
HAL Id: hal-03880925
https://amu.hal.science/hal-03880925

Submitted on 1 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A subgradient method with non-monotone line search
O P Ferreira, G N Grapiglia, E M Santos, J C O Souza

To cite this version:
O P Ferreira, G N Grapiglia, E M Santos, J C O Souza. A subgradient method with non-monotone
line search. Computational Optimization and Applications, 2023, 84 (2), pp.397-420. �10.1007/s10589-
022-00438-z�. �hal-03880925�

https://amu.hal.science/hal-03880925
https://hal.archives-ouvertes.fr

A subgradient method with non‑monotone line search

O. P. Ferreira1 · G. N. Grapiglia2 · E. M. Santos3 · J. C. O. Souza4,5

Abstract
In this paper we present a subgradient method with non-monotone line search
for the minimization of convex functions with simple convex constraints. Different
from the standard subgradient method with prefixed step sizes, the new method
selects the step sizes in an adaptive way. Under mild conditions asymptotic
convergence results and iteration-complexity bounds are obtained. Preliminary
numerical results illustrate the relative efficiency of the proposed method.

Keywords Subgradient method · Non-monotone line search · Convex function

1 Introduction

The subgradient method for solving non-differentiable convex optimization
prob-lems has its origin in the 60’s, see [7, 26]. Over the years it has been the
subject of much interest, attracting the attention of the scientific community
working on

 * O. P. Ferreira
orizon@ufg.br

G. N. Grapiglia
geovani.grapiglia@uclouvain.be

E. M. Santos
elianderson.santos@ifma.edu.br

J. C. O. Souza
joaocos.mat@ufpi.edu.br

1 Instituto de Matemática e Estatística, Universidade Federal de Goiás, Goiânia,
GO CEP 74001-970, Brazil

2 ICTEAM/INMA, Université Catholique de Louvain, Avenue Georges Lemaître, 4-6/ L4.05.01,
1348 Louvain-la-Neuve, Belgium

3 Instituto Federal de Educação, Ciência e Tecnologia do Maranhão, Açailândia,
MA CEP 65930-000, Brazil

4 AMSE, CNRS, Aix-Marseille University, Marseille, France
5 Department of Mathematics, Federal University of Piauí, Teresina, PI, Brazil

1

http://orcid.org/0000-0002-5758-0320
http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-022-00438-z&domain=pdf

convex optimization. One of the factors that explains the interest in the subgradi-
ent method lies in its simplicity and ease of implementation for a wide range of
problems, where the sub-differential of the objective function can be easily com-
puted. In addition, this method has low storage cost and ready exploitation of sep-
arability and sparsity, which makes it attractive in solving large-scale problems.
For all these reasons, several variants of this method have emerged and proper-
ties of it have been discovered throughout the years, resulting in a wide literature
on the subject; including for example [2, 8, 15, 16, 20–23] and the references
therein.

The classical subgradient method employs a predefined sequence o f s tep s izes.
Standard choices include a constant step size and also sequences that converge to
zero sublinearly. In this paper, we propose a subgradient method with adaptive step
sizes for the minimization of convex functions with simple convex constraints in
which a projection on it is easily computed. At each iteration, the selection of the
step size is done by a line search in the direction opposite to the subgradient. Since,
in general, this direction is not a descent direction, we endow the method with a
non-monotone line search. The possible increase in the objective function values at
consecutive iterations is limited by a sequence of positive parameters that implicitly
controls the step sizes. Remarkably, it is shown that the proposed method enjoys
convergence and complexity properties similar to the ones of the classical subgra-
dient method when the sequence that controls the non-monotonicity satisfies suit-
able conditions. Illustrative numerical results are also presented. They show that the
proposed non-monotone method compares favorably with the classical subgradient
method endowed with usual prefixed s tep s izes. I t i s worth mentioning t hat o ther
modified versions of the subgradient method with non-monotonic linear search pro-
posed in [12] were considered in [17–19], see also [14].

The organization of the paper is as follows. In Sect. 2, we present some nota-
tion and basic results used in our presentation. In Sect. 3 we describe the subgra-
dient method with non-monotone line search and the main results of the present
paper, including the converge theorems and iteration-complexity bounds. Some
numerical experiments are provided in Sect. 4. We conclude the paper with some
remarks in Sect. 5.

2 Preliminaries

In this section we present some notations, definitions, a nd r esults t hat w ill b e
used throughout the paper, which can be found in [1, 13].

Denotes ℕ ∶= {1, 2, 3, …} . A function f ∶ ℝn
→ ℝ is said to be �-strongly convex

with modulus � ≥ 0 if f (�x + (1 − �)y) ≤ �f (x) + (1 − �)f (y) − �
2
�(1 − �)‖x − y‖2 ,

for all x, y ∈ ℝn and � ∈ [0, 1] . For � = 0 we say that f is a convex function.

2

Proposition 1 The function f ∶ ℝ
n
→ ℝ is �-strongly convex with modulus � ≥ 0

if and only if f (y) ≥ f (x) + ⟨v, y − x⟩ + (�∕2)‖y − x‖2 , for all x, y ∈ ℝ
n and all

v ∈ �f (x).

A function f ∶ ℝ
n
→ ℝ is Lf ,C-Lipschitz continuous on C ⊂ ℝ

n if there exist a
constant Lf ,C > 0 such that �f (x) − f (y)� ≤ Lf ,C‖x − y‖ , for all x, y ∈ C . Whenever
C = ℝ

n we set Lf ≡ Lf ,ℝn.

Proposition 2 Let f ∶ ℝ
n
→ ℝ be a convex. Then, for all x ∈ ℝ

n the set �f (x) is a
non-empty, convex, compact subset of ℝn . In addition, f is Lf ,C-Lipschitz function on
C ⊂ ℝ

n if and only if ‖v‖ ≤ Lf ,C for all v ∈ �f (x) and x ∈ C.

Remark 1 In view of Proposition 2, if C ⊂ ℝ
n is a compact set then f is a Lf ,C-Lip-

schitz function on C ⊂ ℝ
n for some Lf ,C > 0.

Definition 3 Let C ⊂ ℝ
n be a closed convex set. The projection map, denoted by

PC ∶ ℝ
n
⇉ C , is defined as follows PC(y) ∶= argmin{‖y − z‖ ∶ z ∈ C}.

The next lemma presents an important property of the projection.

