus, summing this inequality over k = ⌈N∕2⌉, ⌈N∕2⌉ + 1, … , N we conclude that Since min

� f (x k ) -f * ∶ k = 1, … , N � ∑ N k=⌈N∕2⌉ 1 √ k+1 ≤ ∑ N k=⌈N∕2⌉ 1 √ k+1 (f (x k ) -f * )
and considering that D ≥ max x,y∈C ‖x -y‖ 2 , we obtain

The last inequality implies that which combined with Lemma 15 yields the desired inequality. The second statement of theorem is an immediate consequence of the first one. ◻ Theorem 17 Let f ∶ ℝ n → ℝ be a -strongly convex function and 𝜎 > 0 . Let (x k ) k∈ℕ be generated by Algorithm 1 with 𝜌 > 1∕2,

d + a ∑ N k=⌈N∕2⌉ 1 k ∑ N k=⌈N∕2⌉ 1 √ k+1 ≤ 4(d + a ln(3)) √ N + 2 . ( 19 
) k = 1 √ k , ∀k ∈ ℕ. min � f (x k ) -f * ∶ k = 1, … , N � ≤ 4 � D + c ln(3) � Γ √ N + 2 . Γ 1 √ k + 1 (f (x k ) -f * ) ≤ ‖x k -x * ‖ 2 -‖x k+1 -x * ‖ 2 + c 1 k , ∀k ∈ ℕ. Γ N � k=⌈N∕2⌉ 1 √ k + 1 (f (x k ) -f * ) ≤ ‖x ⌈N∕2⌉ -x * ‖ 2 -‖x N+1 -x * ‖ 2 + c N � k=⌈N∕2⌉ 1 k . Γ min � f (x k ) -f * ∶ k = 1, … , N � N � k=⌈N∕2⌉ 1 √ k + 1 ≤ D + c N � k=⌈N∕2⌉ 1 k . min � f (x k ) -f * ∶ k = 1, … , N � ≤ D + c ∑ N k=⌈N∕2⌉ 1 k Γ ∑ N k=⌈N∕2⌉ 1 √ k+1
, and x * ∈ Ω * . Then, for each fixed N ∈ ℕ , the following inequality holds:

As a consequence, lim N→+∞ min f (x k ) -f (x * ) ∶ k = 1, … , N = 0.
Proof Since k = 2∕( Θk) satisfies (H3), it follows from ( 14) in Lemma 10 and 𝜎 > 0 that

Taking into account that k+1 = 2∕( Θ(k + 1)) , the last last inequality becomes Hence, multiplying the last inequality by 2k we obtain that Thus, due to min 

� f (x k ) -f (x * ) ∶ k = 1, … , N � ∑ N k=1 k ≤ ∑ N k=1 k(f (x k ) -f (x * )) ,
= 2 Θk , ∀k ∈ ℕ. min f (x k ) -f (x * ) ∶ k = 1, … , N ≤ 8 c ΘΓ 1 (N + 1) . Γ Θ (f (x k ) -f (x * )) ≤ 1 -Θ k+1 Θ k+1 ‖x k -x * ‖ 2 - 1 Θ k+1 ‖x k+1 -x * ‖ 2 + c Θ 2 k k+1 . Γ Θ (f (x k ) -f (x * )) ≤ k -1 2 ‖x k -x * ‖ 2 - k + 1 2 ‖x k+1 -x * ‖ 2 + 2 c ( Θ) 2 2 k . 2Γ Θ k(f (x k ) -f (x * )) ≤ k(k -1)‖x k -x * ‖ 2 -k(k + 1)‖x k+1 -x * ‖ 2 + 8 c ( Θ) 2 . 2Γ Θ min � f (x k ) -f (x * ) ∶ k = 1, … , N � N � k=1 k ≤ -N(N + 1)‖x N+1 -x * ‖ 2 + 8 c ( Θ) 2 N. Γ min f (x k ) -f (x * ) ∶ k = 1, … , N ≤ 8 c Θ 1 (N + 1) ,

Illustrative numerical experiments

In this section we present some examples to illustrate the efficiency of the proposed method comparing its performance with other subgradient methods using classical step size rules. 1 It is not our intention to compete with these classical methods or other problem-specific algorithms, but rather to show that a general approach using our method performs remarkably well in a variety of settings. To this end, we consider the same set of constants in all methods and instances. More precisely, we perform Algorithm 1 (subgradient method with non-monotone line search) with c = 1 , = 0.9 , = 0.8 , 1 = 0.1 and k = √ k in all numerical experiments, for all k ≥ 1 and for some values of (which will be presented in the Sects. 4.1, 4.2 and 4.3). The other four subgradient methods use different step sizes k described in Table 1. All the methods start from the same initial point "zeros(n,1)" which means the zero vector in ℝ n In each case, simple modifications could be made to to improve the performance of our method, but these examples serve to illustrate an implementation of the proposed method and highlight several features. All numerical experiments are implemented in MATLAB R2020b and executed on a personal laptop (Intel Core i7, 2.30 GHz, 8 GB of RAM).

