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Abstract

A set of agents is aware of the existence of an economic opportunity, and compete for the

associated prize. We study incentives to communicate about the existence of this economic

opportunity to uninformed agents when the winner of the prize shares it with others, through

some exogenous sharing rule. Communicating about the opportunity has two conflicting effects:

it increases competition, but it can also increase the likelihood of receiving a large share of the

prize. We find that, for any sharing rule, there is a minimum equilibrium, which Pareto dominates all

other equilibria. We also find that under bilaterally symmetric sharing, more sharing generates more

communication. We then discuss these results along several extensions. (JEL: C72; D83; D85)
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1. Introduction

Economic opportunities are a cornerstone of economic growth. Two salient features of

opportunities, that they are often rival by nature and that they are not easily identified,

appear in many economic contexts. For instance, firms / researchers competing over an

innovation may lack information necessary to evaluate the riskiness of an innovative

project, or even to select scientific direction to take. Competing traders in banks may

have trouble identifying relevant information about assets’ returns. Attorneys can lack

the information required to evaluate the true benefit they might gain from defending a

potential client. Or a farmer may have difficulty gathering the information necessary

to evaluate how well rival banks can meet his needs. The limited amount of relevant

information to identify valuable opportunities is a strong limitation to innovation and

to economic development.

For this reason, understanding how information about economic opportunities

spreads in society is of primary importance. In particular, in a purely competitive

framework where only few agents will actually seize the opportunity in the end,

information sharing is likely to be very limited. However, in many contexts,

the value generated by the opportunity is shared among economic agents. For

instance, spreading industrial innovations is of benefit to many firms1; wages in

organizations often partly redistribute the value of aggregate output to employees; or

in village economies, social networks may serve as a channel for resource-sharing

(through cultural norms, diversification motives, favors, altruism, etc). When the

value generated by the opportunity is indeed shared among agents through some

“sharing rule", it might provide incentives to communicate about the existence

of the opportunity. This raises the following question: How do the characteristics

of the sharing rule affect incentives to communicate about the existence of rival

opportunities?

1. More generally, such sharing device might occur when the opportunity concerns a good containing a

public good aspect
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We model this question through a simple normal-form game. The existence of

the economic opportunity (which we refer to as a pie), as well as the sharing rule,

that we call the sharing network2, are common knowledge among a set of initially

informed agents. Agents then simultaneously choose to inform a set of uninformed

agents. Finally all informed - whether initially or through communication - agents

compete for the pie, and redistribute shares according to the sharing rule.

Our findings are the following. Our first result pertains to equilibrium

characterization. We show that best-response strategies possess the following

monotonicity property: an agent’s best response can only be increased when others

communicate more. This property implies that the communication game admits

a minimum equilibrium (in terms of the set of informed agents), which Pareto-

dominates all other equilibria (whereas information receivers might be better off in

other equilibria).

Second, we address the impact of network structure on communication, by

exploring whether more sharing is always beneficial to communication. The answer

depends on the sharing rule. However, when shares are bilaterally symmetric, more

sharing always fosters communication. In particular, increasing shares symmetrically

(but not necessarily homogeneously across links) necessarily augments the set of

informed agents at the minimum equilibrium.

We then discuss the robustness of our results to a series of variations or extensions.

First, we test the monotonicity property in various contexts: we consider a setting

in which only those who inform get a share of the pie; we allow for probability of

winning to be increasing in the number of informed agents; we explore incentives to

exert effort to win the contest. The monotonicity property only holds in the two former

2. A sharing rule is simply a stochastic matrices, whose i, j entry is simply equal to the fraction of the

prize agent i transfers to agent j. We assume that there is no enforcement issue. Social norms may explain

commitment to sharing. In the economic literature, contract enforcement issue can be overcome through

reciprocity (see Fehr et al. (1997)), or through reputation building motive (like in relational contract theory,

see Baker et al. (1994)).
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situations. Second, we examine the robustness of the positive relationship between

symmetric sharing and communication, by examining endogenous (costly) investment

to be informed about the opportunity. We find that, under low investment cost, more

sharing never reduces communication in the presence of endogenous investment. By

contrast, it can be the case under large investment cost, by two mechanisms: first,

investment amplifies the temptation of free riding, and, second, incentives to invest

are worsened when investment boosts communication.

Related literature. This paper relates to at least two strands of literature on networks:

resource sharing on networks and strategic communication on networks.3

The first, and perhaps closest, examines resource-sharing on networks, focusing

mainly on informal sharing. There is a huge empirical literature about informal

transfers on networks (see for instance Fafchamp and co-authors, like Fafchamps and

Gubert (2007) or De Weerdt and Fafchamps (2011)), and several theoretical works:

Bramoullé and Kranton (2007a) and Bramoullé and Kranton (2007b) examine the

formation of risk-sharing networks, where people share equally in communities. Bloch

et al. (2008) study sharing under the threat of opportunism. Ambrus et al. (2014)

examine risk-sharing under capacity constraints, and Ambrus et al. (2022) explore

the role of local information as a limit to contracting. Bourlès et al. (2017) study

the role of altruism as a redistributive mechanism in networks. Ambrus and Elliott

(2021) model the formation of risk-sharing networks under division of surplus in

social networks related to the Myerson value. In our model, the network is a channel

for both transfers and information. With respect to that literature, one novelty of our

work is the nature of the information transmitted on networks: the information here

concerns a rival opportunity. Ultimately, this paper complements that literature by

examining private incentives to invest in a technology allowing people to recognize

3. There is also a somewhat related literature on strategic experimentation and social learning (Keller

et al. (2005)). Heidhues et al. (2015) introduce privacy of payoffs, and agents can communicate via cheap-

talk messages. Marlats and Ménager (2021) introduce strategic costly observation of actions and outcomes.

In contrast to that literature, we suppose that the value of the opportunity is known with certainty.
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valuable opportunities.4 In that sense, the revenues to be shared on the network in this

model are endogenous to individual investments in a screening technology.

The second strand of literature addresses strategic communication, with a main

focus on organizational economics5 or political economy6. In that literature, the

need for communication comes from seeking to influence others’ actions under

differentiated individual preferences and, in some contexts, coordination issues.

Recent extensions to networks include Hagenbach and Koessler (2010), Galeotti

et al. (2013), Calvó-Armengol et al. (2015). The two former focus on costless, non-

verifiable information (cheap talk model as in Crawford and Sobel (1982)), whereas

the latter model the endogenous acquisition of a communication technology (for both

being able to communicate and to be able to receive messages) under costly and

verifiable information. In our model, information is verifiable and communication is

costless. Indeed, in our context, there is no need for costly verification because agents

do not have incentives to lie.7 Our model is orthogonal to that literature, our main

contribution being to propose a new rationale for strategic communication. We reveal

that strategic communication about the existence of a rival opportunity can emerge

when the captured resource is shared with those who ignore its existence. We believe

that this situation can arise in many applications, both inside and outside the field of

the economics of organizations.

The paper is organized as follows. The communication game is exposed in Section

2, the characterization of the equilibria of he communication game, as well as welfare

properties, are presented in Section 3. Section 4 discusses the robustness of the

4. Regarding endogenous revenues, Belhaj and Deroïan (2012) explore farmers’ incentives to take

(investment) risk on risk-sharing networks, where farmers share part of their revenues with their neighbors.

5. For decentralized decisions making within organizations, see Dessein and Santos (2006), Alonso et al.

(2008), or Rantakari (2008).

6. See Dewan and Myatt (2008) for a study related to political parties.

7. In that sense, our model does not correspond to a model of conflict of interest, in which agents can be

incited to lie.
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results and Section 5 concludes. All proofs are relegated in Appendix A. Appendix

B examines the sub-game perfect equilibria of the extensive form game that can be

built from the one-shot communication game, Appendix C explores a linear Tullock

contest, and Appendix D introduces endogenous investment to be informed.

2. The communication game

2.1. The model

Agents compete for a pie of value normalized to 1, called an opportunity. An agent

is initially either aware of the existence of the opportunity, or not. Hence, the set

of agents - N = {1, 2, · · · , n} - is partitioned as follows: N = I ∪ J where I,

of cardinal I , is the set of agents informed before the communication stage (called

players), and J is the set of agents who are not informed before communication

(called regular agents). The sharing rule is represented by an n-square row-stochastic

matrix Σ = (σij)i,j∈N , where entry σij ≥ 0 is the share of the pie agent i transfers to

agent j, if agent i wins the contest.

Given a sharing network Σ as well as a subset of initially informed agents I,

we define a normal-form game (I; (Si)i∈I ; (πi)i∈I) as follows: agent i chooses a set

si ∈ Si := P(J ). Let S := (si)i∈I be an action profile. For simplicity, we also denote

by S the set ∪
i∈I

si, i.e. the set of agents who have been informed of the opportunity

through communication. We letM(S) := I ∪ S and m(S) := |M(S)|.
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Let S−i := (sj)j 6=i be the profile of actions of all players, except for i.8 Then

πi(si,S−i) =
1

m(S)

1−
∑
j∈N

σij +
∑

j∈M(S)\i

σji

 =
1

m(S)

∑
j∈M(S)

σji

This is the average expected share among all informed agents after the communication

phase (including herself).

2.2. Refining best responses

A best response si to a profile of actions of other players S−i is such that πi(si,S−i)≥

πi(s
′
i,S−i) for all s′i. Given that the expected payoff is the average incoming share

among informed agents, it is profitable for agent i to inform a regular agent j whenever

σji exceeds the average incoming share among already informed agents:

RESULT 1. Given i ∈ I and S−i ∈ S−i, si is a best response against S−i iif9

• σji ≥Mean{σki : k ∈M(S)} ∀j ∈ si \ S−i;

• σji ≤Mean{σki : k ∈M(S)} ∀j ∈ J \ S.

As a consequence, the set Bri(S−i) is stable by intersection.

If agent j has not been informed by any player, including player i, the incoming

share from agent j to agent i cannot be strictly larger than agent i’s payoff. Moreover

if j is not informed by other players, but is informed by player i, then it must be

the case that the incoming share from j to i is larger than his payoff. By Result

1 the current payoff can be viewed as a threshold above which incoming shares

8. From the point of view of player i, all that matters in this game is the set of agents to which other

players transmitted their knowledge. We characterize equilibria in terms of their set of informed agents.