Proposition 4 Let y ∈ ℝ
n and z ∈ C . Then, we have ��PC(y) − z��

2
≤ ‖y − z‖2.

Definition 5 Let S be a nonempty subset of ℝn . A sequence (vk)k∈ℕ ⊂ ℝ
n is said to

be quasi-Fejér convergent to S, if and only if, for all v ∈ S there exists k̄ ≥ 0 and a
summable sequence (�k)k∈ℕ , such that ‖vk+1 − v‖2 ≤ ‖vk − v‖2 + �k for all k ≥ k̄.

In the following lemma, we state the main properties of quasi-Fejér sequences
that we will need; a comprehensive study on this topic can be found in [4].

Lemma 6 Let (vk)k∈ℕ be quasi-Fejér convergent to S. Then, the following conditions
hold:

(i) the sequence (vk)k∈ℕ is bounded;
(ii) if a cluster point v̄ of (vk)k∈ℕ belongs to S, then (vk)k∈ℕ converges to v̄.

3 Subgradient method with non‑monotone line search

We are interested in the following constrained optimization problem

(1)
min f (x)

s.t. x ∈ C,

3

where f ∶ ℝ
n
→ ℝ is a convex function and C ⊂ ℝ

n is a closed and convex set.
Denote by Ω∗ the optimal set of the problem (1) and by f ∗ the optimal value.
Throughout the paper we will consider problem (1) under the following two
assumptions:

(H1) f ∶ ℝ
n
→ ℝ is a convex function and Lf ,C-Lipschitz continuous;

(H2) f ∗ ∶= infx∈C f (x) > −∞.

 We propose the following conceptual algorithm to find a solution of problem (1).

Remark 2 It follows from [13, Theorem 4.2.3] that the set where convex functions
fail to be differentiable is of zero measure. Consequently, almost every opposite
direction of a subgradient is a descent direction. Therefore, we expect Algorithm 1
to be able to skip non-differentiability points that are not minimum points and then
behave similarly to the gradient method with non-monotonic line search at differ-
entiability points. It is worth to noting that the idea of using general non-monotone
line searches in differentiable optimization, generalizing the non-monotone searches
proposed in [12, 27], have appeared in [11, 24]. A modified version of the subgradi-
ent method with the non-monotone line search proposed in [12] was considered in
[17–19], see also [14].

In the following lemmas we establish general inequalities that are important in
our analysis. We begin presenting the well definition of �k defined in Step 2 of Algo-
rithm 1 and two inequalities that follows as a consequence.

Lemma 7 There exists �k satisfying (2). As a consequence, the following inequalities
hold:

and xk+1 ∈ C , for all k ∈ ℕ.

Proof Since f and the projection PC are continuous functions and the point xk ∈ C ,
we have lim�→0+ (f (PC(xk − �sk)) − f (xk) + ��‖sk‖2) = 0 . Hence, due to 𝛾k > 0 ,

(3)�k+1 ≤ c�k, f (xk+1) ≤ f (xk) − ���k+1‖sk‖2 + �k, ∀k ∈ ℕ,

4

there exists 𝜂k > 0 such that f (PC(xk − 𝛼sk)) − f (xk) + 𝜌𝛼‖sk‖2 < 𝛾k , for all
� ∈ (0, �k] , or equivalently,

Hence, due to � ∈ (0, 1) we have lim
�→0+ �

��k = 0 , and since 𝜂k > 0 , we obtain that
there exists �∗ ∈ ℕ such that � ≥ �∗ implies ���k ∈ (0, �k] . Therefore, due to (4) be
hold for all � ∈ (0, �k] , there exists �k satisfying (2), which proves the first statement.
The inequalities in (3) and inclusion xk+1 ∈ C follow from the definitions of xk+1 and
�k+1 in Step 3. ◻

From now on (xk)k∈ℕ denotes the sequence generated by Algorithm 1. In the
next lemma we recall a classical inequality used in the study of subgradient meth-
ods, see for example [1, Lemma 8.11] and se also [5]. We give the proof here for
the sake of completeness.

Lemma 8 For any x ∈ ℝ
n there holds

In addition, if f is a �-strongly convex function then there holds

Proof Since the inequality (6) becomes (5) for � = 0 , it is sufficient to prove (6). It
follows from the definition of xk+1 in Step 3 of Algorithm 1, Proposition 4 and also
definition of �k+1 that

Therefore, considering that f is a �-strongly convex function, it follows from Propo-
sition 1 that ⟨sk, x − xk⟩ ≤ f (x) − f (xk) − (�∕2)‖xk − x‖2 , which substituting into (7)
yields (6). The inequality (5) follows from (6) by letting � = 0 . ◻

Next we present an important relationship between (�k)k∈ℕ and (�k)k∈ℕ.

Lemma 9 The following inequality holds:

Proof The inequality (8) immediately holds for k = 1 . Suppose by an absurd that
there exists k ∈ ℕ such that

(4)f (PC(xk − �sk)) ≤ f (xk) − ��‖sk‖2 + �k, � ∈ (0, �k].

(5)2��k+1(f (xk) − f (x)) ≤ ‖xk − x‖2 − ‖xk+1 − x‖2 + �2�2
k+1

‖sk‖2, ∀k ∈ ℕ.

(6)
2��k+1(f (xk) − f (x)) ≤ (1 − ���k+1)‖xk − x‖2 − ‖xk+1 − x‖2 + �2�2

k+1
‖sk‖2, ∀k ∈ ℕ.

(7)

‖xk+1 − x‖2 = ‖PC(xk − ��k�ksk) − x‖2

≤ ‖xk − ��k�ksk − x‖2.
= ‖xk − x‖2 + 2��k+1⟨sk, x − xk⟩ + �2�2

k+1
‖sk‖2.

(8)�k ≥ min

{
�1, c��k,

�k

(1 + �)L2
f ,C

}
, ∀k ∈ ℕ.

