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Abstract 13 

The discovery of giant viruses, with capsids as large as some bacteria, megabase-range 14 

genomes, and a wide variety of traits typically found only in cellular organisms, was one of the 15 

most spectacular breakthroughs in biology. Until recently, most of our knowledge about these 16 

giant viruses came from ~100 species-level isolates for which genome sequences were 17 

available. However, these isolates were primarily derived from laboratory-based co-cultivation 18 

with few cultured protists and algae and thus did not reflect the true diversity of giant viruses in 19 

the environment. While virus co-cultures enabled important detailed insights into giant virus 20 

biology, many questions regarding the origin, evolution and ecological importance of giant 21 

viruses remain unanswered. With recent advances in sequencing technologies and 22 

bioinformatics, our understanding of giant viruses has drastically expanded, as genome-23 

resolved metagenomics and environmental surveys of viral hallmark genes are beginning to 24 

shed light on the taxonomic breadth of this group of viruses, their biogeography and ecology, 25 

and their evolutionary trajectories. In this review, we summarize our current understanding of 26 

giant virus diversity and biology based on viral isolates, as laboratory cultivation has facilitated 27 

extensive insights into viral morphological features and infection strategies. We then expand on 28 

how more recent cultivation-independent approaches led to an unparalleled increase of the 29 

coding potential and diversity of the Nucleocytoviricota. We further elaborate on how 30 

metagenomics has revolutionized our perspective of giant viruses by revealing their distribution 31 

across our planet’s biomes where they impact the biology and ecology of a wide range of 32 

eukaryotic hosts and ultimately affect global nutrient cycles. 33 

 34 

Introduction 35 

Large and giant viruses are part of a group of double stranded DNA viruses, the 36 

Nucleocytoplasmic Large DNA Viruses (NCLDV)1,2, which constitutes the viral phylum 37 

Nucleocytoviricota3. Viruses of this phylum infect a wide range of eukaryotic hosts, from the 38 

tiniest known unicellular choanoflagellates to multicellular animals4. NCLDV typically replicate in 39 

so-called viral factories built in the host cytoplasm or use the host nucleus to replicate and 40 

sometimes assemble their progeny5,6. Hallmark features of these viruses are large genomes, 41 

greater than 100 kb and up to 2.5 Mb, and virions that can reach more than 2 microns in 42 

length7. The term giant virus was coined in the early 2000s, when the first virus with a genome 43 

in the megabase range was discovered; initial light microscopy observations led to the 44 
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assumption that its particles corresponded to a gram positive bacterial pathogen of amoebae8,9. 45 

More detailed ultrastructural analysis revealed the typical icosahedral shape of viruses and 46 

genome sequencing yielded a 1.2 Mb viral genome10. This virus was named “Mimivirus”, short 47 

for microbe mimicking virus, and represented an unexpected novelty in the viral world, not only 48 

due to its exceptional particle and genome sizes but also its coding potential that included 49 

several genes with possible roles in protein biosynthesis10.  Since this discovery of giant viruses 50 

their coding potential has been full of surprises and the presence of hallmark genes of cellular 51 

life led to the hypothesis that these viruses might represent an enigmatic fourth domain of life10–52 
12. Equally intriguing, much smaller viruses, so-called “virophages'', were found to infect some 53 

NCLDV that have exclusively cytoplasmic infectious cycles. Virophages parasitize and 54 

sometimes eradicate their viral hosts13. Also discovered was a third partner coined transpoviron, 55 

which corresponds to a 7 kb dsDNA episome, able to propagate using both the giant virus and 56 

the virophage particles as vehicles14,15. 57 

 58 

For well over a decade, giant viruses had chiefly been discovered through cultivation-based 59 

approaches until very recently when virology followed the footsteps of microbial genomics by 60 

applying cultivation-independent metagenomics to investigate the biology of these viruses at an 61 

unparalleled pace. In the following, we build on a wealth of experimental data that has revealed 62 

many insights into giant virus biology, in particular their virion structure and unique infection 63 

strategies. We expand this framework by integrating the latest sequence-based studies that 64 

expanded NCLDV diversity, biogeography, coding potential and putative host range. Further, 65 

there is now compelling evidence that the presence of a variety of cellular hallmark genes in 66 

giant virus genomes enable the virus to reprogram host metabolism, and that direct integration 67 

of giant virus genetic material into host genomes may impact the biology and evolution of the 68 

eukaryotic cell. 69 

 70 

Giant virus discovery through isolation  71 

The earliest discovered NCLDVs were the Poxviruses, the causative agents of smallpox, which 72 

were the first viral particles seen under a microscope more than 130 years ago16. The genome 73 

of Vaccinia virus was sequenced in the early 1990s17 and shortly thereafter additional genomes 74 

of Poxviruses were sequenced (Figure 1) with sizes ranging from 120 to 360 kb18. 75 

Subsequently, other viruses that infect animals, including Ascoviruses, Iridoviruses and 76 

Asfarviruses were found and their genomes sequenced19–21. Genomes of viruses in these 77 

groups were comparably small with up to 220 kb, and even smaller in the recently discovered 78 

shrimp-associated Mininucleoviridae with only 70-80 kb22. In addition to animal-infecting 79 

