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Abstract: Background: Spinal cord ischemia is a major complication of treatment for descending
thoracic aorta (DTA) disease. Our objectives were (1) to describe the value of angiographic cone-beam
CT (angio-CBCT) and 3D road-mapping to visualize the Adamkiewicz artery (AA) and its feeding
artery and (2) to evaluate the impact of AA localization on the patient surgical strategy. Methods:
Between 2018 and 2020, all patients referred to our institution for a surgical DTA disorder underwent
a dedicated AA evaluation by angio-CBCT. If the AA feeding artery was not depicted on angio-
CBCT, selective artery catheterization was performed, guided by 3D road-mapping. Intervention
modifications, based on AA location and one month of neurologic follow-up after surgery, were
recorded. Results: Twenty-one patients were enrolled. AA was assessable in 100% of patients and
in 15 (71%) with angio-CBCT alone. Among them, 10 patients needed 3D road-mapping-guided
DSA angiography to visualize the AA feeding artery. The amount of contrast media, irradiation
dose, and intervention length were not significantly different whether the AA was assessable or not
by angio-CBCT. AA feeding artery localization led to surgical sketch modification for 11 patients.
Conclusions: Angio-CBCT is an efficient method for AA localization in the surgical planning of
DTA disorders.

Keywords: interventional radiology; preconditioning; endovascular

1. Introduction

Neurological complications, such as spinal cord injury, remain a major concern in
the treatment of descending thoracic aortic (DTA) disease. Spinal cord ischemia arises
in between 1% and 8% of patients after treatment with DTA [1–3]. Several methods to
decrease the spinal cord injury rate have been described, including cerebrospinal fluid
(CSF) drainage, motor somatosensory-evoked potential, or surgical reimplantation of the
feeding artery of the Adamkiewicz artery (AA) [4,5].

The need for assessing the anatomical location of the feeding artery of the AA before
DTA treatment is debated in the literature for several reasons. The variability of its anatom-
ical origin is high, most commonly found between T8 and L1, and originates from the left
intercostal or lumbar artery in 70% to 85% of cases [6,7]. Additionally, the feeding artery of
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the AA is a small artery, and its anatomical location might be hidden with the deformation
of the aneurysmal aorta and aortic thrombus. However, a lower rate of postoperative
neurologic complications is observed in patients with DTA surgical repair if they benefit
from previous AA detection and preservation [8]. If the AA feeding artery is covered in
TEVAR, CSF drainage is associated with a lower incidence of symptomatic spinal cord
ischemia [9]. There is no consensus regarding spinal cord ischemia prevention before
surgical treatment of the descending thoracic aorta. The anatomical location of the AA
might help in decision-making before treatment. Selective DSA of each patent intercostal
artery could be very challenging in the case of large aortic aneurysms. New angiographic
techniques such as angio-CBCT might help in detecting small arteries such as the AA in
large aneurismal vessels.

Several invasive and noninvasive techniques to assess the AA location have been
described [10–14]. Noninvasive assessment methods involving the use of magnetic res-
onance (MR) angiography and multidetector row CT angiography have recently been
employed [15–17]. However, their wide adoption can be limited because of patient mor-
phology. On the other hand, digital subtraction angiography (DSA) is challenging to
perform, as it is difficult to catheterize the intercostal artery ostium in an aneurysmal sac.

The periprocedural use of cone beam CT (CBCT) has been described in many inter-
ventional radiology procedures [18]. The arm of the angio-suite can perform localized CT
acquisition by rotating around the patient in a cone-shaped beam. The acquisition, coupled
with vessel angiography, is called angio-CBCT. It allows small vessel detection with a higher
spatial resolution than CT–angiography and MRI acquisition. Additionally, angio-CBCT ac-
quisition can be used as a 3D road-mapping mask for the rest of the procedure. It was found
to be efficient in the detection of injured vessels for emergency embolization, transarterial
chemoembolization guidance, or the evaluation of spinal arteriovenous fistulas [19–21].
However, there is no evaluation of this technique in the preprocedural visualization of the
AA feeding arteries before DTA disease treatment. Therefore, our goals were to (1) describe
the value of contrast angio-CBCT and 3D road-mapping in locating the feeding artery of the
AA in patients with DTA disease requiring surgical treatment; (2) quantify the total amount
of contrast media, irradiation dose and intervention length required to locate the feeding
artery of the AA; (3) assess the impact of the preprocedural location of the feeding artery
of the AA on the treatment strategy; and (4) report the rate of one month postprocedural
neurologic complications.