Maximum of a finite collections of linear functions

The experiments of this section are generated by the class of functions which are point wise maximum of a finite collections of linear functions. These functions are defined as follows:

where a j ∈ ℝ n and b j ∈ ℝ . In this case, f (x) = conv { f i (x) ∶ f i (x) = f (x)} . In this example, we consider the vectors a j = (a j,1 , … , a j,n ) ∈ ℝ n and b j ∈ ℝ randomly ( 20) As mentioned before, all the methods start from the same initial point and they stop if the iterate k = 3000 is attained. We compare the performance of the methods for dif- ferent dimensions n = 2 , n = 5 , n = 10 , n = 20 , n = 50 and n = 100 , where in Algo- rithm 1 we consider the values of c = 1 , = 0.9 , = 0.8 , 1 = 0.1 and k = √ k with as 0.01, 0.5, 1.0, 0.95, 1.5 and 3.3, respectively. The comparison of the methods is done in terms of the difference f bestf min , where the value f best stands to the best value of f (x k ) attained and f min denotes the solution of the problem computed by CVX, a pack- age for specifying and solving convex programming; see [START_REF] Grant | Cvx: Matlab software for disciplined convex programming[END_REF][START_REF] Grant | Graph implementations for nonsmooth convex programs[END_REF].

f (x) = max{f j (x) = a j ⊤ x + b j ∶ j = 1, … , m},
The computation results are displayed in Figs. 1 and2 and Tables 2 and3. In these tables, the first column denotes the dimension n and the number of functions f j , j = 1, … , m , in (20). The other columns represent, for each method, the best value obtained for f bestf min and the respective iterate it best where it was attained. As we can see, the results show that Algorithm 1 outperforms the other methods providing a better solution or a similar solution in less iterates in all the test problems. In some instances, the subgradient method with the step sizes "constant step", "fixed length" and "sqrsum nonsum" fail to find an acceptable solution in the sense that these methods stop to decrease the objective function in few iterates. In this sense, Algorithm 1 and the subgradient method with the step size "nonsum" have a better performance than the previous ones.

We also investigate the behavior of the sequences { k } and { k } in terms of the ine- quality 17, i.e., where Θ = min 1, 1 (1+ )L2 f . In this example, we consider the Lipschitz constant L f of the function f in [START_REF] Nedić | Convergence rate of incremental subgradient algorithms[END_REF] as L f = max{||a j || ∶ j = 1, … , m} . The results are reported in Figs. 3 and4 illustrating the theoretical result stated in Remark 4.

Fermat-Weber location problem

The experiment of this section is the well known Fermat-Weber location problem; see for instance Brimberg [START_REF] Brimberg | The Fermat-Weber location problem revisited[END_REF]. Let a 1 , … , a m be given points in ℝ n . The Fermat-Weber location problem is to solve the following minimization problem In our particular application, we consider the data points a i , for i = 1, … , 27 , given by the coordinate 2 of the cities which are capital of all 26 states of Brazil and 

Θ k+1 ≤ k+1 ≤ c k , k ∈ ℕ, min x∈ℝ n f (x) = m ∑ i=1 w i ||x -a i ||. (a) (c) 
Fig. 2 Best value of f (x k ) -f min (using log. scale) for Algorithm 1 and each step size in Table 1 Brasília (the Federal District, capital of Brazil). We take equally weights for all a i , namely, w i = 1 , i = 1, … , 27 , and consider the integer part of the coordinates con- verting it from positive to negative to match with the real data. Our goal is to find a point that minimizes the sum of the distances to the given points representing the cities in order to see how distance is such a point from Brasília (the capital of Brazil). We denote by the solution found by the MATLAB package CVX; see [START_REF] Grant | Cvx: Matlab software for disciplined convex programming[END_REF][START_REF] Grant | Graph implementations for nonsmooth convex programs[END_REF]. As mentioned in the beginning of this section, we perform Algorithm 1 and other four subgradient methods each of them with different step sizes k as described in Table 1. All the methods start from the same initial point and they stop at k = 200 iterates. As in the previous example, in Algorithm 1, we take c = 1 , = 0.9 , = 0.8 , 1 = 0.1