However, there can be many equilibrium strategies generating a given set of informed agents (through

appropriate permutations on the label of the informer of a given informed agent). We disregard those

permutations in the paper.

9. For convenience S−i also denotes the set ∪
j∈I,j 6=i

sj .
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entail profitable communication, but this threshold is endogenous to the agent’s

communication strategy.

The set of best responses is never empty. However it is typically not a singleton,

because if one player informs an agent then any other player is indifferent between

informing this agent or not. To eliminate this source of best-response multiplicity, a

natural refinement is considered: 10

DEFINITION 1 (Tight best response). Let si ∈ Bri(S−i). Then we say that si is a

tight best response against S−i if, for any ti ⊆ si such that ti 6= si, we have

πi(ti,S−i) < πi(si,S−i)

In short, a best response is tight if none of the current communications of an agent

to a set of neighbors can be cut without penalizing the agent’s payoff. Note that, if

the empty set is a best response, it is tight by construction. Moreover, since the best-

response set is stable by intersection, the tight best response is the intersection of all

best responses and is therefore unique. By a slight abuse of notation, we denote this

set TBRi(S−i). We have:

RESULT 2. Let J \ S−i = {j1, j2, ...jL} be such that σj1,i ≥ ... ≥ σjL,i. Then

TBRi(S−i) = {j1, ...jl} iif

σjli > Mean {σji : j ∈ {j1, ..., jl} ∪ S−i ∪ I} ≥ σjl+1,i

By Result 2, agent i’s tight best response is easily identified: agent i ranks the

incoming shares of all uninformed agents in the society. Then, she examines the

profitability of informing the agent with the highest incoming share in that pool, say

agent 1. If informing this agent is not strictly profitable, the empty set is the tight

10. Since communication is costless, communication strategies can generate information redundancy,

which is an irrelevant source of equilibrium multiplicity. We thus introduce the notion of Tight Best

Response, which always proves to be unique.
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best response. Otherwise, agent i should inform agent 1. Then, agent i examines

the possibility of informing the agent with the second largest share in the pool, say

agent 2. If this is not profitable, the tight best response consists in informing agent

1. Otherwise, agent i should inform agent 2. Etc. The full process involves no more

than n− 1 steps. To sum up, at every stage of this process, agent i’s expected utility,

which is the threshold on incoming shares above which informing is preferred to not

informing, is strictly increasing; when the process stops, all incoming shares, and only

these shares, exceed agent i’s expected utility at the tight best response.

By Result 2, the tight best-response map

TBR : J n → J n, TBR(S) = (TBR1(S−1), ...,TBRn(S−n)) .

is well defined and one-to-one. A tight Nash equilibrium (or TNE) is a fixed point of

the tight best-response map.

3. Results

In this section, we characterize the equilibria of the communication game, and then

we turn to welfare considerations.

3.1. Equilibria of the communication game

If I is a singleton, the initially informed agent never wants to communicate, because

not communicating is sure to yield the whole pie, which is the highest possible return

(thus the current payoff necessarily exceeds the incoming share of any neighbor).

However, as soon as I = 2, communication can emerge. We illustrate this with the

following example.
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EXAMPLE 1 (Non-uniqueness). Consider the 5-agent society N = {1, 2, 3, 4, 5},

where players are I = {1, 2}. Suppose that the sharing network is

Σ =



3/10 0 7/30 7/30 7/30

0 1 0 0 0

3/10 0 7/10 0 0

1/6 0 0 5/6 0

0 3/10 0 0 7/10


.

There are two TNEs: one where only regular agent 3 is informed by player 1:

s∗1 = {3}, s∗2 = ∅, with payoffs (1/5, 1/3). If agent 1 informs regular agent 4, his

payoff becomes 23/120 < 1/5. If he ceases informing agent 3, his payoff becomes

3/20 < 7/30. On the other hand, player 2 gets 13/40 < 1/3 if he chooses to inform

agent 5. Hence there is no possible deviation and this profile is a TNE. There is another

TNE, where agent 1 informs regular agents 3 and 4, while player 2 informs regular

agent 5: s∗1 = {3, 4} and s∗2 = {5}. Payoffs are then (23/150, 13/50). If player 1 stops

informing regular agent 4, he gets 3/20 < 23/150. If player 2 stops informing regular

agent 5, he gets 1/4 < 13/50. Note that the first TNE Pareto-dominates11 the second

one.

FIGURE 1. 2 tight Nash equilibriums (Arrows’ boldness represents the share sizes)

3

1

4

5 2

3

1

4

5 2

�

In general, when a new agent, say agent k, gets informed, this can either strengthen

or weaken the incentives for agent i to communicate. When the incoming share from

11. An action profile S′ Pareto dominates S if ui(S′) ≥ ui(S), for all i ∈ I.
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agent k to player i is low enough, and as k gets informed, agent i’s current utility

is reduced by the fiercer competition to win the pie, which decreases the threshold

on shares above which agent i communicates. In this case, player i’s incentives to

communicate are reinforced by the change in agent k’s informational status. On the

other hand, if agent k gives a sufficiently large share to player i, this can increase the

threshold, i.e. it can decrease incentives to communicate.

An important property of the tight best response is that, for any player i, TBRi is

increasing in the following sense12:

PROPOSITION 1 (Monotonicity). For any player i and any S−i,S
′
−i such that

S−i ⊆ S′−i, we have TBRi(S−i) ⊆ TBRi(S′−i) ∪ S′−i.

Example 1 illustrates this monotonicity property: if player 1 finds it best to inform

regular agent 3 when player 2 does not inform regular agent 5, she still prefers to

inform regular agent 3, when regular agent 5 is informed by player 2. The reason why

Proposition 1 holds is that, at the tight best response, the arrival of a new informed

agent does not increase the current expected utility of the player. Indeed, the very fact

that the new informed agent was not informed by player i means that her incoming

share is lower than the average incoming share that player i receives from other

informed agents; and thus informing that agent can only lower player i’s average

incoming share. One deep consequence of Proposition 1 is the existence of a minimum

TNE.

THEOREM 1. There exists a tight Nash equilibrium S∗ with the following property:

for any TNE S∗, we have S∗ ⊆ S∗. We call S∗ the minimum TNE.13

12. Note that simultaneous best responses TBR := (TBR1, ...,TBRi) may not be increasing: we might

have si ⊆ s′i ∀i, but TBR(S) 6⊆ TBR(S′).

13. Formally, S is not unique in terms of action profile. It is unique in terms of set of informed agents.
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The proof is not trivial given that communication strategies are discrete and that

the monotonicity property only holds over tight best responses. To prove Theorem

1 we introduce a sequential best-response map, and show that, starting from the

empty strategy set, the iteration of the map converges to a minimum TNE, S. This

result echoes supermodular games, through the monotonicity properties of tight

best responses, although the game is not supermodular, because the payoffs are not

supermodular on the partially ordered spaces of actions. Having shown the existence

of a minimum TNE has a major welfare implication14:

PROPOSITION 2. The minimum TNE strictly Pareto-dominates all other TNEs.

Proposition 2 follows from this observation: for any equilibrium with a set of

informed agents larger than S∗, the average incoming share from informed agents in

the larger TNE who are not in set S∗ is lower than the average incoming share from

agents in set S∗. Note that Pareto-dominance applies here on players only, and regular

agents can be better off in larger equilibria.

In terms of comparative statics, an immediate consequence of Lemma 1 is that the

set of informed agents at the minimum equilibrium can only be enlarged when the set

of players is enlarged (proof omitted). In terms of statics over the sharing network, it

might at first seem as if communication at minimum equilibrium increases with shares.

The following modification of example 1 shows that this intuition is not always true.

Σ′ :=



3/10 0 7/30 7/30 7/30

0 1 0 0 0

1/6 0 5/6 0 0

1/6 0 0 5/6 0

0 3/10 0 0 7/10


.

14. Actually we prove the more general statement that any TNE Pareto-dominates any TNE with a larger

set of informed agents.
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Compared to the sharing matrix Σ of Example 1, the incoming share from regular

agent 3 to player 1 has been reduced. However there is now only one TNE, where

s∗1 = {3, 4} and s∗2 = {5} (because 1/6 > 3/20, and 3/10 > 1/4). Consequently

the set of informed agents at the minimum TNE is larger than for Σ, even though the

shares are smaller than in Σ.

FIGURE 2. Share from 3 to 1 is reduced: the minimum equilibrium of Example 1 disappears

3

1

4

5 2

However if sharing matrices are symmetric, this cannot occur:

PROPOSITION 3. Consider two symmetric sharing matrices Σ and Σ′ such that

σij ≥ σ′ij for all i 6= j. Then TBR′i(S−i) ⊆ TBRi(S−i), ∀S−i, and S(Σ′) ⊆ S(Σ).

By symmetry, the sum of received shares at a given equilibrium is equal to the

sum of shares given to others, and the latter is not larger than one minus the agent’s

own share. Combined with row-stochasticity, this means that, considering the set

of informed agents at any equilibrium under sharing matrix Σ, the communication

threshold increases under sharing matrix Σ′.

We focus now on a specific set of sharing matrices, in which positive shares are

homogeneous. These sharing rules are useful to isolate the pure network structure

effects of sharing on communication. If, for any i 6= j, σij = σji ∈ {0, λ}, with λ > 0,

we say that Σ is an equi-sharing matrix. Such a sharing rule is thus characterized by

the pair (G, λ), where G = (gij)i,j is an adjacency matrix, with gij ∈ {0, 1}. We refer

to the graph induced by G as the equi-sharing network, the neighborhood of agent i is
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Ni := {j ∈ N : gij = 1}, and d := maxi∈N |Ni|. The associated equi-sharing matrix,

Σ(G, λ), is the row-stochastic matrix such that σij = λgij for i 6= j.15

For a player i ∈ I, let Ri := {j ∈ J : gij = 1} be her set of regular neighbors.

We also defineRI := ∪i∈IRi, the set of regular agents that are linked to at least one

player. We then have:

πi(si,S−i) =
1

m(S)
(1− λ(|Ri| − |S ∩Ri|)) (1)

For such sharing networks, there is a dichotomy on the set of informed agents at a

TNE S∗: either S∗ = ∅, in which case we say that it is a no communication profile; or

S∗ = RI , in which case we say that it is a full communication profile.