NCLDV, a wide range of NCLDV were detected in diverse eukaryotic algae, including 80 

chlorophytes, haptophytes, pelagophytes, brown algae and dinoflagellates in the early 2000s23. 81 

These algae-associated NCLDV were affiliated with the Phycodnaviruses23 and 82 

Mesomimivirinae24, and although most of their genomes are around 200-500 kb23,25, the 83 

genomes of Tetraselmis Virus and Prymnesium kappa virus RF01 are 668 kb26 and 1.4 Mb27, 84 

respectively.   85 

 86 

After the discovery of Mimivirus in 20039 other NCLDV with larger virions and genomes above 87 

500 kb have been found to infect heterotrophic protists28, mainly members of the Amoebozoa. 88 
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For more than a decade Acanthamoeba strains had chiefly been used as bait for the co-89 

cultivation of new viruses, leading to the frequent isolation of closely related giant viruses able to 90 

infect this unicellular host29. Acanthamoeba has proven as a particularly suitable host for many 91 

Megamimivirinae and Marseilleviridae29. Consequently, viruses from these taxonomic groups 92 

are currently among the most thoroughly cultivated NCLDV with more than 30 genome 93 

sequences readily available in public databases, including the novel Megamimivirinae lineages 94 

Tupanvirus7 and Cotonvirus30. The co-cultivation approach has been widely successful and also 95 

led to the recovery of isolates from divergent NCLDV clades, facilitating the organization and 96 

naming of Pithoviruses, Pandoraviruses, Molliviruses and, most recently, Medusavirus31. More 97 

recently the use of alternative hosts, such as Vermamoeba, has led to the co-cultivation of 98 

several new Faustovirus isolates32 and some Orpheoviruses33, Pacmanvirus34 and 99 

Kaumoebaviruses35, all distant relatives of Pitho-and Asfarviruses. A newly developed high-100 

throughput co-cultivation-based approach using high content screening has proven a powerful 101 

tool for giant virus discovery and isolation36. Yet, co-cultivation is limited by host specificity of 102 

giant viruses4; some NCLDV lineages are able to infect only specific hosts, such as certain 103 

species of Acanthamoeba37, while others may be more versatile, exhibiting a broader host 104 

range7. Considering the immense diversity of eukaryotes38, and in particular of microeukaryotes, 105 

it is likely that giant viruses that have been recovered through isolation reflect only a minute 106 

fraction of NCLDV lineages extant in the wild.  107 

 108 

Virion structures and infection strategies in the Nucleocytoviricota 109 

One of the best studied and most well understood infectious cycles is that of the amoeba-110 

infecting Mimivirus8. Similar to other known members of the Mimiviridae it replicates in its host’s 111 

cytoplasm39–41 (Figure 2A). The ~700 nm icosahedral virion of Mimivirus (Figure 2B) contains 112 

RNA polymerase and transcript maturation machinery together with the genome. Mimivirus 113 

enters its host by triggering phagocytosis upon adhering to the host cell membrane with its 114 

glycosylated fibrils. Bacterial-type sugars are uniquely synthesized by the virally encoded 115 

glycosylation machinery and are the building blocks of the recently determined complex 70 kDa 116 

and 25 kDa polysaccharide structures that decorate the Mimivirus fibrils42. The structure of the 117 

Mimivirus capsid has also been determined, but due to its large size, the triangulation (T)-118 

number remains unknown43. Detailed Atomic Force Microscopy provided additional insights into 119 

virion composition44, further underlining the complexity of the capsid and an enclosed 120 

compartment, the so-called nucleoid, that contains hundreds of proteins in addition to the 121 

structural ones. It has been proposed that the non-structural proteins are required to initiate the 122 

viral infectious cycle, protect the virion from oxidative stress and perform early transcription5,40. 123 

Once in the host vacuole, the Mimivirus virion features a specific structure, the stargate, at one 124 

vertex of the icosahedron. Upon opening, the internal membrane is pulled outside the capsid to 125 

fuse with the host vacuole’s membrane45. Next, the nucleoid is transferred into the host 126 

cytoplasm46,47 where early transcription begins using the virally encoded transcription 127 

machinery, which, at first, remains confined in the nucleoid48. The accumulation of nucleic acids 128 

due to active transcription and replication leads to an increase in size of the virion factory and 129 

newly synthesized virions start budding at its periphery, recycling host cell membranes derived 130 

from the endoplasmic reticulum46,48 or golgi30. The last step of virion maturation, after genome 131 
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loading into the nucleoid, is the addition of the fibril layer to the capsids49, and then hundreds of 132 

newly synthesized virions are released after cell lysis.  133 

 134 

Several viruses related to Mimivirus have similar infectious cycles but smaller virions. Among 135 

them is Cafeteria roenbergensis virus, which presents an icosahedral capsid of 300 nm in 136 

diameter (Figure 2B) with a lipidic membrane underneath the capsid shell. Its mode of infection 137 

is not fully understood but, similar to Mimivirus, a nucleoid structure has been observed in the 138 

cytoplasm as well as extracellular empty capsids, supporting an external opening of the capsids 139 