5

Since we are supposing that (�k)k∈ℕ is a non-increasing sequence, using the defini-
tion of �k+1 in Step 3 of Algorithm 1 together with (9), we conclude that

Thus, in particular, we have

Considering that f is Lf ,C-Lipschitz continuous and xk ∈ C , using Proposition 4 we
have

Using again the Lf ,C-Lipschitz continuity, it follows from Proposition 2 that
‖sk‖ ≤ Lf ,C . Thus, after some algebraic manipulations, the two previous inequalities
imply that

Hence, using (10) we obtain that f (PC(xk − 𝛽�k−1𝛼ksk)) − f (xk) + 𝜌𝛽�k−1𝛼k‖sk‖2 < 𝛾k ,
or equivalently

which, together with (11), contradicts the definition of �k in (2). Thus, (8) holds for
all k and the proof is complete. ◻

Remark 3 It is worth to noting that the choice of �1 is crucial for the performance
of the method. However, we are not aware of any theoretically founded criterion for
choosing the initial stepsize in the context of line search methods. In the cases in
which Lf ,C is known, a conservative choice is

since in this case it follows from Lemma 9 that the line search condition at iteration
1 of Algorithm 1 will be directly satisfied (with �1 = 0).

(9)𝛼k+1 < min

{
𝛼1, c𝛽𝛾k+1,

𝛾k+1

(1 + 𝜌)L2
f ,C

}
.

(10)

𝛽�k−1𝛼k = 𝛼k+1 < min
{
𝛼1, c𝛽𝛾k+1,

𝛾k+1

(1 + 𝜌)L2
f ,C

}
≤ min

{
c𝛽𝛾k,

𝛾k

(1 + 𝜌)L2
f ,C

}
.

(11)��k−1�k ≤ c��k.

f
�
PC(xk − ��k−1�ksk)

�
− f (xk) ≤ Lf ,C‖PC(xk − ��k−1�ksk) − xk‖

≤ Lf ,C‖xk − ��k−1�ksk − xk‖
= Lf ,C�

�k−1�k‖sk‖.

f
�
PC(xk − ��k−1�ksk)

�
− f (xk) + ���k−1�k‖sk‖2 ≤ Lf ,C�

�k−1�k‖sk‖ + ���k−1�k‖sk‖2

≤ ��k−1�k(1 + �)L2
f ,C
.

f
�
PC(xk − 𝛽�k−1𝛼ksk)

�
< f (xk) − 𝜌𝛽�k−1𝛼k‖sk‖2 + 𝛾k,

�1 = min

{
c��1,

�1

(1 + �)L2
f ,C

}

6

In the following we combine the inequalities (3) in Lemma 7 with those in
Lemmas 8 and 9 to provide an inequality that will allow us to prove the conver-
gence of (xk)k∈ℕ and obtain some iteration-complexity bounds. For that, it is con-
venient to define the following positive constants for 𝜌> 1∕2:

Lemma 10 Assume that Ω∗ ≠ ∅ . Let (xk)k∈ℕ be generated by Algorithm 1 and
x∗ ∈ Ω∗.Then, following inequality holds:

In addition, if f is a �-strongly convex function then there holds

Proof First of all, note that the inequality (14) becomes (13) for � = 0 . Then,
it is sufficient to prove the inequality (14). It follows from Lemma 7 that
��k+1‖sk‖2 ≤ (f (xk) − f (xk+1) + �k)∕� , which combined with inequality (6) in
Lemma 8 yields

On the other hand, by using Lemma 9, considering that (�k)k∈ℕ is a non-increasing
sequence and also using the first equality in (12) we obtain that

Besides, we know from Lemma 7 that �k+1 ≤ c�k , which combined with (15) and
(16) yield

Therefore, taking into account (12), the last inequality implies (14) and the proof is
concluded. ◻

Remark 4 It is worth to compare the classical inequalities (5) and (6) in Lemma 8
with, respectively, the inequalities (13) and (14) in Lemma 10. This comparison
shows that the latter inequalities allow transfer to the sequence of non-monotonicity
parameters (�k)k∈ℕ the classical conditions usually imposed on the sequence of step
sizes (�k)k∈ℕ that control the behavior of (xk)k∈ℕ , see for example [1, 2]. This way,

(12)Θ ∶= min

{
�1

�1
, c�,

1

(1 + �)L2
f ,C

}
, Γ ∶= Θ

(
2� −

�

�

)
.

(13)Γ�k+1(f (xk) − f ∗) ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + 1

�
�c�2

k
, ∀k ∈ ℕ.

(14)

Γ�k+1(f (xk) − f ∗) ≤ (1 − ��Θ�k+1)‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + 1

�
�c�2

k
, ∀k ∈ ℕ.

(15)

�
2� −

�

�

�
�k+1(f (xk) − f ∗) ≤ (1 − ���k+1)‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + 1

�
��k+1�k.

(16)�k+1 ≥ min
{�1

�1
, c�,

1

(1 + �)L2
f ,C

}
�k+1 = Θ�k+1.

�
2� −

�

�

�
Θ�k+1(f (xk) − f ∗) ≤ (1 − ��Θ�k+1)‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + 1

�
�c�2

k
,

7

the method itself will select the step sizes �k , which are usually prefixed in the clas-
sical formulations of sugbgradient method. In fact, for each prefixed non-increasing
exogenous sequence (�k)k∈ℕ , it follows from Lemmas 7, 9 and first equality in (12)
that Algorithm 1, by performing a non-monotone line search, select the step sizes �k
satisfying the following inequalities

which shows that our method is different from the ones that appeared in [17–19].
Moreover, our line search allows different choices for the sequence (�k)k∈ℕ that con-
trols the non-monotonicity.

3.1 Convergence analysis

In this section we analyze the behavior of the sequence (xk)k∈ℕ under assumptions
(H1), (H2) and more two additional assumptions. The additional assumptions will
be used separately and only when explicitly stated. The new assumptions are as
follows:

 (H3) The sequence of non-monotonicity parameters (�k)k∈ℕ satisfies

 (H4) The sequence of non-monotonicity parameters (�k)k∈ℕ satisfies

Theorem 11 Assume that Ω∗ ≠ ∅ . Let (xk)k∈ℕ be generated by Algorithm 1 with
𝜌 > 1∕2 and x∗ ∈ Ω∗ . Then, for each fixed N ∈ ℕ , the following inequality hold:

Consequently, if (H3) holds then limN→+∞ min
{
f (xk) − f ∗ ∶ k = 1,… ,N

}
= 0.

Proof Let k ≤ N . Using the inequality (13) in Lemma 10 and taking into account
that min

�
f (xk) − f ∗ ∶ k = 1,… ,N

�∑N

k=1
�k+1 ≤

∑N

k=1
�k+1(f (xk) − f ∗) , we obtain

that

(17)Θ�k+1 ≤ �k+1 ≤ c�k, k ∈ ℕ,

lim
N→+∞

∑N

k=1
�2
k

∑N

k=1
�k+1

= 0.

lim
N→+∞

∑N

k=1
�2
k

N�N+1
= 0.