PROPOSITION 4. In equi-sharing networks, a TNE is either a no communication

profile or a full communication profile. Moreover:

a) The no communication profile is a TNE if and only if λ ≤ 1
I+maxi∈I |Ri| . We then

have πi(∅) = 1−λ|Ri|
I .

b) The full communication profile is a TNE if and only if λ > 1
I+|RI | . We then have

π∗i = 1
I+|RI | .

The intuition of Proposition 4 is simple. First, if one player finds it profitable

to inform one neighbor, she should be better off informing all of them, because

all neighbors giving a same incoming share receive the same treatment (this stems

from uniqueness of tight best responses). Hence, a TNE contains only two classes of

players: those who inform all neighbors, and those who do not inform any neighbors.

Furthermore, all players who communicate have the same payoff. Second, if one

player chooses to communicate, then every other player should do the same.

15. We assume throughout the section that agents do not give neighbors more than they keep for

themselves: for any agent i, 1− λ|Ni| > λ, i.e., λ < λ := 1
d+1

. Then σii = 1− λ|Ni| > λ.
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By Proposition 4, multiplicity arises in the interval
[

1
I+|RI | ,

1
I+maxi∈I |Ri|

]
. Note

that, for λ ≤ µ(I) := 1
I+maxi∈I |Ri| , the minimum TNE is the no communication

profile, and above that threshold, the minimum TNE is the full communication profile.

3.2. Welfare

We now investigate social welfare issues, from the point of view of an inequality-

averse observer, who evaluates aggregate utility through some concave non-decreasing

function U(·), with U(0) = 0. More precisely, a welfare functionW (S|Σ,I) depends

on both the sharing network and the set of players. Then, given a profile of informed

agentsM(S), the expected aggregate utility is then given by16

W (S) =
1

m(S)

∑
j∈M(S)

∑
i∈N

U(σji)

There is always an efficient communication profile, i.e. one maximizing the

welfare function. A simple algorithm allows to identify the efficient allocation in no

more than n− |I| steps. In the case of equi-sharing networks for instance, the efficient

communication profile can be partial, i.e. it can be neither the no communication nor

the full communication profile.17 And, according to the allocation of players, there are

simple conditions under which the efficient communication is the no communication

profile of the full communication profile.

We then discuss the efficiency level of communication equilibria. In Example 1,

W (S) = U(1), while W (S) = 1
2U(1) + 1

2(U(2/5) +U(3/5)). The utility is higher

in the maximum equilibrium. This is not always the case: assume that the sharing

16. Abusing the notation, we denote W (S) for convenience.

17. Consider a four-agent society organized in a line with agents 2 and 3 at the center of the line, an equi-

sharing network, and the player set {1, 3}. For all concave utility functions, the efficient set of informed

agents is M̂(S) = {1, 2, 3} for all shares. Indeed, informing agent 2 increases the average sharing of

informed agents, while communicating to agent 4 can only decrease the average.
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matrix is given by

Σ =


β α− β 1− α 0

α− β β 0 1− α

1− α 0 α 0

0 1− α 0 α

 ,

where α > β > 1/2, and I = {1, 2}. We obviously have

U(1− α) + U(β) + U(α− β) > U(1− α) + U(α).

The profile S = ∅ is a TNE iif U(β) + U(α − β) ≥ 2U(1 − α). On the other

hand, S = ({3}, {4}) is a TNE iif U(α − β) + U(β) < 3U(1 − α). Therefore, if

2U(1− α) ≤ U(β) + U(α− β) ≤ 3U(1− α),18 then both S and S are TNEs, and

W (S) > W (S).

Let now Σ(G, λ) be an equi-sharing matrix, andA,B be two subset ofN . We say

that A degree-dominates B if, the degree distribution of BA first-order dominates the

degree distribution of AB .19

PROPOSITION 5. Consider an equi-sharing network Σ(G, λ) such that both

equilibria exist20. Then

• if RI degree-dominates I, then all concave utilitarian evaluators agree that

social welfare is larger at the full Communication equilibrium;

• if I degree-dominates RI , then all concave utilitarian evaluators agree that

social welfare is larger at the no Communication equilibrium;

18. For instance, choosing α = 8/10 and β = 6/10, the condition amounts to having U(0.6) ≤

2U(0.2).

19. BA is equal to the set B duplicated A times. Thus if the degree distribution ofA is (1, 1, 2) and the

degree distribution of B is (1, 3) then the degree distribution of BA is (1, 1, 1, 3, 3, 3), while the degree

distribution ofAB is (1, 1, 1, 1, 2, 2). Hence B degree-dominatesA.

20. i.e. λ ∈
[

1
I+|RI |

, 1
I+maxi∈I |Ri|

]
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The average degree is not the right statistics to look at. Suppose that the degree

distribution of RI is (4, 1), while the degree distribution of I is (2, 2). Then, if

U(x) = x for x ∈ [0, 1 − 2λ] and U(x) = 1 − 2λ for x ≥ 1 − 2λ we have

W (∅) = 2(1 − 2λ) + 4λ = 2 while W (RI) = 2 − λ. Hence although the average

degree is strictly higher in RI , the social welfare is higher at the no communication

equilibrium.

4. Robustness and limits

The main results in this section are driven by the monotonicity property established

in Lemma 1. We undertake some robustness analysis by discussing three variations

or extensions of the model in that perspective: we analyse a variation of the model

in which only informers are rewarded, then we consider the situation in which the

probability of winning is an increasing function of the number of informed agents in

the society, and finally we introduce endogenous effort to win the contest. A fourth

extension examines how endogenous investment to be an initial player affects the

interplay between sharing and communication.

4.1. Rewarding information transmission only

In the model, the winner of the contest gives transfers to others according to the

sharing matrix. This means that the transfer is made whatever the status of the receiver

of the transfer; and in particular, whether the receiver of the transfer has informed the

sender of the transfer or not is of no matter here. Suppose rather that transfers are only

given in exchange of information. The payoff of a player would then by given by the

sum of incoming shares originated from those she informs over the sum of informed

agents. E.g., under equi-sharing, λ might represent a price of information.

In this context, there is no impact of a newly informed agent say j by a third

party on a given player i’s best-response communication strategy by construction.

Indeed, those who are informed by other players don’t reward player i, meaning that
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her communication threshold is not affected by the informational status of agent j. We

deduce

RESULT 3. When players only reward those agents they inform, the monotonicity

property holds.

Therefore, by Result 3, all our previous results, including the existence of a

minimum equilibrium in terms of set of informed agents, and the fact that the

minimum equilibrium Pareto dominates all other equilibria, directly extend to that

context.

4.2. Probability to win the contest as an increasing function of the number of

informed agents

In the benchmark model, we assume that the probability to win the contest does not

depend on the number of informed agents. Suppose rather that the probability to win

the contest is an increasing function of the number of informed agents in the society

(in a setting where, still, every informed agent has the same probability to win).21 This

can arise, for instance, in teams, where collective searching can boost the probability

to win, or when the pressure of competition increases incentives.

Formally, given m informed agents, assume that the probability to have a winner

is a(m)< 1, where a(·) is a non-decreasing function. Then the probability that a given

informed agent wins is a(m)
m . a(m) = 1 for all m corresponds to our benchmark. The

shape of function a() matters. Indeed:

RESULT 4. When function a() is increasing and convex, the monotonicity property

holds.

Again, by Result 4, there exists a minimum equilibrium that Pareto dominates

all other equilibria. In opposite, the monotonicity property can fail under sufficiently

21. An alternative interpretation is that the value of the pie increases with the number of informed agents.
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concave function a(·), since there are now decreasing returns to investment as the

number of informed agents grows. To illustrate, consider the extreme case of an

increasing function until an upper bound. Take for instance N = {i, j, l, k}, σji =

σli = 1/4, σki = 1/7, and take function a() such that a(2)/a(3) = 3/4, a(4) = a(3).

First, player i prefers informing agent k when only j, i are informed if σki >(
3
2
a(2)
a(3) − 1

)
σji (own shares are null in this stylized example), which holds as

1/7 > 1/32. Second, player i prefers not informing agent k when i, j, l are informed

if σki < 1
3(σji + σli), which holds as 1/7 < 1/6. Hence, monotonicity property fails

in this example, in which there are significant decreasing returns to investment.

4.3. Endogenous contest

In the model, the probability to win the contest is exogenous, meaning that agents do

not exert effort to win the contest. Consider rather that the result of the contest depends

on individual costly efforts to win the contest. This brings a new mechanism shaping

incentives to communicate, on top of the sharing-the-pie mechanism. This new motive

is is due to the interaction between the efforts of the participants to the contest: agents

may want to communicate in the purpose of influencing - typically decreasing - the

efforts of competitors. This mechanism can lead to the failure of the monotonicity

property.

For instance, consider the case of a linear Tullock contest (more details are

presented in Appendix C). Figure 4.3 depicts a 4-player 3-link example in which the

monotonicity property fails: In that example, agent 2 informs agent 4 only because

this fosters a reduction of agent 1’s effort (indeed, note that agent 4 does not give a

share to agent 2!). Now if agent 3 is informed, the impact of agent 4 on that of agent

1 is reduced, and this is then no longer interesting for agent 2 to inform agent 4.
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4.4. Endogenous investment to be a player

The model takes the set of initially informed agents (the players) as exogenous.

Suppose rather that, prior to communication, agents can make a costly investment

to identify the opportunity (see Appendix D for more details).

We assume that investors communicate about the opportunity in accordance with

the minimum TNE. This approach is supported by the fact that the minimum TNE

Pareto-dominates other equilibrium (for players). Hence, when the set of investors

changes, the set of informed agents evolves in accordance with the minimum

equilibrium asssociated with the new set of investors. We focus on un-directed equi-

sharing networks for tractability: in this case we indeed have a full characterization of

the minimum equilibrium, which is either the no communication configuration, or the

full communication configuration (see Proposition 4). Importantly, the communication

threshold above which communication emerges at the minimum equilibrium is

endogenous to the investment decisions; It depends on both the structure of the sharing

network and the allocation of investors.

This game has interesting features. In particular, a Nash equilibrium of the

investment game can fail to exist for intermediate values of shares. Furthermore,



Belhaj et al. Do people share opportunities? 21

introducing endogenous investment can be detrimental to communication, but this

depends on the investment cost.