followed by the fusion of the internal membrane with that of the cell, thus allowing the transfer of 140 

the nucleoid into the host cytoplasm. Virions contain about 150 proteins, which either make up 141 

the icosahedral capsid or are necessary to initiate the infectious cycle46. Neo-synthesized 142 

virions assemble during the late stage of infection and are released through cell lysis. The 143 

structure of the complex capsid, determined by cryo-EM, corresponds to a T-number of 499 and 144 

provided a new model for capsid assembly50. Another member of the Mimiviridae, with a similar 145 

icosahedral capsid of 300 nm in diameter, is Bodo saltans virus. Its capsid appears to be made 146 

by two proteinaceous layers surrounded by 40nm long fibrils. A possible stargate-like structure 147 

is present at one vertex of the capsid and there are two membranes, one lining the external 148 

protein shell and one internal to the nucleoid compartment containing the genome. The 149 

infectious cycle is similar to the one of Mimivirus except that the host’s nuclear genome appears 150 

to be degraded. The viral factory develops at the posterior pole of the cell to fill two thirds of the 151 

cell space, pushing aside the nucleus and organelles. Lipid vesicles are recruited for virion 152 

assembly that takes place at one side of the viral factory and mature virions detach after 153 

genome loading to migrate to the posterior pole of the cell. Virions are released by budding in 154 

vesicles from the host membrane and ultimately after cell lysis41. 155 

 156 

Virion morphology and infection mechanisms differ vastly between viruses of the 157 

Nucleocytoviricota. In particular, viruses that infect algae have been found to form small virions. 158 

Among the smallest members of the Nucleocytoviricota are Prasinoviruses with virion diameters 159 

of around 120 nm. This feature is important for infecting and replicating within Ostreococcus, 160 

which is one of the smallest free-living eukaryotes with only 0.8 µm cells51. Following viral 161 

infection, genome replication begins almost immediately and within hours new virions assemble 162 

in the cytoplasm; in less than 24 hours post-infection, cellular lysis of the host occurs. The host 163 

cell nucleus, mitochondria and chloroplast remain intact throughout this period. Slightly larger 164 

are Chloroviruses with 190 nm in diameter, an icosahedral shape (T-number 169) and an 165 

internal lipid membrane. A prototype for this group of viruses is Paramecium bursaria chlorella 166 

virus52(Figure 2B). It has a spike-like structure at one vertex and a few external fibers that 167 

extend from some of the capsomers53. The outer capsid layer covers a single lipid bi-layered 168 

membrane, which is essential for infection. Its major capsid protein (Vp54) is a glycoprotein, and 169 

three Vp54s form a trimeric capsomere, which has pseudo-six-fold symmetry54. Some of the 170 

largest viruses that infect algae are affiliated with the Mimiviridae. All of them have icosahedral 171 

capsids with sizes ranging from 150 nm in Aureococcus virus (Figure 2B) to 370 nm in the 172 

recently described Prymnesium kappa virus27. These viruses also build a viral factory in the host 173 

cytoplasm but it is still unknown if the transcription machinery is loaded in the capsids allowing 174 

an entirely cytoplasmic infectious cycle. 175 
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 176 

Outside of the Mimiviridae there are smaller amoeba-infecting viruses such as the 177 

Melbournevirus, which has an icosahedral virion of ~250 nm diameter (Figure 2B). The Cryo-178 

EM structure of the capsid was obtained for two members of the family at various resolutions 179 

revealing a T-number of 309 and a complex capsid structure55–57 with many minor capsid 180 

proteins. Melbournevirus and other members of the Marseilleviruses are taken up by 181 

phagocytosis and then lose their icosahedral appearance to become spherical after the 182 

disappearance of the vacuole membrane. In contrast to Mimiviruses their RNA polymerase is 183 

not loaded in the virion. Instead, the cell nucleus starts changing appearance and becomes 184 

leaky through a still unknown mechanism triggered by the viral infection58. The nuclear proteins 185 

are recruited to the early viral factory, including the host RNA polymerase that will perform early 186 

transcription. Shortly after, the nucleus integrity is restored and the virally encoded RNA 187 

polymerase performs intermediate and late transcription59 and icosahedral particles assemble 188 

inside the viral factory (Figure 2A). Mature particles can gather in large vesicles60 and cell lysis 189 

leads to the release of both individual virions and filled vacuoles. 190 

 191 

Larger amoeba-infecting viruses are Pandoraviruses, with amphora-shaped virions that can be 192 

up to 1 µm in length and 500 nm in diameter (Figure 2C). There is at least one lipidic membrane 193 

lining a thick tegument made of three layers including one made of cellulose61. The particles are 194 

taken up through phagocytosis followed by the opening of the virion ostiole-like structure to 195 

allow the fusion of the internal membrane with the phagosome and, consequently, delivery of 196 

the genome and necessary proteins into the cytoplasm. In contrast to Mimiviruses the 197 

Pandoraviruses build their viral factory in the host cell nucleus (Figure 2A). Although they 198 

encode RNA polymerase, there is none present in the capsids and thus they rely on the host 199 

cell for early transcription of viral genes. New virions start to assemble from the apex and the 200 

neo-synthesized virions are released either by cell lysis or by exocytosis through membrane 201 

fusion with the plasma membrane when they are in vacuoles62,63.  202 

 203 

Some of the largest virions found in the Nucleocytoviricota are those of the Pitho- and 204 