(18)

min
�
f (xk) − f ∗ ∶ k = 1,… ,N

�
≤

1

Γ

�
‖x1 − x∗‖2 + ��−1c

N�

k=1

�2
k

�
1

∑N

k=1
�k+1

.

Γmin
�
f (xk) − f ∗ ∶ k = 1,… ,N

� N�

k=1

�k+1 ≤ ‖x1 − x∗‖2 + 1

�
�c

N�

k=1

�2
k
,

8

which implies (18). For concluding the proof, first note that assumption (H3) implies
that limN→+∞

∑
k

N

=1 �k+1 = +∞ . Thus, using (18), the last statement follows. ◻

Let us state and prove a special instance of Theorem 11. For that we need a result,
which can be found in [1, Lemma 8.27].

Lemma 12 Let a > 0 , d ≥ 0 and N ≥ 1 . Then,

Remark 5 If (�k)k∈ℕ satisfies (H4), then (�k)k∈ℕ also satisfies (H3). The sequence
(�k)k∈ℕ with �k = 1∕(k1−�∕2) and � ∈ (0, 1) satisfies (H4). Using Lemma 12 we can
also prove that sequence (�k)k∈ℕ with �k = 1∕

√
k satisfies (H3).

The proof of the next theorem follows by combining inequality (18) of Theo-
rem 11 with Lemma (12).

Theorem 13 Let x∗ ∈ Ω∗ , (xk)k∈ℕ be generated by Algorithm 1 with 𝜌 > 1∕2 and

Then, for each fixed N ∈ ℕ , the following inequality hold:

Consequently, limN→+∞ min
{
f (xk) − f ∗ ∶ k = 1,… ,N

}
= 0.

Remark 6 Since Lemma 12 implies that sequence (�k)k∈ℕ with �k = 1∕
√
k satisfies

(H3), we conclude that the inequality in Theorem 13 is an explicit rate of conver-
gence, namely, O(ln(N)∕

√
N).

We end this section by showing that (xk)k∈ℕ generated by Algorithm 1 converges
to a solution of the problem (1) whenever Ω∗ ≠ ∅ . To this end, we assume that the
sequence (�k)k∈ℕ satisfies the following conditions:

 (H5)
∑+∞

k=1
�2
k
≤ +∞;

 (H6)
∑+∞

k=1
�k = +∞.

Remark 7 If (�k)k∈ℕ satisfies (H5) and (H6), then (�k)k∈ℕ also satisfies (H3). The
sequence (�k)k∈ℕ with �k = 1∕k satisfies (H5) and (H6).

d + a
∑N

k=1

1

k
∑N

k=1

1√
k+1

≤
4(d + a + a ln(N))

√
N

.

�k =
1√
k
, ∀k ∈ ℕ.

min
�
f (xk) − f ∗ ∶ k = 1,… ,N

�
≤

4

Γ

‖x1 − x∗‖2 + ��−1c + ��−1c ln(N)
√
N

.

9

Theorem 14 Let (xk)k∈ℕ be generated by Algorithm 1 with 𝜌 > 1∕2 . Assume that
(H5) holds. If Ω∗ ≠ ∅ , then (xk)k∈ℕ is bounded. Moreover, if (H6) hold, then (xk)k∈ℕ
converges to a solution of problem (1).

Proof Let x ∈ Ω∗ . Using (13) in Lemma 10 we obtain after some algebraic manipu-
lations that

Thus, considering that f (xk) − f ∗ ≥ 0 , for all k ∈ ℕ , it follows from the last inequal-
ity that

Hence, (H5) together with Definition 5 implies that the sequence (xk)k∈ℕ is quasi-
Fejér convergent to Ω∗ . Since Ω∗ ≠ ∅ , the item (i) of Lemma 6 implies that (xk)k∈ℕ
is bounded and the first statement is proved. To proceed, define a subsequence
(xkN)N∈ℕ of the sequence (xk)k∈ℕ such that

Since (xk)k∈ℕ is bounded, we conclude that (xkN)N∈ℕ is also bounded. Without
loss of generality we can assume that (xkN)N∈ℕ converges. Set x̄ = limN→∞ xkN .
Under the assumptions (H3) and (H6) we have from the last part of Theorem 11
that 0 = limN→+∞(f (xkN) − f ∗) . Thus, using that x̄ = limN→∞ xkN , we conclude that
f (x̄) = f ∗ , which implies that x̄ ∈ Ω∗ . Therefore, due (xk)k∈ℕ be quasi-Fejér conver-
gent to Ω∗ , by applying item (ii) of Lemma 6 we obtain the (xk)k∈ℕ converges to x̄ ,
which completes the proof. ◻

3.2 Convergence analysis for compact constraint set

The aim of this section is to analyze the behavior of (xk)k∈ℕ under assumptions (H1),
(H2) (H3) and one new additional assumption. The new assumption is as follows:

 (H7) The set C is compact.

To state the next theorem let us introduce the following auxiliary positive constant

and to prove it we also need an additional result, which can be found in [1, Lemma
8.27].

Lemma 15 Let a > 0 , d ≥ 0 and N ≥ 2 . Then,

‖xk+1 − x‖2 ≤ ‖xk − x‖2 − Γ�k+1(f (xk) − f ∗) +
1

�
�c�2

k
, ∀k ∈ ℕ.

‖xk+1 − x‖2 ≤ ‖xk − x‖2 + 1

�
�c�2

k
, ∀k ∈ ℕ.

f (xkN) − f ∗ ∶= min
{
f (xk) − f ∗ ∶ k = 1,… ,N

}
, N ∈ ℕ.

D ≥ max
x,y∈C

‖x − y‖2,

10

In the next theorem we show that for suitable choice of the sequence (�k)k∈ℕ the
rate of convergence of Algorithm 1 is O(1∕

√
k).

Theorem 16 Let x∗ ∈ Ω∗ , (xk)k∈ℕ be generated by Algorithm 1 with 𝜌 > 1∕2 and

Then, for each fixed N ∈ ℕ with N ≥ 2 , the following inequality hold:

Consequently, limN→+∞ min
{
f (xk) − f ∗ ∶ k = 1,… ,N

}
= 0.