2. Materials and Methods
2.1. Study Design

This single-center nonrandomized retrospective study included all patients being
followed in our center for DTA disorders with planned thoracic or thoracoabdominal
aortic repair with a risk of spinal cord infarction from February 2018 to April 2020 in the
Centre Aorte Timone. The exclusion criteria were patients referred for emergency and
contraindications for iodine injection. All patients included during this period underwent
angiography with angio-CBCT acquisition after iodine injection and, if needed, selective
opacification of selected patent intercostal artery-guided 3D road-mapping to detect AA
and AA feeding arteries. In the second phase, we evaluated our attitude toward surgical
treatment modification after AA detection. Ethical review and approval were not applicable
for this retrospective study.

2.2. Diagnostic Angiography Procedure

All angiographic procedures were performed in an angiography room (Discovery IGS
730, General Electric, Buc, France) under local anesthesia. The first phase of the intervention
was always angio-CBCT aortic acquisition. We performed a femoral approach with the
Seldinger technique (5F introducer sheath, Terumo Cardiovascular Systems Corporation,
MI, USA). A multipurpose 5F pig tail catheter was placed at the level of T9. Angio-CBCT
acquisition was then performed during a breath hold at a rotation speed of 40◦/s and during
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contrast media injection. A diluted bolus was used with 50% saline and 50% iodixanol
320 (Visipaque, Gerbet, Aulnay-sous-Bois, France). Seventy cc of this mixture was injected
with the following parameters: injection speed = 10 cc/s, delay between injection and
angio-CBCT acquisition: between 3 to 4 s, according to the volume of the aneurysm and
left to the judgment of the radiologist (Figure 1). In the case of a lack of opacification of the
feeding artery of the AA, a second angio-CBCT was performed at a different level of the
aorta depending on the aortic lesion anatomy (mostly involving a thoracic or abdominal
disorder). Following the acquisition, images were processed on a dedicated work station
AW Volume Share 4.6 (GE Healthcare, Chicago, IL, USA) to detect the feeding artery of
the AA using a double oblique view within MPR reconstruction and Volume Rendering
(Figure 1).
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Figure 1. Different phases of angio-CBCT image acquisition: native images (upper section), MPR
reconstructions (middle section), and volume rendering and oblique reconstructions (lower section).

The AA was considered assessable on angio-CBCT and angio-CBCT positive if we
visualized an AA artery defined as “a collateral artery of the radiculomedullary artery
running obliquely along the anterior surface of the spinal cord with a classic hairpin turn
connection to the anterior spinal artery” (Figure 2).

If the feeding artery of the AA was clearly defined, exploration was considered complete.
The definition of the feeding artery of the AA was a continuous vascular route for the

anterior spinal artery, the AA, the radiculomedullary artery, the posterior branch of the
intercostal (or lumbar) artery, the intercostal (or lumbar) artery and the aorta.
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Figure 2. Examples of angio-CBCT reconstructions showing the Adamkiewicz artery (AA) (black
arrows) in three different patients. The AA is seen running obliquely along the anterior surface of
the spinal cord with a classic hairpin turn and connection to the anterior spinal artery (star). In
cases (A,B), the feeding artery of the AA was clearly depicted. In case (C), complementary selective
arteriography was performed.