Under small investment cost, endogenous investment is not detrimental to

communication. At first glance we might believe that, at equilibrium, some agents

could end up being uninformed. Indeed, an agent linked to the neighbor of an investor

receives an excpected share if this neighbor is informed by the investor, and thus might

possibly be better-off with uninformed status. However the next theorem forbids that

possibility, showing that information about the opportunity always fully disseminates

in the society:

THEOREM 2. When the investment cost is sufficiently low, any Nash equilibrium of

the investment game is a dominating set, meaning that all agents are informed in the

society. Moreover: if λ ≤ 1
n , there is a unique Nash equilibrium in which all agents in

the society invest; if λ > 1
n , every Nash equilibrium induces communication.

(see Appendix D for more details) Theorem 2 says that, at any equilibrium, any

non-investor is necessarily linked to an investor. Whether λ is larger or smaller than 1
n

determines if communication emerges at equilibrium.

Under large investment cost however, endogenous investment can be detrimental

to communication. This tension between incentives to invest and to communicate

can be analyzed with a comparative statics on shares. Indeed, in contrast to the

benchmark model, it can be that an unambiguous (bilaterally symmetric) increase of

sharing reduces the number of informed agents at equilibrium. There are two possibles

channels, one related to free riding, and the other related to the communication

generated by investment decisions, that we briefly illustrate by the means of simple

examples:

Investing increases free riding. In the example depicted in figure 4.4, adding a

sharing link reduces the number of informed agents at equilibrium. The reason is

that link addition increases the incentives to free ride on the other investment. The

consequence can be a decrease of the number of informed agents at equilibrium.
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FIGURE 3. Under endogenous investment, free riding can lead societies with more sharing to
communicate less: Both Left and Right configurations represent an equilibrium with minimum
number of informed agents for λ ∈ (14 ,

1
3 ) and c ∈ (15 −

λ
4 ,

1
5 ). The Right network represents a

society with more sharing, but the minimal number of informed agents among all equilibria (4) is
smaller than for the Left network (5).

Note that, in both configurations there are multiple equilibria, and the two equilibria

depicted here minimize the number of informed agents over all equilibria in each

network. In that respect, more sharing induces less information diffusion.

The communication induced by investment deters incentives. In the example

presented in Figure 4.4, there is no communication in the Left configuration with

a low value of the share; In the Right configuration with increased share, agent i’s

investment generates communication, and this deters investment. Given that the

investment cost is substantial, investing is less attractive, which reduces the set of

investors and ultimately the number of informed agents at equilibrium.

5. Conclusion

In this paper, we studied incentives to inform others about the existence a rival

opportunity, when the value generated by the opportunity is shared through an

exogenous, possibly heterogeneous, sharing rule. In this environment, incentives to



Belhaj et al. Do people share opportunities? 23

FIGURE 4. Under endogenous investment, the threat of increased communication can lead societies
with more sharing to communicate less for c ∈ (14 ,

1−λ
3 ), when λ < 1

4 in the Left configuration and
λ ∈ (13 ,

1
2 ) in the right configuration.

communicate increase with the amount of profitable communication on the network,

which generates Pareto-ranked equilibria over the subgroup of initially informed

agents. One salient message is that more sharing does not necessarily leads to

more communication. Yet, under bilaterally symmetric shares, a society with more

sharing communicates more. This conclusion might not hold when agents can make

investment into information prior to communication for large investment cost.

Even if this model is extremely stylized, it would be interesting to understand

better the policy implications of of this model, especially in contexts where public

policy aims at maximizing communication into the society. Furthermore, it would

be challenging to explore the formation of sharing networks in presence of strategic

communication about economic opportunities.
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Appendix A: Proofs

Proof of Result 1. Let si ∈ BRi(S−i). If j ∈ si \ S−i and σji < πi(si,S−i) then

πi(si \ {j},S−i) > πi(si,S−i), a contradiction. Now, if j /∈ S and σji > πi(si,S−i)

then πi(si ∪ {j},S−i) > πi(si,S−i), also a contradiction.

Suppose now that both inequalities hold for si. It is straightforward to check that

it is a best response. �

Proof of Result 2. Uniqueness directly follows from the fact that TBRi(S−i) is the

intersection of all elements of Bri(S−i).
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We now prove the second statement. Note that there cannot be 1≤ l < l′ ≤ L such

that l′ ∈ TBRi(S−i) while l /∈ TBRi(S−i), because deviating to informing l instead

of l′ would yield an equal or higher payoff, contradicting the fact that TBRi(S−i) is

the tight best response. Thus there exists l∗ ≥ 0 such that TBRi(S−i) = {j1, ...jl∗}.22

Let now

f(l) := Mean
{

(σki)k∈I∪S−i , σj1i, ..., σjli
}

for l = 0, ..., L. Note that

f(l) ≥ f(l+ 1)⇔ f(l) ≥ σjl+1i ⇒ f(l+ 1) ≥ σjl+2i ⇔ f(l+ 1) ≥ f(l+ 2).

As a consequence the map f(·) is quasi-concave in the sense that

f(l) ≥ f(l+ 1)⇒ f(l+ 1) ≥ f(l+ 2).

Hence l∗ is the only integer in {0, ..., L} such that f(l∗ − 1) < f(l∗), and f(l∗) ≥

f(l∗ + 1)23. This proves the second statement. �

Proof of Proposition 1. Write J \ S′−i = {j1, ..., jL}, where σj1i ≥ σj2i ≥ ...σjLi.

Then TBRi(S−i) \S′−i = {j1, ..., jl} for some l ≤ L. By definition of jl belonging to

the tight best response to S−i we must have that σjli is strictly greater thanMean(A),

where

A := {σji : j ∈ S−i ∪ I} ∪ {σj1i, ...σjli} ∪ {σji : j ∈ S′−i, σji > σjli}

We want to prove that jl belongs to TBRi(S′−i). Let A′ := {σji : j ∈ S′−i ∪ I} ∪

{σj1i, ...σjli}. Then

A′ = A ∪ {σji : j ∈ S′−i, σji ≤ σjli}

22. Note that fact that the ordering is not uniquely defined does not contradict that the tight best response

is unique.

23. With the convention that f(−1) < f(0) and f(L+ 1) ≤ f(L)
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Hence, since σjl,i > Mean(A), we necessarily also have that σjl,i > Mean(A′),

because every element in A′ \ A is smaller or equal than σjli. Thus jl ∈

TBRi(S′−i). �

A profile S is under-informed if si ⊆ TBRi(S−i) for any i ∈ I. We call Su the set of

under-informed profiles. Furthermore, for any i ∈ I, let Bi be given by

Bi : (si,S−i) 7→ (TBRi(S−i),S−i), and Bi(si,S−i) = TBRi(S−i) ∪ S−i.

DEFINITION A.1. The sequential best-response map is constructed as follows. Let

S = (si)i∈I be an action profile. Then B : S → S is defined as24

B(S) := BI ◦BI−1 ◦ ... ◦B1(S)

We write B(S) = ∪i(B(S))i.

We first prove the following claim:

LEMMA A.A.1. If S and S′ are such that S ⊆ S′ and S′ is under-informed then, for

any player i, we have Bi(S) ⊆ Bi(S
′). More importantly, B(S′) is under-informed

and B(S) ⊆ B(S′).

Proof. By assumption, S′ is such that s′i ⊆ TBRi(S′−i). Hence S−i ⊆ S′ ⊆

Bi(S
′) = TBRi(S′−i)∪ S′−i. Consequently we only need to prove that TBRi(S−i) ⊆

TBRi(S′−i) ∪ S′−i. Without loss of generality, we can write J \ S−i = {j1, ..., jP } ∪

(S′ \ S−i) where {j1, ..., jP } = J \ S′ and σj1i ≥ ... ≥ σjP i.

The set TBRi(S−i) can then be written B ∪ {j1, ..., jp} (where B ⊆ S′ \ S−i),

while TBRi(S′−i) = s′i ∪ {j1, ..., jp′}. We need to prove that jp ∈ TBRi(S′−i). Since

24. Note that map B depends on the order of players. However, as we will see the important objects do

not depend on the order chosen. Note also that Bi(S) and (B(S))i are different objects; the map B is

not monotonic in the classical sense, as there are simple examples where Si ⊆ S′i for all i does not imply

that (B(S))i ⊆ (B(S′))i.
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jp ∈ TBRi(S−i), we have

σjpi > Mean {σji : j ∈ I ∪ S−i ∪B ∪ {j1, ..., jp−1}}

Thus we have

σjpi > Mean
(
σji : j ∈ I ∪ S−i ∪ (S′ \ S−i) ∪ {j1, ..., jp−1}

)
,

because B consists of the elements of the elements of S′ \ S−i who give the largest

share to i. This proves that jp ∈ TBRi(S′−i), and therefore that Bi(S) ⊆ Bi(S′).

Let us now prove that B(S) ⊆ B(S′). By a recursive argument, it is enough to

show that Bi(S
′) is under-informed, to be able to repeatedly apply the first point

of the lemma. Let j 6= i. We must prove that (Bi(S
′))j ⊆ TBRj((Bi(S

′))−j).

Since (Bi(S
′))j = s′j , it amounts to proving that s′j ⊆ TBRj((Bi(S′))−j). Note that

s′j ∩ (Bi(S
′))−j = ∅. Hence

s′j ⊆ TBRj(S′−j) \ (Bi(S
′))−j ⊆ TBRj((Bi(S

′))−j),

because S′−j ⊆ (Bi(S
′))−j , and applying Lemma 1.

We now turn to the proof of Theorem 1, by first proving some useful lemmas.

LEMMA A.A.2. Let S ∈ Su. Then si ⊆ (B(S))i for any i ∈ I.

Proof. We have

(B(S))i = TBRi((B(S))1, ..., (B(S))i−1, si+1, ..., sI), for i = 1, ..., I.

We show the proposition by induction on i. By definition of S ∈ Su we have

s1 ⊆ TBR1(S−1) = (B(S))1. Assume that sj ⊆ (B(S))j for j = 1, ..., i− 1. Then

S−i ⊆ ((B(S))1, ..., (B(S))i−1, si+1, ..., sI)
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and si ∩ (B(S))1 ∪ ... ∪ (B(S))i−1 ∪ si+1 ∪ ... ∪ sI) by construction. Hence

si ⊂ Bri(S−i) \ ((B(S))1, ...,B(S))i−1, si+1, ..., sI)

⊂ Bri(((B(S))1, ..., (B(S))i−1, si+1, ..., sI))

= (B(S))i

by Lemma 1. �

LEMMA A.A.3. If si ⊆ (B(S))i ∀i then Bk(S) is non-decreasing. In particular if

S is under-informed then Bk(S) is non-decreasing.

