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A subgradient method with non‑monotone line search

O. P. Ferreira1  · G. N. Grapiglia2 · E. M. Santos3 · J. C. O. Souza4,5

Abstract
In this paper we present a subgradient method with non-monotone line search 
for the minimization of convex functions with simple convex constraints. Different 
from the standard subgradient method with prefixed step sizes, the new method 
selects the step sizes in an adaptive way. Under mild conditions asymptotic 
convergence results and iteration-complexity bounds are obtained. Preliminary 
numerical results illustrate the relative efficiency of the proposed method.

Keywords Subgradient method · Non-monotone line search · Convex function

1 Introduction

The subgradient method for solving non-differentiable convex optimization 
prob-lems has its origin in the 60’s, see [7, 26]. Over the years it has been the 
subject of much interest, attracting the attention of the scientific community 
working on 
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convex optimization. One of the factors that explains the interest in the subgradi-
ent method lies in its simplicity and ease of implementation for a wide range of 
problems, where the sub-differential of the objective function can be easily com-
puted. In addition, this method has low storage cost and ready exploitation of sep-
arability and sparsity, which makes it attractive in solving large-scale problems. 
For all these reasons, several variants of this method have emerged and proper-
ties of it have been discovered throughout the years, resulting in a wide literature 
on the subject; including for example [2, 8, 15, 16, 20–23] and the references 
therein.

The classical subgradient method employs a predefined sequence o f s tep s izes. 
Standard choices include a constant step size and also sequences that converge to 
zero sublinearly. In this paper, we propose a subgradient method with adaptive step 
sizes for the minimization of convex functions with simple convex constraints in 
which a projection on it is easily computed. At each iteration, the selection of the 
step size is done by a line search in the direction opposite to the subgradient. Since, 
in general, this direction is not a descent direction, we endow the method with a 
non-monotone line search. The possible increase in the objective function values at 
consecutive iterations is limited by a sequence of positive parameters that implicitly 
controls the step sizes. Remarkably, it is shown that the proposed method enjoys 
convergence and complexity properties similar to the ones of the classical subgra-
dient method when the sequence that controls the non-monotonicity satisfies suit-
able conditions. Illustrative numerical results are also presented. They show that the 
proposed non-monotone method compares favorably with the classical subgradient 
method endowed with usual prefixed s tep s izes. I t i s worth mentioning t hat o ther 
modified versions of the subgradient method with non-monotonic linear search pro-
posed in [12] were considered in [17–19], see also [14].

The organization of the paper is as follows. In Sect. 2, we present some nota-
tion and basic results used in our presentation. In Sect. 3 we describe the subgra-
dient method with non-monotone line search and the main results of the present 
paper, including the converge theorems and iteration-complexity bounds. Some 
numerical experiments are provided in Sect. 4. We conclude the paper with some 
remarks in Sect. 5.

2  Preliminaries

In this section we present some notations, definitions, a nd r esults t hat w ill b e 
used throughout the paper, which can be found in [1, 13].

Denotes  ℕ ∶= {1, 2, 3, …} . A function f ∶ ℝn 
→ ℝ is said to be �-strongly convex 

with modulus � ≥ 0 if f (�x + (1 − �)y) ≤ �f (x)  + (1 − �)f (y) −  �
2 
�(1 − �)‖x − y‖2 , 

for all x, y ∈ ℝn and � ∈ [0, 1] . For � = 0 we say that f is a convex function.
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Proposition 1 The function f ∶ ℝ
n
→ ℝ is �-strongly convex with modulus � ≥ 0 

if and only if f (y) ≥ f (x) + ⟨v, y − x⟩ + (�∕2)‖y − x‖2 , for all x, y ∈ ℝ
n and all 

v ∈ �f (x).

A function f ∶ ℝ
n
→ ℝ is Lf ,C-Lipschitz continuous on C ⊂ ℝ

n if there exist a 
constant Lf ,C > 0 such that �f (x) − f (y)� ≤ Lf ,C‖x − y‖ , for all x, y ∈ C . Whenever 
C = ℝ

n we set Lf ≡ Lf ,ℝn.

Proposition 2 Let f ∶ ℝ
n
→ ℝ be a convex. Then, for all x ∈ ℝ

n the set �f (x) is a 
non-empty, convex, compact subset of ℝn . In addition, f is Lf ,C-Lipschitz function on 
C ⊂ ℝ

n if and only if ‖v‖ ≤ Lf ,C for all v ∈ �f (x) and x ∈ C.

Remark 1 In view of Proposition 2, if C ⊂ ℝ
n is a compact set then f is a Lf ,C-Lip-

schitz function on C ⊂ ℝ
n for some Lf ,C > 0.

Definition 3 Let C ⊂ ℝ
n be a closed convex set. The projection map, denoted by 

PC ∶ ℝ
n
⇉ C , is defined as follows PC(y) ∶= argmin{‖y − z‖ ∶ z ∈ C}.

The next lemma presents an important property of the projection.

Proposition 4 Let y ∈ ℝ
n and z ∈ C . Then, we have ��PC(y) − z��

2
≤ ‖y − z‖2.

Definition 5 Let S be a nonempty subset of ℝn . A sequence (vk)k∈ℕ ⊂ ℝ
n is said to 

be quasi-Fejér convergent to S, if and only if, for all v ∈ S there exists k̄ ≥ 0 and a 
summable sequence (�k)k∈ℕ , such that ‖vk+1 − v‖2 ≤ ‖vk − v‖2 + �k for all k ≥ k̄.