Proof It follows from (10) in Lemma 13 and definition of �k in (19) that

Thus, summing this inequality over k = ⌈N∕2⌉, ⌈N∕2⌉ + 1,… ,N we conclude that

Since min
�
f (xk) − f ∗ ∶ k = 1,… ,N

�∑N

k=⌈N∕2⌉
1√
k+1

≤
∑N

k=⌈N∕2⌉
1√
k+1

(f (xk) − f ∗)
and considering that D ≥ maxx,y∈C ‖x − y‖2 , we obtain

The last inequality implies that

which combined with Lemma 15 yields the desired inequality. The second statement
of theorem is an immediate consequence of the first one. ◻

Theorem 17 Let f ∶ ℝ
n
→ ℝ be a �-strongly convex function and 𝜎 > 0 . Let (xk)k∈ℕ

be generated by Algorithm 1 with 𝜌 > 1∕2,

d + a
∑N

k=⌈N∕2⌉
1

k
∑N

k=⌈N∕2⌉
1√
k+1

≤
4(d + a ln(3))

√
N + 2

.

(19)�k =
1√
k
, ∀k ∈ ℕ.

min
�
f (xk) − f ∗ ∶ k = 1,… ,N

�
≤

4
�
D +

�c

�
ln(3)

�

Γ
√
N + 2

.

Γ
1√
k + 1

(f (xk) − f ∗) ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + �c

�

1

k
, ∀k ∈ ℕ.

Γ

N�

k=⌈N∕2⌉

1√
k + 1

(f (xk) − f ∗) ≤ ‖x⌈N∕2⌉ − x∗‖2 − ‖xN+1 − x∗‖2 + �c

�

N�

k=⌈N∕2⌉

1

k
.

Γmin
�
f (xk) − f ∗ ∶ k = 1,… ,N

� N�

k=⌈N∕2⌉

1√
k + 1

≤ D +
�c

�

N�

k=⌈N∕2⌉

1

k
.

min
�
f (xk) − f ∗ ∶ k = 1,… ,N

�
≤

D +
�c

�

∑N

k=⌈N∕2⌉
1

k

Γ
∑N

k=⌈N∕2⌉
1√
k+1

,

11

and x∗ ∈ Ω∗ . Then, for each fixed N ∈ ℕ , the following inequality holds:

As a consequence, limN→+∞ min
{
f (xk) − f (x∗) ∶ k = 1,… ,N

}
= 0.

Proof Since �k = 2∕(��Θk) satisfies (H3), it follows from (14) in Lemma 10 and
𝜎 > 0 that

Taking into account that �k+1 = 2∕(��Θ(k + 1)) , the last last inequality becomes

Hence, multiplying the last inequality by 2k we obtain that

Thus, due to min
�
f (xk) − f (x∗) ∶ k = 1,… ,N

�∑N

k=1
k ≤

∑N

k=1
k(f (xk) − f (x∗)) , we

have

Therefore, due to
∑N

k=1
k = N(N + 1)∕2 , we conclude that

which is equivalent the desired inequality. The second statement of theorem is an
immediate consequence of the first one. ◻

Remark 8 In Theorems 16 and 17 we provide two different choices for �k . The one
given in Theorem 16 is simpler than in Theorem 17. On the hand, if we know the
Lipschitz constant of f, then we can use �k given in Theorem 17 to improve the con-
vergence rate given in Theorems 16.

�k =
2

��Θk
, ∀k ∈ ℕ.

min
{
f (xk) − f (x∗) ∶ k = 1,… ,N

}
≤

8�c

���ΘΓ

1

(N + 1)
.

Γ

��Θ
(f (xk) − f (x∗)) ≤

1 − ��Θ�k+1

��Θ�k+1
‖xk − x∗‖2 − 1

��Θ�k+1
‖xk+1 − x∗‖2 + �c

���Θ

�2
k

�k+1
.

Γ

��Θ
(f (xk) − f (x∗)) ≤

k − 1

2
‖xk − x∗‖2 − k + 1

2
‖xk+1 − x∗‖2 + 2�c

�(��Θ)2
2

k
.

2Γ

��Θ
k(f (xk) − f (x∗)) ≤ k(k − 1)‖xk − x∗‖2 − k(k + 1)‖xk+1 − x∗‖2 + 8�c

�(��Θ)2
.

2Γ

��Θ
min

�
f (xk) − f (x∗) ∶ k = 1,… ,N

� N�

k=1

k ≤ −N(N + 1)‖xN+1 − x∗‖2 + 8�c

�(��Θ)2
N.

Γmin
{
f (xk) − f (x∗) ∶ k = 1,… ,N

}
≤

8�c

���Θ

1

(N + 1)
,

12

4 Illustrative numerical experiments

In this section we present some examples to illustrate the efficiency of the proposed
method comparing its performance with other subgradient methods using classical
step size rules.1 It is not our intention to compete with these classical methods or
other problem-specific algorithms, but rather to show that a general approach using
our method performs remarkably well in a variety of settings. To this end, we con-
sider the same set of constants in all methods and instances. More precisely, we per-
form Algorithm 1 (subgradient method with non-monotone line search) with c = 1 ,
� = 0.9 , � = 0.8 , �1 = 0.1 and �k =

�√
k
 in all numerical experiments, for all k ≥ 1 and

for some values of � (which will be presented in the Sects. 4.1, 4.2 and 4.3). The
other four subgradient methods use different step sizes �k described in Table 1. All
the methods start from the same initial point “zeros(n,1)” which means the zero
vector in ℝn

In each case, simple modifications could be made to to improve the performance
of our method, but these examples serve to illustrate an implementation of the pro-
posed method and highlight several features. All numerical experiments are imple-
mented in MATLAB R2020b and executed on a personal laptop (Intel Core i7, 2.30
GHz, 8 GB of RAM).

4.1 Maximum of a finite collections of linear functions

The experiments of this section are generated by the class of functions which are
point wise maximum of a finite collections of linear functions. These functions are
defined as follows:

where aj ∈ ℝ
n and bj ∈ ℝ . In this case, �f (x) = conv {�fi(x) ∶ fi(x) = f (x)} . In

this example, we consider the vectors aj = (aj,1,… , aj,n) ∈ ℝ
n and bj ∈ ℝ randomly

(20)f (x) = max{fj(x) = aj
⊤x + bj ∶ j = 1,… ,m},

Table 1 Comparison methods: step sizes in the subgradient method

Abbr. Subgradient method Step size

Constant step Constant step size �k = 0.1

Fixed length Fixed step length
�k =

0.2

||gk||
Nonsum Non-summable diminishing step

�k =
0.1√
k

Sqrsum nonsum Square summable but not summable step
�k =

0.5

k

1 An extensive numerical comparison between the proposed method and other nonmonotone subgradi-
ent methods is beyond the scope of the present paper and will be left for a future work. The aim of our
numerical experiments is just to illustrate the proposed method and its properties.