Proof. Suppose that si ⊆ (B(S))i for any i ∈ I. We only need to prove that

(B(S))i ◦ (B ◦B(S))i and the result follows by induction. We can write the terms

of B(S) recursively:

(B(S))i = TBRi((B(S))1, ..., (B(S))i−1, si+1, ..., sI), for i = 1, ..., I.

Also

(B2(S))i = TBRi
(
(B2(S))1, ..., (B

2(S))i−1, (B(S))i+1, ...(B(S))I
)

By assumption we have S−1 ⊆ (B(S))−1. Moreover TBR1(S−1)∩B(S)−1 = ∅. As

a consequence

TBR1(S−1) ⊆ TBR1((B(S))−1).

Suppose we proved that (B(S))j ⊆ (B2(S))j for j = 1, ..., i (i < n). We now

prove that (B(S))i+1 ⊆ (B2(S))i+1, and it will conclude the proof. We have

((B(S))1, ..., (B(S))i, si+2, ..., sI) ⊆ ((B2(S))1, ..., (B
2(S))i, (B(S))i+2, ..., (B(S))I)

and TBRi+1 (((B(S))1, ..., (B(S))i, si+2, ..., sI)) does not intersect the set

B2(S))1 ∪ ... ∪B2(S))i ∪ (B(S))i+2 ∪ ... ∪ (B(S))I . Consequently it is contained
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in

Bri+1

(
(B2(S))1, ..., (B

2(S))i, (B(S))i+2, ..., (B(S))I
)
.

In other terms (B(S))i+1 ⊆ (B2(S))i+1, and the proof is complete. When S ∈ Su
this follows from Lemma A.A.2. �

Proof of Theorem 1. The sequence (Bk(∅))k is non-decreasing and bounded above

in a finite set. Thus there exist S∗ and an integerK such that BK(∅) = S∗. Let S∗ be a

tight Nash equilibrium. We need to show that S∗ ⊆ S∗ and the proof will be complete.

Both ∅ and S∗ are under-informed. Thus Bk(∅) ⊆ Bk(S∗) = S∗ for any k by Lemma

A.A.1. This concludes the proof. �

Proof of Proposition 2. We show that if S∗ ∈ TNE and S∗ ⊆ S then πi(S∗)≥ πi(S).

Therefore, any TNE Pareto-dominates any TNE with a larger set of informed agents.

Let D = S \ S∗. We have

πi(S) =
m(S∗)

m(S)
πi(S

∗) +
m(D)

m(S)

∑
d∈D

σd,i.

However σd,i ≤ πi(S∗), ∀d ∈D because S∗ is tight. Hence π(S) ≤ π(S∗). �

Proof of Proposition 3. We first show that, for any S−i, we have TBR′i(S−i) ⊆

TBRi(S−i). Let π′i denote the payoff function of player i in the game with sharing

matrix Σ′. Since Σ and Σ′ are symmetric, we have

πi(si,S−i) =
1

m(S)

1−
∑

j /∈M(S)

σji

 π′i(si,S−i) =
1

m(S)

1−
∑

j /∈M(S)

σ′ji

 .

Note that the characterization of TBRs presented in Result 2 implies that, if

j ∈ TBRi(S−i), then

σji > πi(TBRi(S−i),S−i), (A.1)
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meaning that the value of the shares of every informed neighbor strictly exceeds the

agent’s current payoff. Now, by (A.1), It is sufficient to show that

π′i(TBR′i(S−i),S−i) ≥ πi(TBRi(S−i),S−i).

LetM :=M(TBRi(S−i),S−i) and m := |M|. Then

π′i(TBR′i(S−i),S−i) ≥ π′i(TBRi(S−i),S−i)

=
1

m

1−
∑
j /∈M

σ′ji



≥ 1

m

1−
∑
j /∈M

σji


= πi (TBRi(S−i),S−i)

which concludes the proof of the first point. We now prove the last point. First note

that, if S′−i ⊆ S−i then

TBR′i(S
′
−i) ∪ S′−i ⊆ TBR′i(S−i) ∪ S−i ⊆ TBRi(S−i) ∪ S−i.

Consequently, for any k ∈ N∗, we have that (B′)k(∅) ⊆ Bk(∅), which proves that

S(Σ′) ⊆ S(Σ).

�

Proof of Proposition 4. Suppose S∗ is a nonempty TNE. Then there exists i ∈ I and

j ∈ RI such that j ∈ s∗i . By Result 2,Ri ⊆ S∗ because σji = λ for any j ∈ Ri. Also

λ = λji > π∗i = 1
m(S∗) ≥ π

∗
j for any j ∈ I (see identity (1)). Let j′ ∈ J and i′ ∈ I be

such that j′ ∈ Ri′ . We necessarily have σj′i′ = λ > 1
m(S∗) ≥ πi′(S

∗), which implies

that j′ must belong to M(S∗). Finally S∗ = RI and S∗ is a full communication

profile.

Note that πi(∅) = 1−λ|Ri|
I . Thus point a) follows from the fact that the empty

profile is a tight Nash equilibrium iif λ ≤ mini∈I πi(∅) = 1−λmaxi∈I |Ri|
I , which is
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equivalent to having λ ≤ 1
I+maxi∈I |Ri| . At last, point b) simply follows from the fact

that, at any full communication profile, the payoff of any player i is equal to 1
I+RI .

Thus any full communication profile is a TNE if and only if λ > 1/(I +RI).

�

Proof of Proposition 5. Pick any concave function on [0, 1], such that U(0) = 0, and

suppose thatRI degree-dominates I. Then

I
∑
j∈RI

(U(1− λ|Nj |) + |Nj |U(λ)) ≥ |RI |
∑
i∈I

(U(1− λ|Ni|) + |Ni|U(λ)) ,

because U(1− d′λ) + d′U(λ) ≥ U(1− dλ) + dU(λ) for d′ ≥ d. Hence

1

|RI |
∑
j∈RI

(U(1− λ|Nj |) + |Nj |U(λ)) ≥ 1

I

∑
i∈I

(U(1− λ|Ni|) + |Ni|U(λ)) ,

which implies that W (∅) ≤W (RI). The second point is proved similarly.

�

Proof of Result 4. Consider a player i finding profitable to inform agent k but not

agent l is not informed. We want to be sure that this still holds once agent l gets

informed by a third party. Let us denote:
ψ(m) = m

m−1
a(m−1)
a(m)

ϕi = (ψ(m)− 1)
∑
σji

ϕ′i = (ψ(m+ 1)− 1)(
∑
σji + σli)

The conditions write  max(ϕi, ϕ
′
i) < σki

σli ≤ ϕ′i

The former condition says that player i wants to inform agent k whether agent l

is informed or not, the latter says that i does not want to inform l once he informs

k. Then, a sufficient condition for monotonicity to hold is that ϕ′i ≤ ϕi (i.e. the
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communication threshold decreases once l gets informed). Few calculus shows that

this condition writes

(
ψ(m+ 1)− 1

)
σli ≤

(
ψ(m)− ψ(m+ 1)

)∑
σji

Now, since σli ≤
(
ψ(m+ 1)− 1

)∑
σji, a sufficient condition is therefore given by

(
ψ(m+ 1)− 1

)2

≤ ψ(m)− ψ(m+ 1)

This latter inequality is equivalently written(
m2 − 1

m2

)(
a(m)

a(m+ 1)

)2

≤ ma(m− 1)− (m− 1)a(m)

(m+ 1)a(m)−ma(m+ 1)

The LHS is clearly less than unity. Now, the RHS is larger than unity if and only if

function a() is convex: indeed, this amounts to have ma(m− 1)− (m− 1)a(m) ≥

(m+ 1)a(m)−ma(m+ 1), i.e. a(m+ 1)− a(m) ≥ a(m)− a(m− 1).

�

Appendix B: Subgame perfect equilibrium and minimum TNE

Consider the extensive form game Γ, whose set of players is I and whose associated

tree T is defined by the set of nodes {(t, i,S)}t≤T,i∈I,S⊆J - where T = J + 1 - with

the following structure:

• the root is (1, 1, ∅)

• for t ≤ T − 1, S ⊆ J , i < I , the set of successors of node (t, i,S) is

{(t, i+ 1,S′) : S ⊆ S′ }

• for t ≤ T − 1 and S ⊆ J , the set of successors of node (t, I,S)

is{(t+ 1, 1,S′) : S ⊆ S′ ⊆ N \ J };

• (T, 1,S) is a terminal node with payoff (πi(s))i∈N .25

25. In order to avoid unnecessary cumbersomeness in the definition of the extensive form game, we also

implicitly assume that we reach a terminal node with this payoff if all I players decide to leave the set of
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PROPOSITION B.B.1. The sub-game perfect equilibriums 26 of the extensive form

game Γ are the TNE with the minimum set of informed agents.

Proof. Recall that S denotes the set of informed agents associated with the minimum

equilibrium. The statement of the proposition can be rephrased as follows: an action

profile is a sub-game perfect equilibrium if and only if the associated set of informed

agents is S.

Since any profile associated to S Pareto-dominates any other Nash equilibrium of the

communication game, it is immediate to conclude that any profile associated to S

is subgame-perfect, since we reach a terminal node only after all players decide not

changing the set of informed agent.

Consider an action profile such that S is not contained in S, and let (t̂, î, ŝ) be the first

node in the path with the property that Ŝ 6⊆ S. In the sub-game associated with this

initial node, the induced action profile associated with S can not correspond to a Nash

equilibrium since any Nash equilibrium of the normal-form game is Pareto dominated

by the minimum TNE. �

Appendix C: Tullock contest

In the paper, the contest was modelled by assuming that the probability to win the

contest was exogenous and uniformly distributed across agents.

Consider rather that informed agents can invest an amount xi ∈ [0,+∞) to win

the contest. We consider a linear Tullock contest for simplicity. That is, for a given

profile of effort x = (xi)i∈M, and denoting x = 1Tmx (where here 1m is the profile

informed agents as it is. In order to write this formally, we would need to characterize the nodes of the

tree as the whole sequence of moves which led to the current state, instead of only labeling the nodes as

the current state. Hence our choice of T makes sure that, after T rounds, either everyone is informed, or

nobody decided to inform any additional agent in the last round.