Cedratviruses (Figure 2C), which have very large amphora shaped capsids that can be up to 2 205 

µm long and 600 nm wide. These capsids are closed by corks, one cork for Pithovirus64,65 206 

(Figure 2C) and two for Cedratvirus66, that are made by proteins organized in a honeycomb 207 

array. Despite a virion morphology that closely resembles that of Pandoraviruses, the external 208 

tegument is different, appears to be made of parallel strips and does not present cellulose. The 209 

particle appears to be coated with short sparse fibrils33,64. The infectious cycle proceeds as for 210 

other amoeba-infecting viruses, by phagocytosis followed by capsid opening and membrane 211 

fusion with the phagosome5. For the Pithoviruses and Cedratviruses, the RNA polymerase 212 

loaded in the virion starts early transcription in the cytoplasm and the host nucleus remains 213 

intact during the entire infectious cycle. The virions are assembled from the cork and will lead to 214 

rectangular uncoated virions, the tegument being built by patches from reservoirs in the 215 

cytoplasm, and the morphology changes to amphora-shaped. The neo-synthesized virions can 216 

exit by exocytosis and upon cell lysis64,66.  217 

 218 
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A different replication strategy has been described for Medusaviruses31; after uptake into the 219 

host cytoplasm, its DNA is replicated in the host nucleus while virions assemble in the 220 

cytoplasm. Medusaviruses have icosahedral virions that are 260 nm in diameter, covered by 221 

spherical-headed spikes extending from each capsomer, and a lipidic membrane surrounds the 222 

capsid interior. A low-resolution structure was determined by Cryo-EM, which returned a T-223 

number of 27767. The mechanism of entry and egress of the Medusavirus virion from its host is 224 

yet to be determined.  225 

 226 

As these examples illustrate, there is no shared blueprint for giant virus structure and infection 227 

mechanism; these characteristics vary between giant virus lineages and are likely shaped by 228 

the host organisms. The host range of the currently experimentally characterized giant viruses is 229 

limited to a few amoeba and algae lineages representing only a tiny fraction of the eukaryotic 230 

diversity. Thus, we expect that many more unusual virions and infection strategies will be 231 

revealed in the near future when new viruses will be captured together with their native hosts. 232 

 233 

Cultivation-independent genomic approaches to studying giant viruses 234 

Many important discoveries on giant virus biology and diversity have been made through giant 235 

virus isolation and cultivation. However, such approaches are constrained by the need to satisfy 236 

optimal growth requirements in a laboratory setting and are often restricted to lytic viruses. 237 

Cultivation-independent methods have been proven to be an indispensable tool to discover the 238 

genetic make-up of giant viruses from environmental samples.  239 

 240 

In the earlier days of metagenomics, single-marker gene based surveys (Box 1) revealed that 241 

several marine NCLDV affiliated with Phycodnaviridiae and Mimiviridae were present in a wide 242 

range of marine metagenomes collected during the Tara Oceans and the Sargasso Sea 243 

expeditions68,69 and that these viruses were more abundant in the photic layer than 244 

eukaryotes69. Interestingly, in a follow-up study, data from these surveys gave rise to the 245 

hypothesis that giant viruses are more diverse in the oceans than any cellular organism70. 246 

Subsequently, a large-scale analysis of the NCLDV major capsid protein (MCP), in which more 247 

than 50k of these proteins were found across Earth’s biomes, highlighted the global dispersal of 248 

giant viruses, including in terrestrial ecosystems71.  249 

 250 

Other approaches that facilitated the discovery of novel NCLDV are single cell genomics and 251 

mini-metagenomics (Box 1). First, sorting single cells from marine samples enabled detection of 252 

NCLDV particles affiliated with viruses that had previously been found in the algae 253 

Ostreococcus sp. and Phaeocystis globosa72. This led to the sequencing of several so-called 254 

gvSAGs, of which the largest was a 813 kb genome affiliated with Mimiviridae that encoded a 255 

metacaspase, which potentially facilitates autocatalytic cell death of the host cell73. Single-cell 256 

methods were also used to identify and genome sequence 5 giant viruses associated with 257 

marine choanoflagellates74,75; comparative genomics together with all other NCLDV genomes 258 

revealed that viruses that infect hosts with similar trophic modes, including host habitat and 259 

lifestyles, express distinct genetic features75,76. Further, mini-metagenomics (Box 1) on a single 260 

forest soil sample led to the discovery of 15 diverse giant virus MAGs, including several 261 

members of the Klosneuvirinae, revealing that giant viruses are commonly found in soil77.  262 
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 263 

The most successful approach for obtaining NCLDV genomes from environmental sequence 264 

data is genome-resolved metagenomics (Box 1). Since the early 2000s this approach has 265 

become common practice for recovering genomes of bacteria and archaea from complex 266 

environmental samples78, yet it took nearly another decade before the first giant virus 267 

metagenome assembled genomes (GVMAGs) appeared in public databases (Figure 1). Yau 268 

and colleagues reconstructed the first GVMAGs as a byproduct of their work on virophages in 269 

metagenomes from the Organic Lake in Antarctica79. Several years later four additional 270 

potentially algae-associated GVMAGs were retrieved from environmental sequence data from 271 