In the following lemma, we state the main properties of quasi-Fejér sequences 
that we will need; a comprehensive study on this topic can be found in [4].

Lemma 6 Let (vk)k∈ℕ be quasi-Fejér convergent to S. Then, the following conditions 
hold: 

(i) the sequence (vk)k∈ℕ is bounded;
(ii) if a cluster point v̄ of (vk)k∈ℕ belongs to S, then (vk)k∈ℕ converges to v̄.

3  Subgradient method with non‑monotone line search

We are interested in the following constrained optimization problem

(1)
min f (x)

s.t. x ∈ C,
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where f ∶ ℝ
n
→ ℝ is a convex function and C ⊂ ℝ

n is a closed and convex set. 
Denote by  Ω∗ the optimal set of the problem  (1) and by  f ∗ the optimal value. 
Throughout the paper we will consider problem  (1) under the following two 
assumptions: 

(H1)  f ∶ ℝ
n
→ ℝ is a convex function and Lf ,C-Lipschitz continuous;

(H2)  f ∗ ∶= infx∈C f (x) > −∞.

 We propose the following conceptual algorithm to find a solution of problem (1).

Remark 2 It follows from [13, Theorem 4.2.3] that the set where convex functions 
fail to be differentiable is of zero measure. Consequently, almost every opposite 
direction of a subgradient is a descent direction. Therefore, we expect Algorithm 1 
to be able to skip non-differentiability points that are not minimum points and then 
behave similarly to the gradient method with non-monotonic line search at differ-
entiability points. It is worth to noting that the idea of using general non-monotone 
line searches in differentiable optimization, generalizing the non-monotone searches 
proposed in [12, 27], have appeared in [11, 24]. A modified version of the subgradi-
ent method with the non-monotone line search proposed in [12] was considered in 
[17–19], see also [14].

In the following lemmas we establish general inequalities that are important in 
our analysis. We begin presenting the well definition of �k defined in Step 2 of Algo-
rithm 1 and two inequalities that follows as a consequence.

Lemma 7 There exists �k satisfying (2). As a consequence, the following inequalities 
hold:

and xk+1 ∈ C , for all k ∈ ℕ.

Proof Since f and the projection PC are continuous functions and the point xk ∈ C , 
we have lim�→0+ (f (PC(xk − �sk)) − f (xk) +  ��‖sk‖2) = 0 . Hence, due to 𝛾k > 0 , 

(3)�k+1 ≤ c�k, f (xk+1) ≤ f (xk) − ���k+1‖sk‖2 + �k, ∀k ∈ ℕ,
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there exists 𝜂k > 0 such that f (PC(xk − 𝛼sk)) − f (xk) + 𝜌𝛼‖sk‖2 < 𝛾k , for all 
� ∈ (0, �k] , or equivalently,

Hence, due to � ∈ (0, 1) we have lim
�→0+ �

��k = 0 , and since 𝜂k > 0 , we obtain that 
there exists �∗ ∈ ℕ such that � ≥ �∗ implies ���k ∈ (0, �k] . Therefore, due to (4) be 
hold for all � ∈ (0, �k] , there exists �k satisfying (2), which proves the first statement. 
The inequalities in (3) and inclusion xk+1 ∈ C follow from the definitions of xk+1 and 
�k+1 in Step 3.   ◻

From now on  (xk)k∈ℕ denotes the sequence generated by Algorithm 1. In the 
next lemma we recall a classical inequality used in the study of subgradient meth-
ods, see for example [1, Lemma 8.11] and se also [5]. We give the proof here for 
the sake of completeness.

Lemma 8 For any x ∈ ℝ
n there holds

In addition, if f is a �-strongly convex function then there holds

Proof Since the inequality (6) becomes (5) for � = 0 , it is sufficient to prove (6). It 
follows from the definition of xk+1 in Step 3 of Algorithm 1, Proposition 4 and also 
definition of �k+1 that

Therefore, considering that f is a �-strongly convex function, it follows from Propo-
sition 1 that ⟨sk, x − xk⟩ ≤ f (x) − f (xk) − (�∕2)‖xk − x‖2 , which substituting into (7) 
yields (6). The inequality (5) follows from (6) by letting � = 0 .   ◻

Next we present an important relationship between (�k)k∈ℕ and (�k)k∈ℕ.

Lemma 9 The following inequality holds:

Proof The inequality (8) immediately holds for k = 1 . Suppose by an absurd that 
there exists k ∈ ℕ such that

(4)f (PC(xk − �sk)) ≤ f (xk) − ��‖sk‖2 + �k, � ∈ (0, �k].

(5)2��k+1(f (xk) − f (x)) ≤ ‖xk − x‖2 − ‖xk+1 − x‖2 + �2�2
k+1

‖sk‖2, ∀k ∈ ℕ.

(6)
2��k+1(f (xk) − f (x)) ≤ (1 − ���k+1)‖xk − x‖2 − ‖xk+1 − x‖2 + �2�2

k+1
‖sk‖2, ∀k ∈ ℕ.