13

chosen by “randn", a build-in MATLAB function which returns normally distrib-
uted random numbers.

As mentioned before, all the methods start from the same initial point and they stop
if the iterate k = 3000 is attained. We compare the performance of the methods for dif-
ferent dimensions n = 2 , n = 5 , n = 10 , n = 20 , n = 50 and n = 100 , where in Algo-
rithm 1 we consider the values of c = 1 , � = 0.9 , � = 0.8 , �1 = 0.1 and �k =

�√
k
 with �

as 0.01, 0.5, 1.0, 0.95, 1.5 and 3.3, respectively. The comparison of the methods is done
in terms of the difference fbest − fmin , where the value fbest stands to the best value of
f (xk) attained and fmin denotes the solution of the problem computed by CVX, a pack-
age for specifying and solving convex programming; see [9, 10].

The computation results are displayed in Figs. 1 and 2 and Tables 2 and 3. In
these tables, the first column denotes the dimension n and the number of functions fj ,
j = 1,… ,m , in (20). The other columns represent, for each method, the best value
obtained for fbest − fmin and the respective iterate itbest where it was attained. As we
can see, the results show that Algorithm 1 outperforms the other methods providing
a better solution or a similar solution in less iterates in all the test problems. In some
instances, the subgradient method with the step sizes “constant step”, “fixed length”
and “sqrsum nonsum" fail to find an acceptable solution in the sense that these methods
stop to decrease the objective function in few iterates. In this sense, Algorithm 1 and
the subgradient method with the step size “nonsum” have a better performance than the
previous ones.

We also investigate the behavior of the sequences {�k} and {�k} in terms of the ine-
quality 17, i.e.,

where Θ = min

{
1,

1

(1+�)L2
f

}
 . In this example, we consider the Lipschitz constant Lf

of the function f in (20) as Lf = max{||aj|| ∶ j = 1,… ,m} . The results are reported
in Figs. 3 and 4 illustrating the theoretical result stated in Remark 4.

4.2 Fermat–Weber location problem

The experiment of this section is the well known Fermat-Weber location problem; see
for instance Brimberg [3]. Let a1,… , am be given points in ℝn . The Fermat-Weber
location problem is to solve the following minimization problem

In our particular application, we consider the data points ai , for i = 1,… , 27 , given
by the coordinate2 of the cities which are capital of all 26 states of Brazil and

Θ�k+1 ≤ �k+1 ≤ c�k, k ∈ ℕ,

min
x∈ℝn

f (x) =

m∑

i=1

wi||x − ai||.

2 The latitude/longitude coordinates of the Brazilian cities can be found, for instance, at ftp:// geoftp. ibge.
gov. br/ Organ izacao/ Local idades.

14

ftp://geoftp.ibge.gov.br/Organizacao/Localidades
ftp://geoftp.ibge.gov.br/Organizacao/Localidades

(a
)

(b
)

(c
)

Fi
g.

 1

B
es

t v
al

ue
 o

f
f(
x
k
)
−
f m

in
 (u

si
ng

 lo
g.

 sc
al

e)
 fo

r A
lg

or
ith

m
 1

 a
nd

 e
ac

h
ste

p
si

ze
 in

 T
ab

le
 1

15

(a
)

(b
)

(c
)

Fi
g.

 2

B
es

t v
al

ue
 o

f
f(
x
k
)
−
f m

in
 (u

si
ng

 lo
g.

 sc
al

e)
 fo

r A
lg

or
ith

m
 1

 a
nd

 e
ac

h
ste

p
si

ze
 in

 T
ab

le
 1

16

Brasília (the Federal District, capital of Brazil). We take equally weights for all ai ,
namely, wi = 1 , i = 1,… , 27 , and consider the integer part of the coordinates con-
verting it from positive to negative to match with the real data. Our goal is to find
a point that minimizes the sum of the distances to the given points representing the
cities in order to see how distance is such a point from Brasília (the capital of Bra-
zil). We denote by

the solution found by the MATLAB package CVX; see [9, 10]. As mentioned in the
beginning of this section, we perform Algorithm 1 and other four subgradient meth-
ods each of them with different step sizes �k as described in Table 1. All the methods
start from the same initial point and they stop at k = 200 iterates. As in the previous
example, in Algorithm 1, we take c = 1 , � = 0.9 , � = 0.8 , �1 = 0.1 and �k =

�√
k
 with

� = 2.
In Table 4, we present in the first two columns the solution x∗ = (x∗

1
, x∗

2
) found

by each method, in the third column the best value to |fbest − fmin| , where fbest stands
to the best value of the objective function for each method and fmin is given by
(21). The last column shows the iterate itbest in which the best value |fbest − fmin| was
attained. As we can notice, Algorithm 1 and the subgradient method with constant
step size found a better solution compared to the solution known (fmin and xmin) than
the other methods. However, Algorithm 1 found its best value in 29 iterates while

(21)
fmin = 312.9232964118977, xmin = (−45.9630806884547,−12.7465709013343)

Table 2 Iteration where each algorithm attains the best value of f (xk) − fmin

Algorithm 1 Constant step Fixed length

fbest − fmin itbest fbest − fmin itbest fbest − fmin itbest

n = 2 , m = 10 1.23289e−07 2838 5.9329e−04 1863 1.29047e−03 2990
n = 5 , m = 30 6.11231e−04 2872 0.038322 858 0.0239323 1579
n = 10 , m = 50 1.73369e−03 2286 0.118048 1215 0.0455682 795
n = 20 , m = 100 2.63594e−03 2675 0.389903 235 0.169888 2698
n = 50 , m = 150 0.0157351 2895 1.32626 25 0.37411 2175
n = 100 , m = 500 0.0483826 2696 1.59047 2 0.613463 2820

Table 3 Iteration where each
algorithm attains the best value
of f (xk) − fmin

Nonsum Sqrsum nonsum

fbest − fmin itbest fbest − fmin itbest

n = 2 , m = 10 1.4022e−05 2034 2.1927e−06 2363
n = 5 , m = 30 9.0404e−04 2412 1.7e−03 2949
n = 10 , m = 50 2.90217e−03 2686 2.4701e−03 2765
n = 20 , m = 100 6.96234e−03 2699 2.57007e−03 2959
n = 50 , m = 150 0.0266287 2978 0.205205 2964
n = 100 , m = 500 0.0646978 2868 0.39232 2972

17

(a
)

(b
)

(c
)

Fi
g.