Yellowstone lake and found to be related to phycodna- and mimiviruses, which shared some 272 

genes with virophages that co-occurred in the same sample80. Cultivation-independent 273 

approaches for discovery of giant virus genome-centric sequence information gained traction 274 

when members of a Mimiviridae-affiliated subfamily, the proposed Klosneuvirinae, were 275 

recovered from metagenomic data81. The fact that these were found in freshwater and sewage 276 

metagenomes from samples originating from four different continents suggested this novel 277 

group of giant viruses is cosmopolitan81. More than 20 giant virus MAGs from deep sea 278 

metagenomes were subsequently discovered, including 15 affiliated with Pithoviruses, indicating 279 

a surprisingly high prevalence of pithovirus-like viruses in the ocean82 and additional likely 280 

algae-associated freshwater giant viruses from Dishui Lake83,84. The unique strength of 281 

cultivation-independent approaches to viral genomics became even more evident when over 282 

2000 GVMAGs were extracted from metagenome datasets generated from thousands of 283 

samples collected from diverse biomes71 plus an additional 500 GVMAGs collected shortly after 284 

from marine systems85. Viruses discovered through cultivation-independent approaches 285 

enabled a comprehensive update of the taxonomic framework of the Nucleocytoviricota86 286 

(Figure 3). The addition of the GVMAGs to the Nucleocytoviricota species tree led the 287 

phylogenetic diversity to increase by more than 10-fold and expanded their pangenome to more 288 

than 900,000 proteins71. This translated to an extensively expanded repertoire of functional 289 

genes, providing not only many novel insights into how giant viruses may interact with their 290 

hosts and the environment, but also generating novel hypotheses about their evolutionary 291 

roles71,85,87,88.  292 

 293 

Exploring the host ranges of giant viruses  294 

Genome-resolved metagenomics facilitated the discovery of thousands of viral genomes, of 295 

which many represented lineages divergent from viruses recovered by isolation or co-296 

cultivation71,85 (Figure 3). However, NCLDV discovered through metagenomics typically lack 297 

direct connections to host organisms89. Approaches that have been used to overcome this 298 

limitation are the detection of  viruses and potential eukaryotic hosts co-occurring in the same 299 

sample. Further, as horizontal swapping of genetic material between viruses and their hosts is a 300 

common phenomenon, the analysis of viral genes that may have been acquired through recent 301 

horizontal gene transfer (HGT) can potentially identify host organisms. In the early days of giant 302 

virus metagenomics, read-mapping based co-occurrence analysis (Box 1) revealed that the 303 

presence of giant virus sequences in some marine samples was positively correlated with those 304 

of Oomycetes69, which is a eukaryote that has not yet been found associated with NCLDV. More 305 

recently, co-occurrences of sequences of NCLDV and microalgae, including haptophytes, 306 
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chlorophytes, dinophytes, pelagophytes and raphidophytes, were detected across a wide range 307 

of marine samples collected during the Tara Oceans expedition90. The strongest sequence co-308 

occurrences were found between a virus affiliated with the Mimiviridae and Chrysophytes as its 309 

potential host90. Subsequent detection of putative HGT events between giant virus 310 

metagenome-assembled genomes and Chrysophyte genomes and transcriptomes provided 311 

further support for this host-virus connection90. A systematic analysis of HGT candidates 312 

present in more than 2000 NCLDV genomes, of which most were MAGs from diverse global 313 

sampling sites, revealed thousands of genes likely derived from host genomes through recent 314 

HGT71. Based on these results it was possible to propose connections between NCLDV and 315 

members of all major eukaryotic phyla71. Though most of these predicted hosts have not yet 316 

been found to be infected by giant viruses, more than 20 distinct connections could be 317 

confirmed through existing isolates71 (Figure 4A).  318 

 319 

While sequence-based computational host predictions provide a means to expand the range of 320 

putative NCLDV hosts, the approaches have some potential challenges and biases. For 321 

example, co-occurrence analysis is dependent on sufficient host genome coverage for detection 322 

in metagenome data and HGT analysis likewise requires the availability of the host genomic 323 

sequences. Further, it is difficult to detect ancient HGT from previous hosts, and the integration 324 

of NCLDV genes into host genomes whose sequences were deposited in public databases can 325 

potentially yield misleading results. The quality of databases used for the analyses is another 326 

important factor and the presence of NCLDV genomes misannotated as bacteria, archaea, or 327 

eukarya is a major weakness when employing automated tools for HGT detection71,91. Despite 328 

some of these limitations, expanding the putative host range of metagenome-derived NCLDV 329 

provides a basis for targeted sampling of putative hosts, for studying virus-host co-evolution, 330 

and for identifying viral-encoded functions for targeted modulation of host metabolism. 331 

Sequence-based inferences of viruses and their hosts may then be extrapolated to assess the 332 

impact of such interactions on the environment to enable predictive ecosystem modeling.  333 