(7)

‖xk+1 − x‖2 = ‖PC(xk − ��k�ksk) − x‖2

≤ ‖xk − ��k�ksk − x‖2.
= ‖xk − x‖2 + 2��k+1⟨sk, x − xk⟩ + �2�2

k+1
‖sk‖2.

(8)�k ≥ min

{
�1, c��k,

�k

(1 + �)L2
f ,C

}
, ∀k ∈ ℕ.
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Since we are supposing that (�k)k∈ℕ is a non-increasing sequence, using the defini-
tion of �k+1 in Step 3 of Algorithm 1 together with (9), we conclude that

Thus, in particular, we have

Considering that f is Lf ,C-Lipschitz continuous and xk ∈ C , using Proposition 4 we 
have

Using again the Lf ,C-Lipschitz continuity, it follows from Proposition  2 that 
‖sk‖ ≤ Lf ,C . Thus, after some algebraic manipulations, the two previous inequalities 
imply that

Hence, using (10) we obtain that f (PC(xk − 𝛽�k−1𝛼ksk)) − f (xk) + 𝜌𝛽�k−1𝛼k‖sk‖2 < 𝛾k , 
or equivalently

which, together with (11), contradicts the definition of �k in (2). Thus, (8) holds for 
all k and the proof is complete.   ◻

Remark 3 It is worth to noting that the choice of �1 is crucial for the performance 
of the method. However, we are not aware of any theoretically founded criterion for 
choosing the initial stepsize in the context of line search methods. In the cases in 
which Lf ,C is known, a conservative choice is

since in this case it follows from Lemma 9 that the line search condition at iteration 
1 of Algorithm 1 will be directly satisfied (with �1 = 0).

(9)𝛼k+1 < min

{
𝛼1, c𝛽𝛾k+1,

𝛾k+1

(1 + 𝜌)L2
f ,C

}
.

(10)

𝛽�k−1𝛼k = 𝛼k+1 < min
{
𝛼1, c𝛽𝛾k+1,

𝛾k+1

(1 + 𝜌)L2
f ,C

}
≤ min

{
c𝛽𝛾k,

𝛾k

(1 + 𝜌)L2
f ,C

}
.

(11)��k−1�k ≤ c��k.

f
�
PC(xk − ��k−1�ksk)

�
− f (xk) ≤ Lf ,C‖PC(xk − ��k−1�ksk) − xk‖

≤ Lf ,C‖xk − ��k−1�ksk − xk‖
= Lf ,C�

�k−1�k‖sk‖.

f
�
PC(xk − ��k−1�ksk)

�
− f (xk) + ���k−1�k‖sk‖2 ≤ Lf ,C�

�k−1�k‖sk‖ + ���k−1�k‖sk‖2

≤ ��k−1�k(1 + �)L2
f ,C
.

f
�
PC(xk − 𝛽�k−1𝛼ksk)

�
< f (xk) − 𝜌𝛽�k−1𝛼k‖sk‖2 + 𝛾k,

�1 = min

{
c��1,

�1

(1 + �)L2
f ,C

}
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In the following we combine the inequalities (3) in Lemma  7 with those in 
Lemmas 8 and 9 to provide an inequality that will allow us to prove the conver-
gence of (xk)k∈ℕ and obtain some iteration-complexity bounds. For that, it is con-
venient to define the following positive constants for 𝜌>  1∕2:

Lemma 10 Assume that Ω∗ ≠ ∅ . Let (xk)k∈ℕ be generated by Algorithm  1 and 
x∗ ∈ Ω∗.Then, following inequality holds:

In addition, if f is a �-strongly convex function then there holds

Proof First of all, note that the inequality (14) becomes (13) for � = 0 . Then, 
it is sufficient to prove the inequality (14). It follows from Lemma  7 that 
��k+1‖sk‖2 ≤ (f (xk) − f (xk+1) + �k)∕� , which combined with inequality (6) in 
Lemma 8 yields

On the other hand, by using Lemma 9, considering that (�k)k∈ℕ is a non-increasing 
sequence and also using the first equality in (12) we obtain that

Besides, we know from Lemma 7 that �k+1 ≤ c�k , which combined with (15) and 
(16) yield

Therefore, taking into account (12), the last inequality implies (14) and the proof is 
concluded.   ◻

Remark 4 It is worth to compare the classical inequalities (5) and (6) in Lemma 8 
with, respectively, the inequalities (13) and (14) in Lemma  10. This comparison 
shows that the latter inequalities allow transfer to the sequence of non-monotonicity 
parameters (�k)k∈ℕ the classical conditions usually imposed on the sequence of step 
sizes (�k)k∈ℕ that control the behavior of (xk)k∈ℕ , see for example [1, 2]. This way, 

(12)Θ ∶= min

{
�1

�1
, c�,

1

(1 + �)L2
f ,C

}
, Γ ∶= Θ

(
2� −

�

�

)
.

(13)Γ�k+1(f (xk) − f ∗) ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + 1

�
�c�2

k
, ∀k ∈ ℕ.

(14)

Γ�k+1(f (xk) − f ∗) ≤ (1 − ��Θ�k+1)‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + 1

�
�c�2

k
, ∀k ∈ ℕ.

(15)

�
2� −

�

�

�
�k+1(f (xk) − f ∗) ≤ (1 − ���k+1)‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + 1

�
��k+1�k.

(16)�k+1 ≥ min
{�1

�1
, c�,

1

(1 + �)L2
f ,C

}
�k+1 = Θ�k+1.