If the feeding artery was not clearly visualized on angio-CBCT alone, selective DSA
angiography catheterization of the arteries at the probable origin of the AA was performed.
In this case, we used 3D road-mapping extracted from angio-CBCT, reconstructed in volume
rendering reconstructions, with the localization of the intercostals and lumbar artery ostia
to facilitate catheterization (Figure 3).
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AA was considered not assessable on angio-CBCT and angio-CBCT negative if no
artery meeting the AA definition was visible, even after 2 angio-CBCT procedures. In this
situation, selective DSA angiography catheterization of the arteries was performed. The
3D road-map extracted from the angio-CBCT acquisition was also used, but in contrast to
the previous situation, catheterization was not guided by AA detection, and all intercostal
and lumbar arteries from the region were catheterized. Selective angiography of patent
intercostal/lumbar arteries requires different types of catheters, and the choice of catheter
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was left at the discretion of the radiologist. A manual injection of 4 cc of contrast media
iodixanol 320 (Visipaque, Gerbet, Aulnay-sous-Bois, France) was used for selective angiog-
raphy. Selective DSA was considered successful when the feeding artery of the AA was
located on the DSA. A procedure was considered unsuccessful if angio-CBCT and DSA
failed to locate the feeding artery of the AA.

The location of the ostium of the intercostal or lumbar artery, which feeds the AA, was
highlighted on the volume rendering reconstruction of angio-CBCT or on the preprocedural
CT acquisition. These images were used during multidisciplinary discussions to define the
surgical procedure.

2.3. Surgical Management and Neurological Follow-Up

Treatment decisions were standardized and validated in a multidisciplinary team
including vascular surgeons, cardiologists, anesthesiologists, and radiologists. Concerning
endovascular repair, if the AA arose near the stent graft ends, the preservation of the
ostium was maintained by stent graft length reduction. If the AA arose in the aneurismal
area and needed to be covered by TEVAR, preventive CSF drainage was performed. In
the case of open surgical repair, surgical reimplantation of the AA was performed. All
these procedure modifications based on AA localization were discussed and recorded
during multidisciplinary team meetings. One month after aortic intervention, a follow-up
examination recorded early neurological complications. All types of neurologic symptoms
were recorded: spinal cord ischemia, paresthesia or motor disorders of the lower limb,
and Parkinson’s syndrome. The amount of iodine contrast injected, irradiation dose,
fluoroscopy time, and procedure length were gathered. The continuous and categorical
variables are described by the mean, standard deviation (SD) and range or median (Q1-
median-Q3) and range, and n (%). The Mann Whitney U test was performed to evaluate
both groups.

3. Results

A total of 21 patients were included in the study. Patient demographic and clinical
characteristics are summarized in Table 1. All patients were able to benefit from the de-
scribed diagnostic procedure with angio-CBCT. The average duration of the procedure
was 48.7 ± 19.7 min for all 21 cases. In two cases, medullary arteriography was coupled to
another intervention in the same operating time. The first was iliac stenting for aneurys-
mal exclusion, and the second was subclavian artery occlusion. Both interventions were
performed in patients for whom angio-CBCT was positive and no extra DSA selective
catheterization was necessary. The doses of contrast media and irradiation were combined
in these two cases. No complications were noted during the procedure.

Table 1. Population characteristics (n = 21).

Variable Patient Characteristics

Age, years (mean ± SD) 68 ± 11
Male, n (%) 17 (81)
BMI, kg/m2 (mean ± SD) 27 ± 3.5
Hypertension, n (%) 17 (81)
Hyperlipidemia, n (%) 7 (33)
Diabetes, n (%) 2 (9)
Smoking, n (%) 14 (66)
Descending thoracic aorta pathology, n (%)

Aneurysm 19 (90)
Dissection 2 (10)

Aortic diameter, mm (mean ± SD) 61.6 ± 8.1

AA was assessable on angio-CBCT in 15/21 (71%) cases. Among them, the feeding
artery was undoubtedly visible in 5/15 patients (33%). For the remaining 10/15 patients
(67%), DSA selective angiography was needed to confirm the feeding artery. The AA was
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not assessable on angio-CBCT in 6/21 patients (29%). Three-dimensional road-mapping-
guided DSA angiography of all intercostals and lumbar arteries finally helped to visualize
the AA and the feeding artery in 6/6 patients (100%). These six patients with negative
angio-CBCT had bulky aneurysms with high diameters (64.6 ± 9.3 versus 60.33 ± 7.6;
p = 0.28) causing major flow turbulence after iodine injection. Figure 4 summarizes the
study flow-chart.
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Figure 4. Study flow chart. DTA: descending thoracic aorta; AA: Adamkiewicz artery.