 334 

Not only is horizontal transfer of single genes a common phenomenon but some giant viruses 335 

can even integrate their entire genomes into the host’s chromosome (Figure 4). This so-called 336 

endogenization is a term initially coined for a mechanism discovered in retroviruses92,93. Arrays 337 

of NCLDV genes have occasionally been found in genomes of eukaryotes, in particular in algae, 338 

plants94–96 and amoebae97–99. A recent survey of published eukaryotic genomes and 339 

transcriptomes revealed the presence of giant virus genes in 66 different eukaryotes including 340 

several Acanthamoeba species, flagellates, ciliates, stramenopiles, oomycetes, fungi, 341 

arthropods and diverse unicellular and multicellular algae100 (Figure 4). Yet, for many of these 342 

eukaryotes giant virus infections have not been observed. The integration of NCLDV genes 343 

often appears to be highly host specific, with viral genes detected in one eukaryotic species 344 

being unrelated to viral genes found in its sister species100. Among the integrated genes were 345 

NCLDV hallmark genes that were, in some instances, dispersed over the host chromosome 346 

whereas in other cases genes were co-localized in islands composed of more than 100 347 

genes100. The integration of complete viral genomes has been described for Phaeoviruses; for 348 

example, Ectocarpus siliculosus virus integrated into its brown algal host more than 20 years 349 

ago96 likely through use of integrases101. Phaeoviruses are lysogenic viruses leading to 350 
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persistent infections102,103, which is in stark contrast to many other known NCLDV lineages that 351 

were successfully isolated based on the fact that they lyse their amoeba host5. In a recent study, 352 

the analysis of existing algal genomes and transcriptome data revealed other examples of 353 

whole giant virus genomes integrated into eukaryotic host genomes104. Some regions encoded 354 

more than 1,500 viral genes,  up to 10% of the genes of the green algal host104. Several of the 355 

detected viral genes were annotated as enzymes with roles in carbohydrate metabolism, 356 

chromatin remodeling, signal transduction, energy production and translation104.  357 

 358 

It remains unknown if integrated giant viruses are dormant with no or minimal benefit to the 359 

host, or if the host cell benefits from some of the viral genes that may provide or finetune 360 

metabolic capabilities.  Another unanswered question is whether there are mechanisms 361 

encoded in the integrated viral genome that may reinstate an active infection after transcribing 362 

and translating some of the integrated viral genes. This would then be followed by the release of 363 

the giant virus genetic material during host replication and effective dispersal to new hosts. If 364 

there is no reactivation of viral infection, it is conceivable that some giant virus genes would 365 

decay over time leading to pseudogenization. Genomics, metagenomics and 366 

metatranscriptomics enabled the discovery of NCLDV integration and revealed potential model 367 

systems, such as the green algae Tetrabaena socialis and Chlamydomonas eustigma104 for 368 

experimental work. Future investigation of integration of giant virus genes is expected to provide 369 

some answers for how endogenization has shaped and continues to shape the evolution and 370 

ecology of eukaryotic organisms.   371 

 372 

Reprogramming of the host and its impact on host populations 373 

Reprogramming of the host can occur when the virus transforms its host into a so-called 374 

virocell105 in which particular viral auxiliary metabolic genes augment host metabolism to further 375 

promote viral replication106,107. Analogous to bacteriophages, giant viruses seem to contribute 376 

genes to their hosts to augment and/or modulate metabolic capabilities of the host cell (Figure 377 

5). One of the first described examples was a host-derived nitrogen transporter in Ostreococcus 378 

taurus virus that had been found expressed during the infection of its green algal host108. 379 

Experimental characterization provided evidence that this transporter may enhance the uptake 380 

of nitrogen by the host cell108. Other studies revealed the presence of fermentation genes in the 381 

Tetraselmis virus genome with possible implications for host metabolism in nutrient-limited 382 

marine systems26. A survey of giant virus isolates and metagenome-assembled genomes 383 

revealed the widespread presence of genes for cytochrome P450 monooxygenases, potentially 384 

enabling or modulating complex metabolic processes such as synthesis of sterols and other 385 

fatty acids88. Distant homologs of actins and also myosin have been found in NCDLV 386 

genomes87,109 indicating a viral impact on cell structure, motility and intracellular transport 387 

processes, but further functional validation is needed. Furthermore, a giant virus affiliated with 388 

Mesomimivirinae that infects heterotrophic Choanoflagellates was found to encode type-1 389 

rhodopsins together with the pathway for synthesis of the required pigment, β-carotene74. 390 

Experimental characterization of the NCLDV rhodopsin showed that the putative rhodopsin 391 

likely functions as a proton pump - generating energy from light74. A phylogenetically distinct 392 

NCLDV rhodopsin was found in the Organic Lake virus metagenome-assembled genome and 393 

experimental characterization of this protein revealed that it may function as a light-gated 394 
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pentameric ion channel, potentially impacting ion homeostasis and phototaxis of the host cell110. 395 