�
2� −

�

�

�
Θ�k+1(f (xk) − f ∗) ≤ (1 − ��Θ�k+1)‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + 1

�
�c�2

k
,
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the method itself will select the step sizes �k , which are usually prefixed in the clas-
sical formulations of sugbgradient method. In fact, for each prefixed non-increasing 
exogenous sequence (�k)k∈ℕ , it follows from Lemmas 7,  9 and first equality in (12) 
that Algorithm 1, by performing a non-monotone line search, select the step sizes �k 
satisfying the following inequalities

which shows that our method is different from the ones that appeared in [17–19]. 
Moreover, our line search allows different choices for the sequence (�k)k∈ℕ that con-
trols the non-monotonicity.

3.1  Convergence analysis

In this section we analyze the behavior of the sequence (xk)k∈ℕ under assumptions 
(H1), (H2) and more two additional assumptions. The additional assumptions will 
be used separately and only when explicitly stated. The new assumptions are as 
follows: 

 (H3) The sequence of non-monotonicity parameters (�k)k∈ℕ satisfies 

 (H4) The sequence of non-monotonicity parameters (�k)k∈ℕ satisfies 

Theorem  11 Assume that Ω∗ ≠ ∅ . Let (xk)k∈ℕ be generated by Algorithm  1 with 
𝜌 > 1∕2 and x∗ ∈ Ω∗ . Then, for each fixed N ∈ ℕ , the following inequality hold:

Consequently, if (H3) holds then limN→+∞ min
{
f (xk) − f ∗ ∶ k = 1,… ,N

}
= 0.

Proof Let k ≤ N . Using the inequality (13) in Lemma 10 and taking into account
that min

�
f (xk) − f ∗ ∶ k = 1,… ,N

�∑N

k=1
�k+1 ≤

∑N

k=1
�k+1(f (xk) − f ∗) , we obtain

that

(17)Θ�k+1 ≤ �k+1 ≤ c�k, k ∈ ℕ,

lim
N→+∞

∑N

k=1
�2
k

∑N

k=1
�k+1

= 0.

lim
N→+∞

∑N

k=1
�2
k

N�N+1
= 0.

(18)

min
�
f (xk) − f ∗ ∶ k = 1,… ,N

�
≤

1

Γ

�
‖x1 − x∗‖2 + ��−1c

N�

k=1

�2
k

�
1

∑N

k=1
�k+1

.

Γmin
�
f (xk) − f ∗ ∶ k = 1,… ,N

� N�

k=1

�k+1 ≤ ‖x1 − x∗‖2 + 1

�
�c

N�

k=1

�2
k
,
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which implies (18). For concluding the proof, first note that assumption (H3) implies 
that limN→+∞ 

∑
k

N

=1 �k+1 = +∞ . Thus, using (18), the last statement follows. ◻

Let us state and prove a special instance of Theorem 11. For that we need a result, 
which can be found in [1, Lemma 8.27].

Lemma 12 Let a > 0 , d ≥ 0 and N ≥ 1 . Then,

Remark 5 If (�k)k∈ℕ satisfies (H4), then (�k)k∈ℕ also satisfies (H3). The sequence 
(�k)k∈ℕ with �k = 1∕(k1−�∕2) and � ∈ (0, 1) satisfies (H4). Using Lemma 12 we can 
also prove that sequence (�k)k∈ℕ with �k = 1∕

√
k satisfies (H3).

The proof of the next theorem follows by combining inequality (18) of Theo-
rem 11 with Lemma (12).

Theorem 13 Let x∗ ∈ Ω∗ , (xk)k∈ℕ be generated by Algorithm 1 with 𝜌 > 1∕2 and

Then, for each fixed N ∈ ℕ , the following inequality hold:

Consequently, limN→+∞ min
{
f (xk) − f ∗ ∶ k = 1,… ,N

}
= 0.

Remark 6 Since Lemma 12 implies that sequence (�k)k∈ℕ with �k = 1∕
√
k satisfies

(H3), we conclude that the inequality in Theorem 13 is an explicit rate of conver-
gence, namely, O(ln(N)∕

√
N).

We end this section by showing that (xk)k∈ℕ generated by Algorithm 1 converges 
to a solution of the problem (1) whenever Ω∗ ≠ ∅ . To this end, we assume that the 
sequence (�k)k∈ℕ satisfies the following conditions: 

 (H5) 
∑+∞

k=1
�2
k
≤ +∞;

 (H6) 
∑+∞

k=1
�k = +∞.

Remark 7 If (�k)k∈ℕ satisfies (H5) and (H6), then (�k)k∈ℕ also satisfies (H3). The 
sequence (�k)k∈ℕ with �k = 1∕k satisfies (H5) and (H6).

d + a
∑N

k=1

1

k
∑N

k=1

1√
k+1

≤
4(d + a + a ln(N))

√
N

.

�k =
1√
k
, ∀k ∈ ℕ.

min
�
f (xk) − f ∗ ∶ k = 1,… ,N

�
≤

4

Γ

‖x1 − x∗‖2 + ��−1c + ��−1c ln(N)
√
N

.
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Theorem  14 Let (xk)k∈ℕ be generated by Algorithm  1 with 𝜌 > 1∕2 . Assume that 
(H5) holds. If Ω∗ ≠ ∅ , then (xk)k∈ℕ is bounded. Moreover, if (H6) hold, then (xk)k∈ℕ 
converges to a solution of problem (1).