The median and interquartile irradiation dose was 25.5 (20.0–40.0) Gy/cm2 for the
positive angio-CBCT group and 70.4 (30.8–96.9) Gy/cm2 for the negative angio-CBCT
group (p = 0.16) (Table 2). There was no significant difference in fluoroscopy time or total
procedure time depending on the angio-CBCT result (Table 2). The difference in iodine
contrast dose was not statistically significant. In two cases, medullary arteriography was
coupled to another intervention in the same operating time. The first was iliac stenting for
aneurysmal exclusion, and the second was subclavian artery occlusion. Both interventions
were performed in patients for whom angio-CBCT was positive and no extra DSA selective
catheterization was necessary. The doses of contrast media and irradiation were combined
in these two cases.

Table 2. Results of angiographies according to the visualization of the anterior spinal artery on the
CBCT acquisition (n = 21). AA: Adamkiewicz artery.

AA Assessable on CBCT
(n = 15)

No AA Assessable on CBCT
(n = 6) p

Second angio-CBCT, n (%) 2 (13%) 6 (100%)
Feeding artery visible on angio-CBCT, n (%) 5 (33) x
Feeding artery visible after selective guided
DSA catheterization, n (%) 10 (67) 6 (100)

Amount of iodine, mL (mean ± SD) 71.8 ± 38.7 90.0 ± 26.1 0.23
Fluoroscopy time, min (mean ± SD) 16.7 ± 10.8 13.1 ± 8.7 0.45
Length of the procedure, min (mean ± SD) 46.5 ± 17.2 47.9 ± 26.0 0.84
Irradiation, Gy/cm2 (med (IQR)) 25.5 (20.0–40.0) 70.4 (30.8–96.9) 0.41
Aortic aneurism diameter, mm (mean ± SD) 60.33 ± 7.6 64.6 ± 9.3 0.28

The anterior spinal artery originated in 70% of cases from a left intercostal or lumbar
artery and in 25% of cases from the 11th left intercostal artery. These data are presented in
Table 3 [7].
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Table 3. Distribution of the side and the level of the origin of the Adamkiewicz artery (AA) (n = 21).

Right (n = 6) Left (n = 15)

T7, n (%) 0 (0) 1 (5)
T9, n (%) 2 (10) 4 (20)

T10, n (%) 1 (5) 2 (10)
T11, n (%) 1 (5) 6 (25)
T12, n (%) 1 (5) 1 (5)
L1, n (%) 0 (0) 1 (5)
L3, n (%) 1 (5) 0 (0)

After presurgical planification, 16 out of 21 patients underwent aortic surgical repair
(Table 4). Eleven patients were treated with endovascular surgical repair (TEVAR), and
five were treated with open surgery. The identification of the AA artery led to eight
modifications of the surgical strategy for the endovascular population: decision for stent
graft length reduction in five (45.4%) of the patients to preserve the AA feeding artery
ostium and/or CSF monitoring for seven patients (64%). In the open surgery group,
bridging was chosen for three patients (60%) and/or CSF monitoring/drainage in two
(40%) patients after the visualization of the AA feeding artery.

Table 4. Procedure modifications following presurgical identification of the AA for both endovascular
and open surgery treatments and neurological complication follow-up (n = 16). CSF: cerebrospinal
fluid; AA: Adamkiewicz artery.

Endovascular
(n = 11)

Open Surgery
(n = 5)

Modification of the surgery, n (%) 8 (73%) 3 (60%)

- Stent graft length reduction, n (%) 5 (45%) x

- Monitoring/CSF drainage, n (%) 7 (64%) 2 (40%)

- AA reimplantation, n (%) x 3 (60%)

Neurologic complication, n (%) 0 1 (20%)

One month of follow-up revealed a unique severe neurologic complication described
as a spinal cord injury with permanent paraplegia. The patient was selected for open
surgery, and the feeding intercostal artery of the AA was reimplanted in association with
CSF drainage. During surgery, the patient suffered circulatory arrest due to occlusion of the
interventricular artery. The patient was resuscitated but exhibited permanent paraplegia in
the recovery room.