Further, through global metagenomics it was predicted that genes encoding various substrate 396 

transport processes, energy generation, i.e. photosynthesis, carbon fixation and also glycolysis 397 

are commonly found in giant virus metagenome-assembled genomes affiliated with diverse 398 

lineages of the Nucleocytoviricota71,85 (Figure 5). More detailed phylogenetic analysis revealed 399 

that some auxiliary metabolic genes encoding transporters for iron, phosphate, magnesium and 400 

ammonium originated in eukaryotic hosts and were likely recently acquired by giant viruses 401 

through horizontal gene transfer71,74,85. However, other genes encoding several rhodopsins, 402 

succinate hydrogenase, aconitase, and glyceraldehyde 3-phosphate dehydrogenase showed a 403 

pattern that suggested a viral origin or a common evolutionary origin in one of the ancestral 404 

hosts71,74,85. Taken together, the widespread presence of metabolic genes in diverse NCLDV 405 

lineages implies that augmenting host metabolic capacities is likely a strategy more commonly 406 

used by members of the NCLDV than initially assumed. However, the current lack of 407 

experimental evidence on the functions and activities of most of these genes and pathways, and 408 

their effects on the host cell, demand further experimental investigation.  409 

 410 

Metabolic reprogramming has direct consequences on host population structure and dynamics. 411 

One striking example is the cosmopolitan marine coccolithophore Emiliana huxleyi which forms 412 

massive blooms that play important roles in global carbon and sulfur cycles111. E. huxleyi 413 

populations are subject to persistent but ultimately lytic infections by the E. huxleyi 414 

virus23(Figure 4B). Once lysis is induced this leads to the termination of the algal bloom coupled 415 

to the deposition of massive amounts of calcite and nutrients into the ocean which increases the 416 

marine pool of dissolved organic matter112–114. Importantly, viral infections do not only lead to 417 

host lysis but also enhance viral replication by rewiring host physiology, in particular the 418 

turnover of sugars and synthesis of fatty acids and lipids115–117. Comparably little is known about 419 

the impact of other large and giant viruses on host populations but it is conceivable that similar 420 

principles are omnipresent and important in shaping our planet's biomes and biogeochemical 421 

cycles. 422 

 423 

Towards independence from the host 424 

Among the most intriguing features found in giant virus genomes are signatures of cellular life, 425 

such as genes involved in protein biosynthesis. This phenomenon was first described upon 426 

sequencing the Mimivirus genome8. Subsequent analyses revealed the phylogenetic placement 427 

of virus-encoded cellular genes between bacteria and eukaryotes suggesting an ancient 428 

origin10. Other cellular hallmark genes with similarly deep branching patterns were found in 429 

other giant virus genomes and led to the hypotheses that giant viruses may either represent a 430 

fourth domain of life12 or are remnants of a highly degraded eukaryotic cell derived by reductive 431 

evolution11. However, the use of more complex phylogenetic models revealed that many of 432 

these genes had most likely been acquired from different eukaryotic hosts118,119. Some of these 433 

genes might represent ancient transfers from undiscovered eukaryotic hosts. This finding 434 

provided evidence for the hypothesis that giant viruses may have evolved from smaller 435 

viruses119. Yet, other studies have reported alternative topologies for some housekeeping and 436 

other metabolic genes of cellular organisms, including rhodopsins71,74,85 and cytochrome P45088. 437 

It cannot be ruled out that these genes were transferred from ancestral giant viruses to past 438 
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eukaryotic hosts, or even a proto-eukaryote, highlighting a potentially integral role of giant 439 

viruses in the evolution of the eukaryotic cell120,121. Further, it is possible that some genes that 440 

may function as part of the eukaryotic core metabolism were introduced upon integration of 441 

giant virus genetic material into the genome of an ancient eukaryotic cell - further shaping 442 

eukaryotic evolution120,122.The presence of genes for aminoacyl tRNA synthetases (aaRS) and 443 

eukaryotic translation factors has been recorded multiple times in newly recovered giant virus 444 

genomes. Indeed, a nearly complete set of 20 aaRS has been reported in Klosneuvirus from 445 

metagenomic data81. Shortly after two Tupanviruses were isolated with genomes that contained 446 

a full set of aaRS7 and subsequently the first isolates affiliated with the Klosneuvirinae were 447 

described, which also contained a complete set of aaRS123. Especially in Klosneuviruses, the 448 

presence of aaRS with lineage-specific evolutionary histories provided additional support that 449 

these genes derived from different eukaryotic hosts81. The presence of genes for extended sets 450 

of aaRS is currently limited to members of the Mimiviridae and information on the role of giant 451 

virus aaRS in host interaction is limited, however, some have been experimentally studied and 452 

were indeed functional124. Nevertheless, there is some experimental evidence for potential roles 453 

of these genes in making giant viruses less dependent on host machinery, e.g., during 454 

shutdown of host translation in response to viral infection or other adverse conditions125. On the 455 

other hand, a suspected role in enhancing viral translation by providing additional copies of 456 

aaRS to support host translation has not yet been confirmed. Another path towards host 457 

independence is implied by encoding translation system components, in addition to recently 458 

discovered giant virus genes predicted to be involved in energy generation26,85. A recent study 459 

reported on an active membrane potential in Pandoravirus massiliensis virions together with the 460 

expression of several remote homologs of TCA genes126. Despite encoding expanded genetic 461 