 3

B
eh

av
io

r o
f t

he
 se

qu
en

ce
s {

�
k
} a

nd
 {�

k
} (

us
in

g
lo

g.
 sc

al
e)

 fo
r A

lg
or

ith
m

 1

18

(a
)

(b
)

(c
)

Fi
g.

 4

B
eh

av
io

r o
f t

he
 se

qu
en

ce
s {

�
k
} a

nd
 {�

k
} (

us
in

g
lo

g.
 sc

al
e)

 fo
r A

lg
or

ith
m

 1

19

the subgradient method with constant step size takes 90 iterates to attain its best
value. The performance of each method is presented in Fig. 5b showing the effi-
ciency of the Algorithm 1 for this example. In Fig. 5a, we present the data of this
example as well as the iterates of the Algorithm 1 and the solution found by the
method.

4.3 Support vector machine

In this section, we apply Algorithm 1 and other four subgradient methods using dif-
ferent step sizes �k as described in Table 1 for solving a binary classification prob-
lem. Support Vector Machine (SVM) is an effective and popular classification learn-
ing tool. In its native form, it is an unconstrained empirical loss minimization with
a penalty term for the norm of the classifier that is being learned. However, the task
of learning a support vector machine is modeled as a constrained quadratic problem
formally stated as follows:

(22)min
w,b

Φ(w) =
𝜆

2
||w||2 subject to yi(w

⊤xi + b) ≥ 1, i = 1,… ,m,

(a) (b)

Fig. 5 Subgradient methods for solving the Fermat-Weber location problem

Table 4 Solution found for the Fermat-Weber location problem

x∗
1

x∗
2

|fbest − fmin| itbest

Algorithm 1 − 45.963064141347097 − 12.746621089909885 2.66879e−07 29
Constant step − 45.963064140711523 − 12.746621088320897 2.42824e−08 90
Fixed length − 38.605444422335090 − 9.623064720309808 40.7379 200
Nonsum − 43.842367512948982 − 11.429938434104701 4.02647 200
Sqrsum nonsum − 44.521197252917077 − 11.740733447040283 1.9869 200

20

where S = {(xi, yi)}
m
i=1

 is a given training set with input features xi ∈ ℝ
n , its respec-

tive labels yi ∈ {−1, 1} , a regularization parameter 𝜆 > 0 and a bias term b. For
simplicity, we omit the bias and consider only linear kernel model throughout our
experiments; see more details in [6].

We consider the following optimization problem for learning with a SVM intro-
duced in [25]

where C = {x ∈ ℝ
n ∶ ��x�� ≤ 1√

�
} and L(w;(x, y)) = max{0, 1 − yw⊤x} is the hinge

loss function. Therefore, the subdifferential of L(⋅ ;(x, y)) at w is given by

We consider the Iris flower data set (or Ficher’s Iris data set).3 This data set is one of
the best known data set found in pattern recognition literature. The data set consists
of 3 classes, 50 instances and 4 numeric attributes (sepal length, sepal width, petal
length and petal width) where each class refers to a type of Iris plant namely Iris
setosa, Iris versicolor and Iris verginica. The first class is linearly separable from
others while that latter are not linearly separable. We use the following code to gen-
erate our data test.

As in the previous sections, in Algorithm 1 we take c = 1 , � = 0.9 , � = 0.8 ,
�1 = 0.1 and �k =

�√
k
 with � = 10 . We run all the methods starting from the same

initial point “zeros(n,1)" and they stop if the iterate k = 50000 is attained. As
mentioned in [25] and references therein, for different data sets usually small

(23)min
w∈C

f (w) =
�

2
||w||2 + 1

m

∑

(x,y)∈S

L(w;(x, y)),

𝜕L(w;(xi, yi)) =

{
−yixi, if yiw

⊤xi > 1

0, otherwise.

(a) (b)

Fig. 6 Subgradient methods for solving the binary classification problem

3 This data set can be found at http:// archi ve. ics. uci. edu/ ml.

21

http://archive.ics.uci.edu/ml

values of � are considered, and hence, we run the methods for different values of
� in (22) and (23) (the same value in both problems). As in the previous exam-
ples, the comparison of the methods is done in terms of the difference fbest − fmin ,
where the value fbest stands to the best value of f (xk) attained and fmin denotes the
solution of the problem (22) computed by CVX; see [9, 10].

The results are presented in Tables 5 and 6. In these tables, the first column
denotes the value of � in (22) and (23). The other columns represent, for each
method, the best value obtained for fbest − fmin and the respective iterate itbest where
it was attained. The values fbest − fmin throughout the sequence are shown in Figs. 6

(a) (b)

Fig. 7 Subgradient methods for solving the binary classification problem

Table 5 Iteration where each algorithm attains the best value of f (xk) − fmin

Algorithm 1 Constant step Fixed length

fbest − fmin itbest fbest − fmin itbest fbest − fmin itbest

� = 0.1 3.279e−04 87 0.63306518 1 0.1445231 67
� = 0.01 1.0672e−03 308 0.87381057 1 0.05335602 221
� = 0.001 3.8742e−03 3472 0.95494822 1 0.0200689 751
� = 0.0001 2.1166e−04 49,892 0.18407921 50,000 6.08677e−03 4604

Table 6 Iteration where each
algorithm attains the best value
of f (xk) − fmin

Nonsum Sqrsum nonsum

fbest − fmin itbest fbest − fmin itbest

� = 0.1 0.63306518 1 0.63306518 1
� = 0.01 0.33602865 5 0.87381057 1
� = 0.001 0.09793562 5 0.90521288 49,998
� = 0.0001 0.02867965 49,991 0.16502491 49,998

22

and 7. As we can see, the results show that Algorithm 1 outperforms the other meth-
ods providing a better solution in all the test problems.

5 Conclusions

In this paper we have presented a subgradient method with a non-monotone line
search for the minimization of convex functions with simple convex constraints.
The non-monotone line search allows the method to adaptively select step sizes.
As preliminary numerical tests show, this method performs better than the stand-
ard subgradient method with prefixed step sizes, which we hope to motivate further
research on this subject.