26. A sub-game perfect is such that, in any sub-game, the induced profile is a TNE of the reduced game.
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FIGURE B.1. extensive-form game associated with Example 1: the sub-game perfect equilibrium
corresponds to the “empty path", with payoff (1/2, 1/2).

of ones if dimension m), each informed agent wins the contest with probability xi

x

if x > 0, whereas x = 0 entails a uniform probability to win 1
m . Assume also that

producing effort xi generates a linear cost cxi, with c > 0.

Then, agent i ∈M gets the expected payoff:

πi(x) =
∑
j∈M

σji
xj
x
− cxi

The set of first order conditions (for an interior equilibrium) gives

cx2 =
∑
j∈M

(σii − σji)xj ∀i ∈M (C.1)

The system of FOCs generates a unique interior equilibrium which satisfies:

Γx = cx21m

where Γ = (γij) is a the matrix with null diagonal entries such that γij = σii − σji
for all i, j. Hence, whenever Γ is invertible, the equilibrium writes

x = cx2Γ−11m
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Summing all entries of vector x, we get

x =
1

c 1TmΓ−11m
(C.2)

We deduce the characterization of the equilibrium, denoted x∗(M):

x∗(M) =
1

c (1TmΓ−11m)2
Γ−11m (C.3)

We can distinguish which relationships are strategic substitutes or strategic

complements at equilibrium. Precisely:

RESULT C.1. Consider a sharing matrix Σ and a set of informed agentsM. At any

interior equilibrium effort profile x, there is strategic complementarity from j’s effort

to i’s effort if and only if

σii − σji >
2

1T
mΓ
−1

1m

.

Proof of Result C.1. For all i ∈M, cx2 =
∑

k∈M\{i}
γikxk. That is,

xi =

√ ∑
k∈M\{i}

γik
c
xk −

∑
k∈M\{i}

xk

Hence,

∂xi
∂xj

=
γij
c

2
√∑

k∈M\{i}
γik
c xk

− 1

That is, noting that
∑
k∈M\{i}

γik
c xk = cx2,

∂xi

∂xj
> 0 iff γij > 2cx

Plugging (C.2), we get the result. �

We then observe that, under low enough sharing, the nature of strategic interaction

is not ambiguous:
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RESULT C.2. Consider a sharing matrix Σ with off-diagonal entries sufficiently

close to 0. Then, efforts are strategic substitutes.

Proof of Result C.2. Suppose that Σ is sufficiently close to the identity matrix. Thus,

for a profile with q interior efforts, the q-square matrix Γ is close to the matrix with

all off-diagonal entries equal to 1 and with null diagonal; the sum of entries of its

inverse matrix is q/(q − 1) (as Γ−1 = 1/(q − 1).(Jq − 2.Iq), where Jq is the q-

square matrix with all entries equal to 1 and Iq is the q-square identity matrix). Thus,

when γij = 1 − ε for ε > 0 around 0, we get strategic complementarities when

1− ε > 2(q−1)
q ; for ε = 0, this means 2 > q, which holds. �

We give condition for profitable communication for equi-sharing undirected
matrices. Let x,x′ denote the respective profiles of effort inM andM∪{j}:

(1− λ|Ni|)x′i + λ
∑
k∈M

x′k

x′ + x′j
= πi(M∪{j},x′) > πi(M,x) =

(1− λ|Ni|)xi + λ
∑
k∈M

xk

x

if and only if

λ >
A

x︸︷︷︸
=πi(M,x)

+
x′−jA− xA′

xx′j

where A = (1− λ|Ni|)xi + λ
∑
k∈M

xk and A′ = (1− λ|Ni|)x′i + λ
∑
k∈M

x′k

Note that when x′−j = x, the above condition boils down to that of the benchmark

model whatever the effort choice of agent j:

πi(M∪{j},x, x′j) > πi(M,x)⇔ λ > πi(M,x)

Appendix D: The investment game

In this Appendix, we supplement the communication game with a stage in which, prior

to communication, agents can invest in the ability to identify opportunities. Our aim is

to understand how the structure of the sharing network affects investment decisions,

given the interplay between investment and communication. We focus on un-directed

equi-sharing networks for tractability.
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Our main findings are as follows. Under low investment costs, at every equilibrium

of the investment game, the set of investors is a dominating set, meaning that the

whole society is informed after the communication stage - This is not straightforward,

because the neighbor of an agent who is informed through communication gets

a positive payoff. At an equilibrium with communication, an investor is called

communication-critical if removing him from the set of investors cuts communication,

and the analysis stresses that communication-critical investors are key in shaping

incentives to invest. By contrast, under large investment cost, the whole society does

not necessarily get informed, and on a given network, there can be different equilibria

with communication, each with distinct number of informed agents. All proofs are

deferred to the end of this appendix.

D.1. The investment game in equi-sharing networks

We consider a set N := {1, ..., n} of agents, facing the binary choice of investing or

not in a technology allowing them to know the existence of an opportunity. Agent i

chooses xi ∈ {0, 1}, xi = 1 meaning that she invests, in which case she pays a cost

c > 0. Given an action profile x, let

I(x) := {i ∈ N : xi = 1}; J (x) := {i ∈ N : xi = 0}

be respectively the set of investors and non-investors. Let I(x) := |I(x)|. We call

S(x) the set minimum TNE in the communication game associated with the set of

investors I(x).

As seen in the preceding section, given a set of investors, there can be

multiple TNEs in communication. We assume that investors communicate about the

opportunity in accordance with the minimum TNE.27 This approach is supported by

the fact that the minimum TNE Pareto-dominates other equilibrium, and corresponds

27. In other terms, we do not consider the game where strategies consist in choosing both investment and

communication. Communication is induced by the set of investors resulting in investing strategy profiles.
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to the sub-game perfect equilibrium of the associated extensive-form game (see the

Appendix, Section B). Note that, if the set of investor changes, then the set of informed

agents evolves in accordance with the minimum equilibrium.

We focus on un-directed equi-sharing networks for tractability. Indeed, as seen

before, in this case only two configurations can be equilibria, the no communication

and the full communication configuration, and the value of the share above which

communication emerges at the minimum equilibrium is given by28

µ(x) := µ (I(x)) =
1

I(x) + maxi∈I(x) |Ri(x)|

By Proposition 4 there is either no communication or full communication during the

communication stage:

1) when λ ≤ µ(x), thenM(x) = I(x) and

Ui(xi,x−i) =

 −c+ 1−λ|Ri(x)|
I(x) if i ∈ I(x);

λ(|Ni|−|Ri(x)|)
I(x) if i /∈ I(x).

(D.1)

2) when λ > µ(x), thenM(x) = I(x) ∪R(x)29, and

Ui(xi,x−i) =

 −cxi + 1−λ|Ri(x)|
m(x) if i ∈M(x);

λ(|Ni|−|Ri(x)|)
m(x) if i /∈M(x).

(D.2)

Importantly, the communication threshold µ(x) is endogenous to the investment

decisions; It depends on both the structure of the sharing network and the allocation

of investors.

For the sake of clarity, we first assume that the investment cost is small, in the

sense that any positive payoff difference between two strategy profiles is necessarily

28. Analogously to the definitions given above, for i ∈ I(x) we defineRi(x) := {j ∈ J (x) : σji =

λ} andR(x) := ∪i∈I(x)Ri(x).

29. Note that we have the implication λ > µ(x)⇒ λ > 1
m(x)
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strictly greater than c.30 This assumption guarantees that no agent has a zero payoff at

equilibrium, because investing entails a positive payoff. We study large cost thereafter.

D.2. Cover-criticality and communication-criticality

Some definitions will prove useful in the analysis. A dominating set is a set of agents

such that every non member of the set is linked to at least one member of the set. A

dominating set is minimal when by excluding any member of the dominating set, the

resulting set is no longer a dominating set. The smallest cardinal of all dominating sets

is called the domination number of the graph. An agent i ∈ S said cover-critical with

respect to dominating set S whenever the set S \ {i} is no longer a dominating set.

An independent set is a set in which there is no link between any pair of members, a

maximal independent set (called MIS thereafter) is an independent dominating set (it

is thus a particular case of minimal dominating set).

DEFINITION D.1. An investor i ∈ I is communication-critical with respect to the

set of investors I if

µ(I) < λ ≤ µ (I \ {i}) (D.3)

In words, the set of investors I induces communication, while I \ {i} doesn’t.

Communication-criticality depends on the value of λ. Indeed, for communication to

be triggered by the investment decision of an investor, it must be that λ crosses the

threshold with the new set of investors.31 To fix ideas on the role of communication-

critical and cover-critical agents, we start with a simple example:

EXAMPLE D.1 (A kite). In the sharing network depicted by Figure D.1, I(x) =

30. This definition makes sense, since the game is finite.

31. Identifying communication-critical investors is thus a difficult task. Note that, for a given network

structure and a given investor set, those investors whose investment decision does not affect the

communication threshold cannot be communication-critical.
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FIGURE D.1. Black nodes represent investors, who form a dominating set.

{1, 2, 3, 4}, and only agents 1 and 4 are cover-critical. We have µ(x) = 1/6.

Suppose first that λ > 1/5. then none of the agents is communication-critical, because

adding a non-investor can only increase µ from 1/6 to 1/5.

Suppose now that λ ∈]1/5, 1/6[. Then there is communication and agents 1, 2 and 4

are communication-critical, while agent 3 is not (note that, if agent 3 stops investing,

the quantity µ does not change).

Finally, if λ < 1/6, then this profile does not induce communication. Hence no agent

can be communication-critical. �

D.3. Equilibrium characterization of the investment game

At first glance we might believe that, at equilibrium, some agents could end up being

uninformed. Indeed, an agent linked to neighbors of investors receives shares, and

thus might possibly be better-off free riding. However the next theorem forbids that

possibility, showing that information about the opportunity always fully disseminates

in the society:
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THEOREM D.D.1. If x∗ is a Nash equilibrium then I(x∗) is a dominating set.

Moreover, the following statements hold:

(i) If λ ≤ 1
n there is a unique Nash equilibrium x∗, with I(x∗) = N .

(ii) If λ > 1
n

32, every Nash equilibrium x∗ induces communication: λ > µ(x∗), and

every investor who is not communication-critical is cover-critical.