and k = √ k with = 2.
In Table 4, we present in the first two columns the solution x * = (x * 1 , x * 2 ) found by each method, in the third column the best value to |f bestf min | , where f best stands to the best value of the objective function for each method and f min is given by [START_REF] Nedić | The effect of deterministic noise in subgradient methods[END_REF]. The last column shows the iterate it best in which the best value |f bestf min | was attained. As we can notice, Algorithm 1 and the subgradient method with constant step size found a better solution compared to the solution known ( f min and x min ) than the other methods. However, Algorithm 1 found its best value in 29 iterates while [START_REF] Nedić | The effect of deterministic noise in subgradient methods[END_REF] f min = 312.9232964118977,

x min = (-45.9630806884547, -12.7465709013343) the subgradient method with constant step size takes 90 iterates to attain its best value. The performance of each method is presented in Fig. 5b showing the efficiency of the Algorithm 1 for this example. In Fig. 5a, we present the data of this example as well as the iterates of the Algorithm 1 and the solution found by the method.

Support vector machine

In this section, we apply Algorithm 1 and other four subgradient methods using different step sizes k as described in Table 1 for solving a binary classification problem. Support Vector Machine (SVM) is an effective and popular classification learning tool. In its native form, it is an unconstrained empirical loss minimization with a penalty term for the norm of the classifier that is being learned. However, the task of learning a support vector machine is modeled as a constrained quadratic problem formally stated as follows: where S = {(x i , y i )} m i=1 is a given training set with input features x i ∈ ℝ n , its respec- tive labels y i ∈ {-1, 1} , a regularization parameter 𝜆 > 0 and a bias term b. For simplicity, we omit the bias and consider only linear kernel model throughout our experiments; see more details in [START_REF] Cristianini | An Introduction to Support Vector Machine and other Kernel-Based Learning Methods[END_REF].

(22) min w,b Φ(w) = 𝜆 2 ||w|| 2 subject to y i (w ⊤ x i + b) ≥ 1, i = 1, … , m, (b) 
We consider the following optimization problem for learning with a SVM introduced in [START_REF] Shalev-Shwartz | Primal Estimated sub-GrAdient SOlver for SVM[END_REF] where C = {x ∈ ℝ n ∶ ��x�� ≤ 1 √ } and L(w;(x, y)) = max{0, 1yw ⊤ x} is the hinge loss function. Therefore, the subdifferential of L(⋅ ;(x, y)) at w is given by We consider the Iris flower data set (or Ficher's Iris data set). 3 This data set is one of the best known data set found in pattern recognition literature. The data set consists of 3 classes, 50 instances and 4 numeric attributes (sepal length, sepal width, petal length and petal width) where each class refers to a type of Iris plant namely Iris setosa, Iris versicolor and Iris verginica. The first class is linearly separable from others while that latter are not linearly separable. We use the following code to generate our data test.

As in the previous sections, in Algorithm 1 we take c = 1 , = 0.9 , = 0.8 , 1 = 0.1 and k = √ k with = 10 . We run all the methods starting from the same initial point "zeros(n,1)" and they stop if the iterate k = 50000 is attained. As mentioned in [START_REF] Shalev-Shwartz | Primal Estimated sub-GrAdient SOlver for SVM[END_REF] and references therein, for different data sets usually small 22) and ( 23) (the same value in both problems). As in the previous examples, the comparison of the methods is done in terms of the difference f bestf min , where the value f best stands to the best value of f (x k ) attained and f min denotes the solution of the problem [START_REF] Nesterov | Subgradient methods for huge-scale optimization problems[END_REF] computed by CVX; see [START_REF] Grant | Cvx: Matlab software for disciplined convex programming[END_REF][START_REF] Grant | Graph implementations for nonsmooth convex programs[END_REF].

The results are presented in Tables 5 and6. In these tables, the first column denotes the value of in [START_REF] Nesterov | Subgradient methods for huge-scale optimization problems[END_REF] and [START_REF] Polyak | Introduction to optimization[END_REF]. The other columns represent, for each method, the best value obtained for f bestf min and the respective iterate it best where it was attained. The values f bestf min throughout the sequence are shown in Figs. and 7. As we can see, the results show that Algorithm 1 outperforms the other methods providing a better solution in all the test problems.