Proof Let x ∈ Ω∗ . Using (13) in Lemma 10 we obtain after some algebraic manipu-
lations that

Thus, considering that f (xk) − f ∗ ≥ 0 , for all k ∈ ℕ , it follows from the last inequal-
ity that

Hence, (H5) together with Definition 5 implies that the sequence (xk)k∈ℕ is quasi-
Fejér convergent to Ω∗ . Since Ω∗ ≠ ∅ , the item (i) of Lemma 6 implies that (xk)k∈ℕ 
is bounded and the first statement is proved. To proceed, define a subsequence 
(xkN )N∈ℕ of the sequence (xk)k∈ℕ such that

Since (xk)k∈ℕ is bounded, we conclude that (xkN )N∈ℕ is also bounded. Without 
loss of generality we can assume that (xkN )N∈ℕ converges. Set x̄ = limN→∞ xkN . 
Under the assumptions (H3) and (H6) we have from the last part of Theorem 11 
that 0 = limN→+∞(f (xkN ) − f ∗) . Thus, using that x̄ = limN→∞ xkN , we conclude that 
f (x̄) = f ∗ , which implies that x̄ ∈ Ω∗ . Therefore, due (xk)k∈ℕ be quasi-Fejér conver-
gent to Ω∗ , by applying item (ii) of Lemma 6 we obtain the (xk)k∈ℕ converges to x̄ , 
which completes the proof.   ◻

3.2  Convergence analysis for compact constraint set

The aim of this section is to analyze the behavior of (xk)k∈ℕ under assumptions (H1), 
(H2) (H3) and one new additional assumption. The new assumption is as follows: 

 (H7) The set C is compact.

To state the next theorem let us introduce the following auxiliary positive constant

and to prove it we also need an additional result, which can be found in [1, Lemma 
8.27].

Lemma 15 Let a > 0 , d ≥ 0 and N ≥ 2 . Then,

‖xk+1 − x‖2 ≤ ‖xk − x‖2 − Γ�k+1(f (xk) − f ∗) +
1

�
�c�2

k
, ∀k ∈ ℕ.

‖xk+1 − x‖2 ≤ ‖xk − x‖2 + 1

�
�c�2

k
, ∀k ∈ ℕ.

f (xkN ) − f ∗ ∶= min
{
f (xk) − f ∗ ∶ k = 1,… ,N

}
, N ∈ ℕ.

D ≥ max
x,y∈C

‖x − y‖2,

10



In the next theorem we show that for suitable choice of the sequence (�k)k∈ℕ the 
rate of convergence of Algorithm 1 is O(1∕

√
k).

Theorem 16 Let x∗ ∈ Ω∗ , (xk)k∈ℕ be generated by Algorithm 1 with 𝜌 > 1∕2 and

Then, for each fixed N ∈ ℕ with N ≥ 2 , the following inequality hold:

Consequently, limN→+∞ min
{
f (xk) − f ∗ ∶ k = 1,… ,N

}
= 0.

Proof It follows from (10) in Lemma 13 and definition of �k in (19) that

Thus, summing this inequality over k = ⌈N∕2⌉, ⌈N∕2⌉ + 1,… ,N we conclude that

Since min
�
f (xk) − f ∗ ∶ k = 1,… ,N

�∑N

k=⌈N∕2⌉
1√
k+1

≤
∑N

k=⌈N∕2⌉
1√
k+1

(f (xk) − f ∗) 
and considering that D ≥ maxx,y∈C ‖x − y‖2 , we obtain

The last inequality implies that

which combined with Lemma 15 yields the desired inequality. The second statement 
of theorem is an immediate consequence of the first one.   ◻

Theorem 17 Let f ∶ ℝ
n
→ ℝ be a �-strongly convex function and 𝜎 > 0 . Let (xk)k∈ℕ 

be generated by Algorithm 1 with 𝜌 > 1∕2,

d + a
∑N

k=⌈N∕2⌉
1

k
∑N

k=⌈N∕2⌉
1√
k+1

≤
4(d + a ln(3))

√
N + 2

.

(19)�k =
1√
k
, ∀k ∈ ℕ.

min
�
f (xk) − f ∗ ∶ k = 1,… ,N

�
≤

4
�
D +

�c

�
ln(3)

�

Γ
√
N + 2

.

Γ
1√
k + 1

(f (xk) − f ∗) ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + �c

�

1

k
, ∀k ∈ ℕ.

Γ

N�

k=⌈N∕2⌉

1√
k + 1

(f (xk) − f ∗) ≤ ‖x⌈N∕2⌉ − x∗‖2 − ‖xN+1 − x∗‖2 + �c

�

N�

k=⌈N∕2⌉

1

k
.

Γmin
�
f (xk) − f ∗ ∶ k = 1,… ,N

� N�

k=⌈N∕2⌉

1√
k + 1

≤ D +
�c

�

N�

k=⌈N∕2⌉

1

k
.

min
�
f (xk) − f ∗ ∶ k = 1,… ,N

�
≤

D +
�c

�

∑N

k=⌈N∕2⌉
1

k

Γ
∑N

k=⌈N∕2⌉
1√
k+1

,

11



and x∗ ∈ Ω∗ . Then, for each fixed N ∈ ℕ , the following inequality holds:

As a consequence, limN→+∞ min
{
f (xk) − f (x∗) ∶ k = 1,… ,N

}
= 0.