Theorem 2 says that, at any equilibrium, any non-investor is necessarily linked

to an investor. Whether λ is larger or smaller than 1
n determines if communication

emerges at equilibrium. An important property of the set of investors at equilibrium

is that any strictly larger set of investors induces communication (see Lemma D.D.3].

When shares are smaller than 1
n , what an agent gets in expectation from investing out-

weights the expected benefit from free riding. Hence everyone investing is necessarily

an equilibrium. On the other hand, any smaller set of investor violates the property. On

the other hand, when shares are larger than 1/n, point (ii) states that communication

occurs at equilibrium, if any. The logic behind this result is that, if there were a

Nash equilibrium without communication, the configuration would be such that any

new investor would trigger communication. Combined with the fact that λ is strictly

greater than 1/n, this brings a contradiction. Importantly, among agents who are not

communication-critical, cover-criticality is the right criterion to rank incentives, in the

sense that agents who prefer investing are precisely cover-critical agents. However,

cover-criticality is not informative about incentives to invest for communication-

critical agents.

Let us go back to Example D.1. First, if λ > 1/5, no agent is communication-

critical. Hence both agents 2 and 3 have an incentive to stop investing, while agents 1

and 4 are cover-critical and therefore do not want to stop investing. This is what we

have in mind when saying that, among agents who are not communication-critical,

32. If d = n− 1 (we then say that there exist central agents), we have λ = 1
n

, and condition (ii) never

holds. However, as soon as the maximal degree is strictly smaller than n − 1 (which we call networks

without central agents), λ can be larger than 1/n, and communication can emerge.
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cover-criticality is the right criterion to look at. We can check that I∗ = {1, 2, 4} is

a Nash equilibrium then. If λ ∈]1/6, 1/5[ the configuration is not a Nash equilibrium

because agent 3 is neither communication-critical nor cover-critical. Agents 1, 2 and

4 are all communication-critical, and establishing whether or not they are better off

investing can only be done by comparing their payoffs. We can easily check that

I∗ = {1, 2, 4} is a Nash equilibrium. If λ < 1/6 then there is no communication,

because µ(x) = 1/6. Then one can check that I∗ = {1, 2, 4, 5} is a Nash equilibrium.

As we just saw in the last case of previous example, a Nash equilibrium with

communication is not necessarily a minimal dominating set. However, the members

of an important subclass of minimal dominating set - the maximal independent sets -

are natural candidates to stability. As it turns out, they are systematically equilibria for

large enough values of the share λ, because every agent is then cover-critical.

PROPOSITION D.D.1. If I(x) is a maximal independent set with communication,

then x is a Nash equilibrium. Moreover, if there exists a minimum dominating set D

inducing communication then there exists a Nash equilibrium such that investors form

a maximal independent set.

EXAMPLE D.2. In the 13-agents network depicted in Figure D.2, the black nodes

constitute a minimum dominating set, with µ(x) = 1/7. Suppose that λ ∈]2/13, 1/6].

Then x is not a Nash equilibrium because, if agent i deviates, µ(x′) = 1/6 ≥ λ,

communication is shut, and thus she obtains λ/2 > 1/13. We can easily build a MIS

containing the black node on the right, with 7 active agents (µ is then equal to 1/11).

�

D.4. Existence

We consider here the interesting case λ > 1
n . If a cover-critical agent always prefer

investing, a communication-critical investor that is not cover-critical can be better off
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FIGURE D.2. Black nodes are investors

not investing. We will see how this particularity of the game can deter the existence of

a Nash equilibrium. Then we will give conditions for existence.

First of all, we observe that the existence of an equilibrium with communication

is guaranteed under low or high values of shares:

PROPOSITION D.D.2. Suppose that the network has no central agent. When λ is

sufficiently close to 1
n from above or when λ is sufficiently close to λ from below, there

exists a Nash equilibrium of the investment game.

When the share λ tends to 1
n from above, starting from a configuration such that

all agents are informed under communication, communication-critical agents don’t

find it profitable to free ride; too low shares deter such profitable deviations. And

when the share λ tends to 1
d+1

from below, there always exists a stable MIS with

communication; in fact, any MIS containing an agent of maximal degree is stable for

shares of value just below the upper bound, and the non-emptiness of such interval is

guaranteed by the absence of central agents.

However, existence is an issue for intermediate values of λ, as illustrated in the

next 14-agent example
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EXAMPLE D.3 (Non-existence of Nash equilibrium). Suppose that n = 14 and the

network is the union of two complete components C and C ′, with |C| = |C ′| = 7.

Then d = 6 and the interval of values of λ we are interested in is ]1/14, 1/7]. Given

a Nash equilibrium x∗, I(x∗) is necessarily the union of one agent in one of the

component and a subset of agents in the other. Indeed at any profile with at least two

investors in each component, investors are neither communication critical, nor cover

critical. Thus such a profile cannot be a Nash equilibrium.

Suppose without loss of generality that the isolated investor is in component C,

and there are p ≥ 0 investors in component C ′. We then have µ(x∗) = 1
7+p . There

is no communication under the deviation of one of the investors in C ′ if and only

if 1
7+p < λ ≤ 1

6+p . Moreover, the deviation is profitable whenever p−1
p λ > 1

14 , i.e.

λ > p
14(p−1) . Thus, this is possible whenever p

14(p−1) ∈
[

1
7+p ,

1
6+p

]
, which holds for

p ∈ {3, 4, 5}. Finally, there is no equilibrium for λ ∈
]

5
56 ,

1
11

]
∪
]

2
21 ,

1
10

]
∪
]

3
28 ,

1
9

]
.

Figure D.3 represents a best-response cycle33 (actually there are two cycles,

one of which being embedded in the other one). The key deviation is that

of the communication-critical investor34 who prefers free riding and interrupting

communication rather than investing and triggering communication (on the figure, this

is the deviation from the bottom-left configuration to the up-left configuration). This

deviation is profitable because, by interrupting communication, there is a sufficiently

large number of expected shares to free ride on. �

As illustrated by the above example, communication-critical investors play a key

role in non-existence. Next lemma shows that, if there is no Nash equilibrium, then

there must exist a best-response cycle along which communication is lost, meaning

that the cycle contains a communication-critical investor.

33. We say that (x0, ...,xT ) is a best-response path if, for t = 0, .., T − 1, there exists it ∈ N such

that xt+1 =
(
Brit(x

t),xt−i

)
. It is a best-response cycle if we also have x0 = xT .

34. This investor is not cover-critical; otherwise she would necessary prefer investing.
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FIGURE D.3. A best-response cycle for λ ∈
]

1
11 ,

1
10

]
; Investors are in black, agents in grey are

informed through communication, agents in white are not informed.

LEMMA D.D.1. Let x be such that µ(x) < λ and I(x) is a dominating set. If

x′ := (Bri(x−i),x−i) for some i ∈ N then either µ(x′)≥ λ or I(x′) is a dominating

set. As a consequence, if there is no Nash equilibrium then there exists a best response

cycle (x0, ...,xT ) along which communication is lost: µ(xt−1)< λ≤ µ(xt), for some

t ∈ {0, ..., T}.

Existence is not guaranteed under intermediate values of the share. We now use

Lemma D.D.1 to give conditions on the network structure guaranteeing the existence

of a Nash equilibrium, regardless of the value of λ. Let γ(G) be the domination

number of network G:

PROPOSITION D.D.3. If the domination number γ(G) ≥ 1
2

(
−1 +

√
1 + 4dn

)
35

then there exists a Nash equilibrium for any λ.

The crucial point of the proof is that, if there is non-existence, there must be

a cycle along which communication is lost. When this happens, there must be a

35. A simple sufficient condition being that γ(G) ≥
√
dn.
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profitable deviation for a communication-critical investor. This condition guarantees

that a communication-critical investor is never better off free riding.

Lower bounds on the domination number are particularly useful when having this

condition in mind.36 For instance, take a circle network with n an even number. Then

d = 2, and γ(G) =
[
n
3

]
; therefore there is an equilibrium if n ≥ 15.

D.5. Beyond small costs

We suppose now that the cost of investment c is large. Generally speaking, for any

value c > 0 there is an integer m̄(c) such that 1
m̄(c)+1 ≤ c < 1

m̄(c) . Let us abuse

the notation and denote m̄ for convenience. Investment cost is said to be large

whenever m̄ < n. Generally speaking, larger costs reduce non-existence concern

since less agents (not the whole society) get informed. However, it is interesting

to note that some key properties established under low investment cost do not hold

any more under large costs. We discuss the coexistence of equilibriums with and

without communication, and the coexistence of equilibriums with distinct numbers

of informed agents.

Coexistence of equilibriums with and without communication. Under low cost,

there is a sharp separation between low share and large share. Under low share

(λ ≤ 1
n ), there is a single equilibrium without communication, whereas all equilibria

entail communication for large shares (λ > 1
n ). This separation is no longer effective

under large costs, as depicted in Figure D.5. In this example, the no communication

equilibrium emerges because a communication-critical agent cannot invest without

crossing the upper bound on informed agents m̄; and the full communication

36. Several lower bounds on the domination number of connected graphs have been proved in the related

literature in mathematics (see DeLaViña and Pepper (2010) for instance). In particular, the domination

number is at least two thirds of the radius of the graph, three times the domination number is at least two

more than the number of cut-vertices in the graph, and the domination number is at least two more than

the number of cut-vertices in the graph, and the domination number of a tree is at least as large as the

minimum order of a maximal matching.
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equilibrium arises because the upper bound is already attained so that any additional

investment would lead to a negative payoff for investors.

Equilibriums with distinct numbers of informed agents. Under low investment

cost, the whole society gets informed in all equilibriums with communication,

meaning that all equilibriums with communication have the same number of informed

agents. This is no longer true under large costs, for at least two reasons. First, the

equilibrium number of investors can be strictly lower than m̄ in the case where any

new investment generates a number of informed agents larger than the upper bound.