Conclusions

In this paper we have presented a subgradient method with a non-monotone line search for the minimization of convex functions with simple convex constraints. The non-monotone line search allows the method to adaptively select step sizes.

As preliminary numerical tests show, this method performs better than the standard subgradient method with prefixed step sizes, which we hope to motivate further research on this subject.
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  In Theorems 16 and 17 we provide two different choices for k . The one given in Theorem 16 is simpler than in Theorem 17. On the hand, if we know the Lipschitz of f, then we can use k given in Theorem 17 to improve the convergence rate given in Theorems 16.

			we
	have	
	Therefore, due to	∑ N k=1 k = N(N + 1)∕2 , we conclude that
	which is equivalent the desired inequality. The second statement of theorem is an
	immediate consequence of the first one.	◻
	Remark 8	

k

Table 1

 1 Comparison methods: step sizes in the subgradient method

	Abbr.	Subgradient method	Step size
	Constant step	Constant step size	k = 0.1
	Fixed length	Fixed step length	k =	0.2 ||g k ||
	Nonsum	Non-summable diminishing step	k =	0.1 √
				k
	Sqrsum nonsum	Square summable but not summable step	k =	0.5 k

Table 2

 2 Iteration where each algorithm attains the best value of f (x k )f min

		Algorithm 1		Constant step		Fixed length	
		f best -f min	it best	f best -f min	it best	f best -f min	it best
	n = 2 , m = 10	1.23289e-07	2838	5.9329e-04	1863	1.29047e-03	2990
	n = 5 , m = 30	6.11231e-04	2872	0.038322	858	0.0239323	1579
	n = 10 , m = 50	1.73369e-03	2286	0.118048	1215	0.0455682	795
	n = 20 , m = 100	2.63594e-03	2675	0.389903	235	0.169888	2698
	n = 50 , m = 150	0.0157351	2895	1.32626	25	0.37411	2175
	n = 100 , m = 500	0.0483826	2696	1.59047	2	0.613463	2820

Table 3

 3 Iteration where each algorithm attains the best value of f (x k )f min

		Nonsum		Sqrsum nonsum
		f best -f min	it best	f best -f min	it best
	n = 2 , m = 10	1.4022e-05	2034 2.1927e-06	2363
	n = 5 , m = 30	9.0404e-04	2412 1.7e-03	2949
	n = 10 , m = 50	2.90217e-03 2686 2.4701e-03	2765
	n = 20 , m = 100	6.96234e-03 2699 2.57007e-03 2959
	n = 50 , m = 150	0.0266287	2978 0.205205	2964
	n = 100 , m = 500 0.0646978	2868 0.39232	2972

Table 4

 4 Solution found for the Fermat-Weber location problem

		x * 1	x * 2	|f best -f min |	it best
	Algorithm 1	-45.963064141347097	-12.746621089909885	2.66879e-07	29
	Constant step	-45.963064140711523	-12.746621088320897	2.42824e-08	90
	Fixed length	-38.605444422335090	-9.623064720309808	40.7379	200
	Nonsum	-43.842367512948982	-11.429938434104701	4.02647	200
	Sqrsum nonsum	-44.521197252917077	-11.740733447040283	1.9869	200

Table 5

 5 Iteration where each algorithm attains the best value of f (x k )f min

		Algorithm 1		Constant step		Fixed length	
		f best -f min	it best	f best -f min	it best	f best -f min	it best
	= 0.1	3.279e-04	87	0.63306518	1	0.1445231	67
	= 0.01	1.0672e-03	308	0.87381057	1	0.05335602	221
	= 0.001	3.8742e-03	3472	0.95494822	1	0.0200689	751
	= 0.0001	2.1166e-04	49,892	0.18407921	50,000	6.08677e-03	4604

Table 6

 6 Iteration where each algorithm attains the best value of f (x k )f min

		Nonsum		Sqrsum nonsum	
		f best -f min	it best	f best -f min	it best
	= 0.1	0.63306518	1	0.63306518	1
	= 0.01	0.33602865	5	0.87381057	
	= 0.001	0.09793562	5	0.90521288	49,998
	= 0.0001	0.02867965	49,991	0.16502491	49,998

An extensive numerical comparison between the proposed method and other nonmonotone subgradient methods is beyond the scope of the present paper and will be left for a future work. The aim of our numerical experiments is just to illustrate the proposed method and its properties.

The latitude/longitude coordinates of the Brazilian cities can be found, for instance, at ftp:// geoftp. ibge. gov. br/ Organ izacao/ Local idades.

This data set can be found at http:// archi ve. ics. uci. edu/ ml.
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