4. Discussion

Angio-CBCT and selective DSA guided by 3D road-mapping allowed the location of
the feeding artery of the AA in 100% of the patients included in the present study. Angio-
CBCT decreases the need for selective catheterization. Kieffer et al. described neurological
complications after selective catheterization of the spinal or intercostal artery [10,22]. These
types of complications were not reported in our series, and their exact prevalence is
difficult to evaluate with the use of up-to-date selective catheters. Three-dimensional road-
mapping allowed the location of the patent ostium of the intercostal artery for selective
catheterization. In our series, the addition of selective catheterization of the intercostal
or lumbar artery did not significantly increase the procedure length, showing that the
use of image 3D road-mapping and location of the patent artery might simplify image
acquisition and AA location. The presence of an aneurysmal sack thrombus may promote
ostial occlusion of the intercostal arteries arising from the aneurysm [23,24]. The precise
surgical location of the artery that feeds the AA plays a role in planning the surgical
strategy in our department. Matsuda reported that the estimated incidence of permanent
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and transient spinal cord injury was 3.7% in all TEVAR patients, 6.0% when part or all of
the distal aorta was covered and 12.5% when the patent intercostal or lumbar artery that
fed the AA was covered [25]. Preoperative identification of the feeding artery of the AA by
selective spinal arteriography has been proposed by other groups [10,26–29]. Briefly, their
procedure consisted of selective catheterization, usually by the femoral route, followed by
the manual injection of contrast material for the imaging of intercostal and lumbar arteries
until the arteries that supplied the anterior spinal artery were identified.

However, treatment of a DTA aneurysm might imply a voluntary occlusion of the
feeding artery of the AA to avoid the risk of aortic rupture. Several methods have been
developed to decrease the risk of spinal cord injury during treatment of a DTA aneurysm.
Sequential treatment avoiding extensive covering of the intercostal artery and collateral
of interest, such as the left subclavian artery or hypogastric artery, is recognized as an
efficient method [30]. Preoperative coiling of the lumbar arteries is also described as
a solution to reduce complications [31,32]. Curative treatment of spinal cord ischemia
has been shown to be effective [4,29,33,34]. The goal of the treatment is to increase the
medullary perfusion pressure and to increase the development of the collateral circulation.
Banga et al. [35] increased the mean arterial blood pressure (>80–90 mmHg) and used
cerebrospinal fluid drainage to increase the medullary perfusion pressure. Assessment of
motor evoked potentials allows the monitoring of the blood supply to the spinal cord in real
time during intervention and the adaptation of the arterial blood pressure to cerebrospinal
fluid drainage. This setting has been shown to reduce postoperative complications [5,36].
In our clinical practice, all these methods are used and personally adapted according to
the patient data. We thought that the precise location of the feeding artery of the AA could
help us to better decide on neurological risk reduction techniques during surgery.

Recent innovations in CT or MR technology have made it possible to noninvasively
identify the feeding artery of the AA. The detection rates for this artery have been reported
to be 80–90% using CT or MR angiography [25–29,33] in patients with thoracic aneurysm
or dissection. In fact, these noninvasive assessment methods are able to depict the morpho-
logic hairpin turn configuration of the AA. However, the entire course of the AA should be
identified by demonstrating continuity from the anterior spinal artery to the aorta via the
AA to avoid misinterpretation of the arterial vascularization of the spinal cord. The rate for
vascular continuity has been reported to be in the range of 25 to 60% for 16- or 64-detector
row CT [12,14,15,17]. The difficulty in demonstrating continuity can be attributed to the
small size of the artery and the proximity to the spine [37]. It is also important to empha-
size that many studies have been conducted in different ethnic groups [10,23,28], whose
physical characteristics differ from our population.

This study has some limitations, especially the small number of patients included.
Angiography is invasive and requires radiation exposure, iodine chelate injection into the
patient, and medical expertise and time. This was a proof-of-concept study, and we did not
prove that the proposed method is able to decrease the occurrence of spinal cord injury.

5. Conclusions

These results suggest that the combined use of angio-CBCT and 3D road-mapping
to guide the anatomical location of the feeding artery of the AA was feasible in all the
patients included in our series. In our team’s experience, precise knowledge of the arterial
vascularization of the spinal cord allowed us to modify and personalize the treatment of
DTA diseases.
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