This can generate multiple equilibriums with distinct numbers of informed agents, as

shown in Figure D.5. Second, there is another, perhaps more subtle, channel. Under

low investment cost, an agent who does not cut communication when switching to free

riding always prefers investing; this property leads to the fact that the whole society

gets informed in any equilibrium. This property no longer holds under large costs, as

presented in Figure D.5. In this example, agent i does not cut communication when

switching to free riding, and prefers not investing. Hence, there are various channels

by which large costs limit incentives to invest.
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D.6. Proofs of the results on the investment game

Given i ∈ N and a profile x, letNE
i (x) := {j ∈ J (x), Nj ∩ I(x) ⊆ {i}} be the set

of non-investor agents which are exclusively linked to i.37

37. Note that this set can be defined, whether i ∈ I(x) or not. If i ∈ I(x) then the inclusion is an

equality.
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LEMMA D.D.2. Suppose that x is a profile with communication and i ∈ I(x) is not

communication-critical. Then U(xi,x−i) < U(0,x−i) if and only if Ni ∩ I(x) 6= ∅

and NE
i (x) = ∅.

Proof of Lemma D.D.2. We have Ui(x) = −c + 1
m(x) . Suppose first that Ni ∩

I(x) = ∅. Then m(x) ≥ Ni + 1, which directly implies that (|Ni| + 1)(m(x) −

1− |NE
i (x)|) ≥ (|Ni| − |NE

i (x)|)m(x). Hence

Ui(0,x−i) =
(|Ni| − |NE

i (x)|)λ
m(x)− 1− |NE

i (x)|
<

(|Ni| − |NE
i (x)|)

(|Ni|+ 1)(m(x)− 1− |NE
i (x)|)

≤ 1

m(x)
,

Since c is small, this implies that Ui(0,x−i) < Ui(xi,x−i). Suppose now that

Ni ∩ I(x) 6= ∅ and NE
i (x) 6= ∅. Then

Ui(0,x−i) =
1− |NE

i (x)|λ
m(x)− |NE

i (x)|
.

Suppose that NE
i (x) 6= ∅. Then |NE

i (x)|(λm(x) − 1) > 0, because λ >

1
m(x) . Consequently m(x)(1 − |NE

i (x)|λ) < m(x) − |NE
i |(x), and Ui(0,x−i) <

Ui(xi,x−i). We proved that, if U(xi,x−i) < U(0,x−i) then Ni ∩ I(x) 6= ∅ and

NE
i (x) = ∅.

Suppose now thatNi ∩I(x) 6= ∅ andNE
i (x) = ∅, we then have Ui(0,x−i) = 1

m(x) >

Ui(xi,x−i). �

LEMMA D.D.3. Let x∗ be a Nash equilibrium. Then, for any Î which stricly

contains I(x∗), we have µ(Î) < λ,

Proof. Suppose by contradiction that there exists i /∈ I(x∗) such that µ(x) ≥ λ,

where x := (1,x∗−i). We have

Ui(x
∗) =

1

I(x∗)
|Ni ∩ I(x∗)|λ.
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while, using the fact that (1− |Ni|λ)I(x∗) > |Ni ∩ I(x∗)|λ,

Ui(x) =
1

I(x∗) + 1
(|Ni ∩ I(x∗)|λ+ 1− |Ni|λ)

>
|Ni ∩ I(x∗)|λ
I(x∗) + 1

(
1 +

1

I(x∗)

)
= Ui(x

∗).

Hence x∗ is not a Nash equilibrium �

Proof of Theorem 2. Suppose that x∗ is a Nash equilibrium and that I(x∗) is not a

dominating set. Then there exists i ∈ J (x∗) such thatNi ∩ I(x∗) = ∅. Consequently

we necessarily have λ > µ(x∗), because otherwise agent i would get a null payoff,

which cannot happen at equilibrium. Let x := (1,x∗−i). Then x is a profile with

communication and i ∈ I(x) is not communication-critical. Hence, by Lemma D.D.2,

we have that Ui(x) > Ui(0,x−i) = Ui(x
∗
i ,x
∗
−i), which is a contradiction. We now

prove the two statements:

(i) If λ ≤ 1/n then any profile x∗ such that I(x∗) 6= N is not a Nash equilibrium,

using Lemma D.D.3 with Î = N . On the other hand x∗ := (1, ...1) is a Nash

equilibrium since Ui(0,x∗−i) = 1
n−1λ|Ni| ≤

n−2
n−1λ≤

n−2
n(n−1) when there is no central

agent. If there is a central agent then λ < 1/n (by assumption) and the result still holds.

(ii) Let λ > 1/n, and suppose by contradiction that x∗ is a Nash equilibrium, such

that λ ≤ µ(x∗). For any j /∈ I(x∗), we necessarily have

|Nj ∩ I(x∗)|λ
I(x∗)

≥ 1

n
, i.e. |Nj ∩ I(x∗)| ≥ I(x∗)

λn
,

by Lemma D.D.3.

Since the number of links between agent j and I(x∗) is equal to |Nj ∩ I(x∗)|, the

total number of links between I(x∗) and J (x∗) is equal to
∑
j∈J (x∗) |Nj ∩ I(x∗)|,

and we have

max
i∈I(x∗)

|Ri(x∗)| ≥
1

I(x∗)

∑
j∈J (x∗)

|Nj ∩ I(x∗)| = n− I(x)

I(x∗)

I(x∗)

λn
=
n− I(x∗)

λn
.
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Now since λ ≤ µ(x∗), we have

1

λ
≥ I(x∗) + max

i∈I(x∗)
|Ri(x∗)| ≥ I(x∗) +

n− I(x∗)

λn
,

which implies that I(x∗)(λn− 1) ≤ 0, a contradiction.

The last statement of point (ii) directly follows from the fact that an investor who is

neither communication-critical nor cover-critical would save c by deviating. �

Proof of Proposition D.D.1. Suppose that I(x∗) is a maximal independent set with

λ > µ(x∗), and assume that agent i ∈ J (x∗) can profitably deviate:

Ui(1,x
∗
−i) > Ui(0,x

∗
−i).

Let x := (1,x−i). Since I(x∗) is a maximal independent set, we necessarily have

Ni ∩ I(x) 6= ∅ and NE
i (x) = ∅. Hence, by Lemma D.D.2 applied to profile x and

agent i, we have Ui(1,x−i) < Ui(0,x−i), a contradiction.

Suppose now that D is a minimum dominating set, with λ > µ(D). If D is

independent there is nothing to prove, because D itself supports a Nash equilibrium.

Now, if D is not independent, pick imax ∈ arg maxi∈D |Ri| and choose any

maximal independent set I containing imax. We then have |I| + maxi∈I |Ri| ≥

|D|+ maxi∈D |Ri|, and therefore µ(I) ≤ µ(D) < λ. �

Proof of Proposition D.D.2. Recall that d < n − 1 by assumption. Suppose that

λ ∈] 1
d+2

, 1
d+1

[. Choose x∗ such that I(x∗) is a maximal independent set including

an agent with maximal degree. We then have I(x∗) ≥ 2 and

I(x∗) + max
i∈I(x∗)

|Ri(x∗)| = I(x∗) + d ≥ d+ 2.

Consequently µ(x∗) < λ and x∗ is a Nash equilibrium, by Corollary D.D.1.

Let now imax be an agent with maximal degree. We will show that the profile x∗

with I(x∗) = N \ Nimax is a Nash equilibrium for λ ∈] 1
n ,

1
n−1 [. By construction,

µ(x∗) = 1
n . Hence x∗ is a communication profile. Given any i ∈ I(x∗), let x :=
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(0,x∗−i). Then µ(x) ≥ 1
n−1 > λ. Thus there is no communication at profile x. We

now show that no agent can profitably deviate. First, agent imax cannot profitably

deviate, because he would get a null payoff by doing so. Let now i ∈ I(x) \ {imax}.

Since imax ∈ I(x) \ Ni, we have |Ni ∩ I(x)| < I(x) ≤ n− 2. Hence, we have

Ui(x) =
|Ni ∩ I(x)|λ

I(x)
<
n− 3

n− 2

1

n− 1
<

1

n

Hence, c being small, we have Ui(x) < Ui(x
∗). �

Proof of Lemma D.D.1. Let us prove the first point, by assuming that µ(x′) < λ.

Without loss of generality we may suppose that x = (1,x−i) and x′ = (0,x−i), for

some i ∈ I(x). Since it is a best response for agent i to stop investing, it means, by

Lemma D.D.2 ((i) and (ii)), that agent i has an active neighbour and no exclusive

inactive neighbor in configuration x. Thus I(x′) is a dominating set. We now turn

to the second statement. If there is no Nash equilibrium then, starting from any

configuration x0 such that I(x0) is a dominating set, there exists a best-response cycle

(x0, ...,xT ). By the first statement, either communication is lost along this cycle, or

communication holds, and I(xt) is a dominating set for t = 0, ..., T − 1. Suppose by

contradiction that communication holds along the cycle. Let i be such that x0
i = 0 and

x1
i = 1. It implies that agent i cannot profitably deviate in configuration x1, meaning

that we are either in case (i) or (ii) of Lemma D.D.2: namely either Ni ∩ I(x1) = ∅

or Ni ∩ I(x1) 6= ∅ and NE
i (x1) = ∅. In the first case, agent Ni ∩ I(x0) = ∅ so that

I(x0) is not a dominating set, a contradiction. In the second case, Nj ∩ I(x0) = ∅,

for any j ∈ NE
i (x1), again a contradiction. The second point is proved. �

Proof of Proposition D.D.3. We prove that, if there is no Nash equilibrium then

γ(G) ≤ 1

2

(
−1 +

√
1 + 4dn

)
. (D.4)

If there is no Nash equilibrium then there exists a best-response cycle (x0, ...xT ),

along which communication is shut. More precisely, and without loss of generality,

we may assume that
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• x0 is such that I(x0) is a dominating set, with µ(x0) < λ,

• x1 = (0,x0
−i), for some agent i ∈ I(x0), and µ(x1) ≥ λ.

• Ui(x1) > Ui(x
0), namely

λ|Ni ∩ I(x0)|
I(x0)− 1

>
1

n

Combining all this, we get

1

I(x0) + maxi∈I(x0) |Ri(x0)| − 1
≥ λ > I(x0)− 1

|Ni ∩ I(x0)|n
≥ I(x0)− 1

dn

Since there is no Nash equilibrium, I(x0) cannot be a minimum dominating

set (by Proposition D.D.1). Hence I(x0) ≥ γ(G) + 1. As a result, since

maxi∈I(x0) |Ri(x0)| ≥ 1,

γ(G)(γ(G) + 1) ≤ dn,

which gives (D.4). �
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