Proof Since �k = 2∕(��Θk) satisfies (H3), it follows from (14) in Lemma  10 and 
𝜎 > 0 that

Taking into account that �k+1 = 2∕(��Θ(k + 1)) , the last last inequality becomes

Hence, multiplying the last inequality by 2k we obtain that

Thus, due to min
�
f (xk) − f (x∗) ∶ k = 1,… ,N

�∑N

k=1
k ≤

∑N

k=1
k(f (xk) − f (x∗)) , we 

have

Therefore, due to 
∑N

k=1
k = N(N + 1)∕2 , we conclude that

which is equivalent the desired inequality. The second statement of theorem is an 
immediate consequence of the first one.   ◻

Remark 8 In Theorems 16 and 17 we provide two different choices for �k . The one 
given in Theorem 16 is simpler than in Theorem 17. On the hand, if we know the 
Lipschitz constant of f, then we can use �k given in Theorem 17 to improve the con-
vergence rate given in Theorems 16.

�k =
2

��Θk
, ∀k ∈ ℕ.

min
{
f (xk) − f (x∗) ∶ k = 1,… ,N

}
≤

8�c

���ΘΓ

1

(N + 1)
.

Γ

��Θ
(f (xk) − f (x∗)) ≤

1 − ��Θ�k+1

��Θ�k+1
‖xk − x∗‖2 − 1

��Θ�k+1
‖xk+1 − x∗‖2 + �c

���Θ

�2
k

�k+1
.

Γ

��Θ
(f (xk) − f (x∗)) ≤

k − 1

2
‖xk − x∗‖2 − k + 1

2
‖xk+1 − x∗‖2 + 2�c

�(��Θ)2
2

k
.

2Γ

��Θ
k(f (xk) − f (x∗)) ≤ k(k − 1)‖xk − x∗‖2 − k(k + 1)‖xk+1 − x∗‖2 + 8�c

�(��Θ)2
.

2Γ

��Θ
min

�
f (xk) − f (x∗) ∶ k = 1,… ,N

� N�

k=1

k ≤ −N(N + 1)‖xN+1 − x∗‖2 + 8�c

�(��Θ)2
N.

Γmin
{
f (xk) − f (x∗) ∶ k = 1,… ,N

}
≤

8�c

���Θ

1

(N + 1)
,

12



4  Illustrative numerical experiments

In this section we present some examples to illustrate the efficiency of the proposed 
method comparing its performance with other subgradient methods using classical 
step size rules.1 It is not our intention to compete with these classical methods or 
other problem-specific algorithms, but rather to show that a general approach using 
our method performs remarkably well in a variety of settings. To this end, we con-
sider the same set of constants in all methods and instances. More precisely, we per-
form Algorithm 1 (subgradient method with non-monotone line search) with c = 1 , 
� = 0.9 , � = 0.8 , �1 = 0.1 and �k =

�√
k
 in all numerical experiments, for all k ≥ 1 and 

for some values of � (which will be presented in the Sects. 4.1, 4.2 and 4.3). The 
other four subgradient methods use different step sizes �k described in Table 1. All 
the methods start from the same initial point “zeros(n,1)” which means the zero 
vector in ℝn

In each case, simple modifications could be made to to improve the performance 
of our method, but these examples serve to illustrate an implementation of the pro-
posed method and highlight several features. All numerical experiments are imple-
mented in MATLAB R2020b and executed on a personal laptop (Intel Core i7, 2.30 
GHz, 8 GB of RAM).

4.1  Maximum of a finite collections of linear functions

The experiments of this section are generated by the class of functions which are 
point wise maximum of a finite collections of linear functions. These functions are 
defined as follows:

where aj ∈ ℝ
n and bj ∈ ℝ . In this case, �f (x) = conv {�fi(x) ∶ fi(x) = f (x)} . In 

this example, we consider the vectors aj = (aj,1,… , aj,n) ∈ ℝ
n and bj ∈ ℝ randomly 

(20)f (x) = max{fj(x) = aj
⊤x + bj ∶ j = 1,… ,m},

Table 1  Comparison methods: step sizes in the subgradient method

Abbr. Subgradient method Step size

Constant step Constant step size �k = 0.1

Fixed length Fixed step length
�k =

0.2

||gk||
Nonsum Non-summable diminishing step

�k =
0.1√
k

Sqrsum nonsum Square summable but not summable step
�k =

0.5

k

1 An extensive numerical comparison between the proposed method and other nonmonotone subgradi-
ent methods is beyond the scope of the present paper and will be left for a future work. The aim of our 
numerical experiments is just to illustrate the proposed method and its properties.
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chosen by “randn", a build-in MATLAB function which returns normally distrib-
uted random numbers.

As mentioned before, all the methods start from the same initial point and they stop 
if the iterate k = 3000 is attained. We compare the performance of the methods for dif-
ferent dimensions n = 2 , n = 5 , n = 10 , n = 20 , n = 50 and n = 100 , where in Algo-
rithm 1 we consider the values of c = 1 , � = 0.9 , � = 0.8 , �1 = 0.1 and �k =

�√
k
 with � 

as 0.01, 0.5, 1.0, 0.95, 1.5 and 3.3, respectively. The comparison of the methods is done 
in terms of the difference fbest − fmin , where the value fbest stands to the best value of 
f (xk) attained and fmin denotes the solution of the problem computed by CVX, a pack-
age for specifying and solving convex programming; see [9, 10].