Acknowledgements We would like to thank the referees for their constructive remarks which allow us to
improve our work.O. P. Ferreira was partially supported in part by CNPq - Brazil Grants 304666/2021-
1, G. N. Grapiglia was partially supported by CNPq - Brazil Grant 312777/2020-5, J.C.O. Souza was
supported in part by CNPq Grant 313901/2020-1. The project leading to this publication has received
funding from the French government under the “France 2030” investment plan managed by the French
National Research Agency (reference: ANR-17-EURE-0020) and from Excellence Initiative of Aix-Mar-
seille University - A*MIDEX.

Data availibility The data that supports the findings of this study is available from the corresponding
author upon request.

Code availability The code that supports the findings of this study is available from the corresponding
author upon request.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Beck, A.: First-Order Methods in Optmization, 1st edn. Society for Industrial and Applied Mathe-
matics-SIAM and Mathematical Optimization Society (2017)

2. Bertsekas, D.P.: Nonlinear Programming, Athena Scientific Optimization and Computation Series,
2nd edn. Athena Scientific, Belmont (1999)

3. Brimberg, J.: The Fermat-Weber location problem revisited. Math. Program. 71, 71–76 (1995)
4. Combettes, P.L.: Quasi-Fejérian analysis of some optimization algorithms. In: Inherently Parallel

Algorithms in Feasibility and Optimization and Their Applications (Haifa, 2000), volume 8 of Stud.
Comput. Math., pp. 115–152. North-Holland, Amsterdam (2001)

5. Correa, R., Lemaréchal, C.: Convergence of some algorithms for convex minimization. Math. Pro-
gram. 62(2, Ser. B), 261–275 (1993)

6. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machine and other Kernel-
Based Learning Methods. Cambridge University Press (2000)

7. Ermol’ev, Y.M.: Methods of solution of nonlinear extremal problems. Cybernetics 2(4), 1–14
(1966)

8. Goffin, J.-L., Kiwiel, K.C.: Convergence of a simple subgradient level method. Math. Program.
85(1, Ser. A), 207–211 (1999)

9. Grant, M., Boyd, S.: Cvx: Matlab software for disciplined convex programming, version 2.1 (2014)
 10. Grant, M.C., Boyd, S.P.: Graph implementations for nonsmooth convex programs. In: Recent

Advances in Learning and Control, volume 371 of Lect. Notes Control Inf. Sci., pp. 95–110.
Springer, London (2008)

23

 11. Grapiglia, G.N., Sachs, E.W.: On the worst-case evaluation complexity of non-monotone line search
algorithms. Comput. Optim. Appl. 68(3), 555–577 (2017)

 12. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method.
SIAM J. Numer. Anal. 23(4), 707–716 (1986)

 13. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex analysis and minimization algorithms. I, volume 305
of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sci-
ences]. Springer, Berlin (1993). Fundamentals

 14. Jerinkić, N.K., Ostojić, T.: AN-SPS: Adaptive sample size nonmonotone line search spectral pro-
jected subgradient method for convex constrained optimization problems. Preprint arXiv: 2208.
10616 (2022)

 15. Kiwiel, K.C.: Methods of Descent for Nondifferentiable Optimization: Lecture Notes in Mathemat-
ics, vol. 1133. Springer, Berlin (1985)

 16. Kiwiel, K.C.: Convergence of approximate and incremental subgradient methods for convex optimi-
zation. SIAM J. Optim. 14(3), 807–840 (2003)

 17. Krejic, N., Jerinkic, N.K., Ostojic, T.: Spectral projected subgradient method for nonsmooth convex
optimization problems. Preprint arXiv: 2203. 12681, pp. 1–17 (2022)

 18. Loreto, M., Crema, A.: Convergence analysis for the modified spectral projected subgradient
method. Optim. Lett. 9(5), 915–929 (2015)

 19. Loreto, M., Xu, Y., Kotval, D.: A numerical study of applying spectral-step subgradient method for
solving nonsmooth unconstrained optimization problems. Comput. Oper. Res. 104, 90–97 (2019)

 20. Nedić, A., Bertsekas, D.: Convergence rate of incremental subgradient algorithms. In Stochastic
optimization: algorithms and applications (Gainesville, FL, 2000), volume 54 of Appl. Optim., pp.
223–264. Kluwer Acad. Publ., Dordrecht (2001)

 21. Nedić, A., Bertsekas, D.P.: The effect of deterministic noise in subgradient methods. Math. Pro-
gram. 125(1, Ser. A), 75–99 (2010)

 22. Nesterov, Y.: Subgradient methods for huge-scale optimization problems. Math. Program. 146(1–2,
Ser. A), 275–297 (2014)

 23. Polyak, B.T., Introduction to optimization. Translations Series in Mathematics and Engineering.
Optimization Software Inc, Publications Division, New York,: Translated from the Russian. With a
foreword by Dimitri P, Bertsekas (1987)

 24. Sachs, E.W., Sachs, S.M.: Nonmonotone line searches for optimization algorithms. Control Cyber-
net. 40(4), 1059–1075 (2011)

 25. Shalev-Shwartz, S., Singer, Y., Srebro, N., Pegasos, N.: Primal Estimated sub-GrAdient SOlver for
SVM. In: Proceedings of the 24th International Conference on Machine Learning, pp. 807–814
(2007)

 26. Shor, N.Z., Minimization methods for nondifferentiable functions, volume 3 of Springer Series in
Computational Mathematics. Springer-Verlag, Berlin,: Translated from the Russian by K. C. Kiwiel
and A, Ruszczyński (1985)

 27. Zhang, H., Hager, W.W.: A nonmonotone line search technique and its application to unconstrained
optimization. SIAM J. Optim. 14(4), 1043–1056 (2004)

24

http://arxiv.org/abs/2208.10616
http://arxiv.org/abs/2208.10616
http://arxiv.org/abs/2203.12681

	A subgradient method with non-monotone line search
	Abstract
	1 Introduction
	2 Preliminaries
	3 Subgradient method with non-monotone line search
	3.1 Convergence analysis
	3.2 Convergence analysis for compact constraint set

	4 Illustrative numerical experiments
	4.1 Maximum of a finite collections of linear functions
	4.2 Fermat–Weber location problem
	4.3 Support vector machine

	5 Conclusions
	Acknowledgements
	References