The computation results are displayed in Figs.  1 and 2 and Tables  2 and 3. In 
these tables, the first column denotes the dimension n and the number of functions fj , 
j = 1,… ,m , in (20). The other columns represent, for each method, the best value 
obtained for fbest − fmin and the respective iterate itbest where it was attained. As we 
can see, the results show that Algorithm 1 outperforms the other methods providing 
a better solution or a similar solution in less iterates in all the test problems. In some 
instances, the subgradient method with the step sizes “constant step”, “fixed length” 
and “sqrsum nonsum" fail to find an acceptable solution in the sense that these methods 
stop to decrease the objective function in few iterates. In this sense, Algorithm 1 and 
the subgradient method with the step size “nonsum” have a better performance than the 
previous ones.

We also investigate the behavior of the sequences {�k} and {�k} in terms of the ine-
quality 17, i.e.,

where Θ = min

{
1,

1

(1+�)L2
f

}
 . In this example, we consider the Lipschitz constant Lf  

of the function f in (20) as Lf = max{||aj|| ∶ j = 1,… ,m} . The results are reported 
in Figs. 3 and 4 illustrating the theoretical result stated in Remark 4.

4.2  Fermat–Weber location problem

The experiment of this section is the well known Fermat-Weber location problem; see 
for instance Brimberg [3]. Let a1,… , am be given points in ℝn . The Fermat-Weber 
location problem is to solve the following minimization problem

In our particular application, we consider the data points ai , for i = 1,… , 27 , given 
by the coordinate2 of the cities which are capital of all 26 states of Brazil and 

Θ�k+1 ≤ �k+1 ≤ c�k, k ∈ ℕ,

min
x∈ℝn

f (x) =

m∑

i=1

wi||x − ai||.

2 The latitude/longitude coordinates of the Brazilian cities can be found, for instance, at ftp:// geoftp. ibge. 
gov. br/ Organ izacao/ Local idades.
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Brasília (the Federal District, capital of Brazil). We take equally weights for all ai , 
namely, wi = 1 , i = 1,… , 27 , and consider the integer part of the coordinates con-
verting it from positive to negative to match with the real data. Our goal is to find 
a point that minimizes the sum of the distances to the given points representing the 
cities in order to see how distance is such a point from Brasília (the capital of Bra-
zil). We denote by

the solution found by the MATLAB package CVX; see [9, 10]. As mentioned in the 
beginning of this section, we perform Algorithm 1 and other four subgradient meth-
ods each of them with different step sizes �k as described in Table 1. All the methods 
start from the same initial point and they stop at k = 200 iterates. As in the previous 
example, in Algorithm 1, we take c = 1 , � = 0.9 , � = 0.8 , �1 = 0.1 and �k =

�√
k
 with 

� = 2.
In Table 4, we present in the first two columns the solution x∗ = (x∗

1
, x∗

2
) found

by each method, in the third column the best value to |fbest − fmin| , where fbest stands
to the best value of the objective function for each method and fmin is given by
(21). The last column shows the iterate itbest in which the best value |fbest − fmin| was
attained. As we can notice, Algorithm 1 and the subgradient method with constant
step size found a better solution compared to the solution known ( fmin and xmin ) than 
the other methods. However, Algorithm 1 found its best value in 29 iterates while

(21)
fmin = 312.9232964118977, xmin = (−45.9630806884547,−12.7465709013343)

Table 2  Iteration where each algorithm attains the best value of f (xk) − fmin

Algorithm 1 Constant step Fixed length

fbest − fmin itbest fbest − fmin itbest fbest − fmin itbest

n = 2 , m = 10 1.23289e−07 2838 5.9329e−04 1863 1.29047e−03 2990
n = 5 , m = 30 6.11231e−04 2872 0.038322 858 0.0239323 1579
n = 10 , m = 50 1.73369e−03 2286 0.118048 1215 0.0455682 795
n = 20 , m = 100 2.63594e−03 2675 0.389903 235 0.169888 2698
n = 50 , m = 150 0.0157351 2895 1.32626 25 0.37411 2175
n = 100 , m = 500 0.0483826 2696 1.59047 2 0.613463 2820

Table 3  Iteration where each 
algorithm attains the best value 
of f (xk) − fmin

Nonsum Sqrsum nonsum

fbest − fmin itbest fbest − fmin itbest

n = 2 , m = 10 1.4022e−05 2034 2.1927e−06 2363
n = 5 , m = 30 9.0404e−04 2412 1.7e−03 2949
n = 10 , m = 50 2.90217e−03 2686 2.4701e−03 2765
n = 20 , m = 100 6.96234e−03 2699 2.57007e−03 2959
n = 50 , m = 150 0.0266287 2978 0.205205 2964
n = 100 , m = 500 0.0646978 2868 0.39232 2972
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the subgradient method with constant step size takes 90 iterates to attain its best 
value. The performance of each method is presented in Fig.  5b showing the effi-
ciency of the Algorithm 1 for this example. In Fig. 5a, we present the data of this 
example as well as the iterates of the Algorithm  1 and the solution found by the 
method.

4.3  Support vector machine

In this section, we apply Algorithm 1 and other four subgradient methods using dif-
ferent step sizes �k as described in Table 1 for solving a binary classification prob-
lem. Support Vector Machine (SVM) is an effective and popular classification learn-
ing tool. In its native form, it is an unconstrained empirical loss minimization with 
a penalty term for the norm of the classifier that is being learned. However, the task 
of learning a support vector machine is modeled as a constrained quadratic problem 
formally stated as follows:

(22)min
w,b

Φ(w) =
𝜆

2
||w||2 subject to yi(w

⊤xi + b) ≥ 1, i = 1,… ,m,

(a) (b)

Fig. 5  Subgradient methods for solving the Fermat-Weber location problem

Table 4  Solution found for the Fermat-Weber location problem

x∗
1

x∗
2

|fbest − fmin| itbest

Algorithm 1 − 45.963064141347097 − 12.746621089909885 2.66879e−07 29
Constant step − 45.963064140711523 − 12.746621088320897 2.42824e−08 90
Fixed length − 38.605444422335090 − 9.623064720309808 40.7379 200
Nonsum − 43.842367512948982 − 11.429938434104701 4.02647 200
Sqrsum nonsum − 44.521197252917077 − 11.740733447040283 1.9869 200
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where S = {(xi, yi)}
m
i=1

 is a given training set with input features xi ∈ ℝ
n , its respec-

tive labels yi ∈ {−1, 1} , a regularization parameter 𝜆 > 0 and a bias term b. For 
simplicity, we omit the bias and consider only linear kernel model throughout our 
experiments; see more details in [6].

We consider the following optimization problem for learning with a SVM intro-
duced in [25]

where C = {x ∈ ℝ
n ∶ ��x�� ≤ 1√

�
} and L(w;(x, y)) = max{0, 1 − yw⊤x} is the hinge 

loss function. Therefore, the subdifferential of L(⋅ ;(x, y)) at w is given by

We consider the Iris flower data set (or Ficher’s Iris data set).3 This data set is one of 
the best known data set found in pattern recognition literature. The data set consists 
of 3 classes, 50 instances and 4 numeric attributes (sepal length, sepal width, petal 
length and petal width) where each class refers to a type of Iris plant namely Iris 
setosa, Iris versicolor and Iris verginica. The first class is linearly separable from 
others while that latter are not linearly separable. We use the following code to gen-
erate our data test.

As in the previous sections, in Algorithm  1 we take c = 1 , � = 0.9 , � = 0.8 , 
�1 = 0.1 and �k =

�√
k
 with � = 10 . We run all the methods starting from the same 

initial point “zeros(n,1)" and they stop if the iterate k = 50000 is attained. As 
mentioned in [25] and references therein, for different data sets usually small 

(23)min
w∈C

f (w) =
�

2
||w||2 + 1

m

∑

(x,y)∈S

L(w;(x, y)),

𝜕L(w;(xi, yi)) =

{
−yixi, if yiw

⊤xi > 1

0, otherwise.

(a) (b)

Fig. 6  Subgradient methods for solving the binary classification problem

3 This data set can be found at http:// archi ve. ics. uci. edu/ ml.
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values of � are considered, and hence, we run the methods for different values of 
� in (22) and (23) (the same value in both problems). As in the previous exam-
ples, the comparison of the methods is done in terms of the difference fbest − fmin , 
where the value fbest stands to the best value of f (xk) attained and fmin denotes the
solution of the problem (22) computed by CVX; see [9, 10].

The results are presented in Tables  5 and 6. In these tables, the first column 
denotes the value of � in (22) and (23). The other columns represent, for each 
method, the best value obtained for fbest − fmin and the respective iterate itbest where 
it was attained. The values fbest − fmin throughout the sequence are shown in Figs. 6 

(a) (b)

Fig. 7  Subgradient methods for solving the binary classification problem

Table 5  Iteration where each algorithm attains the best value of f (xk) − fmin

Algorithm 1 Constant step Fixed length

fbest − fmin itbest fbest − fmin itbest fbest − fmin itbest

� = 0.1 3.279e−04 87 0.63306518 1 0.1445231 67
� = 0.01 1.0672e−03 308 0.87381057 1 0.05335602 221
� = 0.001 3.8742e−03 3472 0.95494822 1 0.0200689 751
� = 0.0001 2.1166e−04 49,892 0.18407921 50,000 6.08677e−03 4604

Table 6  Iteration where each 
algorithm attains the best value 
of f (xk) − fmin

Nonsum Sqrsum nonsum

fbest − fmin itbest fbest − fmin itbest

� = 0.1 0.63306518 1 0.63306518 1
� = 0.01 0.33602865 5 0.87381057 1
� = 0.001 0.09793562 5 0.90521288 49,998
� = 0.0001 0.02867965 49,991 0.16502491 49,998
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and 7. As we can see, the results show that Algorithm 1 outperforms the other meth-
ods providing a better solution in all the test problems.

5  Conclusions

In this paper we have presented a subgradient method with a non-monotone line 
search for the minimization of convex functions with simple convex constraints. 
The non-monotone line search allows the method to adaptively select step sizes. 
As preliminary numerical tests show, this method performs better than the stand-
ard subgradient method with prefixed step sizes, which we hope to motivate further 
research on this subject.
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