complements for functions that were recently thought to be exclusively present in cellular 462 

organisms, there is currently no evidence that giant viruses may perform protein translation 463 

without host-derived ribosomes or host-independent energy generation. 464 

 465 

Conclusions 466 

 467 

Nearly 20 years of giant virus isolation has yielded viral isolates representing highly diverse 468 

lineages. Complementary detailed research on the biology of these viruses has revealed many 469 

important details of virion structures and infection strategies. It has become obvious that there 470 

are stark differences in virion size and structure and, while there are some similarities in how 471 

these viruses enter and exit the host cell, most giant viruses employ contrasting strategies for 472 

replicating within and exploiting their host cells. Sequencing of viral isolates has led to the 473 

largest and smallest known genomes of viruses of the Nucleocytoviricota.  474 

Cultivation-independent approaches have accelerated the discovery of genome sequences of 475 

new giant viruses and other large viruses in the NCLDV, providing novel insights into their 476 

phylogenetic diversity and functional potential. These approaches also revealed that these 477 

viruses can be found anywhere on Earth, are affiliated with diverse eukaryotes and are likely 478 

manipulating host physiology through metabolic reprogramming - ultimately altering structure 479 

and function of host communities in the environment. At the same time, estimates based on 480 

NCLDV hallmark genes in metagenomic datasets indicated that only a small fraction of giant 481 

virus genomes have been discovered so far71, and that the diversity of giant viruses may be far 482 
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greater than that of bacteria, at least in the oceans70. A controlled metagenomic binning 483 

experiment where giant viruses were spiked into an environmental sample showed that genome 484 

fragments of many giant viruses that are present in a given sample likely remain below the 485 

detection limit, highlighting the need for ultra-deep metagenome sequencing127 or targeted 486 

isolation efforts128. Furthermore, there is a strong bias towards detecting giant viruses that are 487 

similar to those already known, as tools used to identify viruses from metagenomes rely heavily 488 

on features observed in sequenced NCLDV genomes, such as large sets of conserved 489 

genes71,82,85,129,130. However, giant virus genomes exhibit extensive plasticity, such that viruses 490 

within the same clade quickly diverge and share very few genes28. A recent stunning example of 491 

NCLDV diversity is Yaravirus, which was isolated with its native amoeba host131, yet no close 492 

relative of Yaravirus was detectable in public metagenomic datasets. Its placement within 493 

NCLDV was challenging due to greater than 90 percent of its genes lacking similarity to those in 494 

public databases and the paucity of most viral hallmark genes131. Such excessive gene novelty 495 

of viruses in the NCLDV, observed through both cultivation and cultivation-independent 496 

methods, further underlines that many giant viruses are likely to be hiding in plain sight, awaiting 497 

discovery.  498 
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 846 
Figure 1. Timeline of genomic and metagenomic discoveries in the Nucleocytoviricota. 847 

Stacked bars indicate the number of virus isolate genomes (grey, left y-axis) and giant virus 848 

metagenome-assembled genomes (GVMAGs; red, left y-axis) of members of the 849 

Nucleocytoviricota that have been published and/or became available at the NCBI Genbank 850 

database for each year on the x-axis. Filled circles indicate genome size (right y-axis) of virus 851 

isolates (grey) and GVMAGs (red). Important genomic and metagenomic events are highlighted 852 

by yellow stars: 1. First genome of a member of the NCLDV became available17; 2. Sequencing 853 

of the first giant virus with a genome size above 1 Mb, Acanthamoeba polyphaga Mimivirus10; 3. 854 

First-time recovery of GVMAGs (from Organic Lake, Antarctica)79; 4. Viral subfamily 855 

“Klosneuvirinae'' proposed based on GVMAGs recovered from environmental sequence data81; 856 

5. Single-cell genomics enabled discovery of Choanovirus from marine choanoflagellates74; 6. 857 

First large-scale global metagenomics study leading to the recovery of over 2000 GVMAGs 858 

facilitating an 11-fold increase in phylogenetic diversity and a 10-fold expansion in functional 859 

diversity71, 7. Detection of whole giant virus genomes integrated in host chromosomes104. 860 

Important cultivation based events are highlighted by green stars: 1. Isolation of Mimivirus in 861 

amoeba co-cultivation 9 2. Isolation of a giant virus together with its Cafeteria roenbergensis 862 

host40 3. Isolation of amphora-shaped Pandoravirus with 2.5Mb genome132 4. Recovery of 863 

Pithovirus, from a 30,000 year old ice core, through co-cultivation with an amoeba133 5. Isolation 864 

of Faustovirus in co-cultivation with Vermamoeba32 6. Isolation of Bodo saltans virus the first 865 

isolated member of the Klosneuvirinae with its native Kinetoplastid host 41 7. Isolation of 866 

Tupanvirus in amoeba - currently the largest giant virus based on its capsid diameter and 867 

length7  8. Isolation of Medusavirus in amoeba represents a divergent new lineage in the 868 

Nucleocytoviricota31. 869 
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 870 
Figure 2. Giant virus infection mechanisms and virion structures. A Attachment to the host 871 

cell envelope followed by uptake by endocytosis and activation of giant virus transcription in the 872 

nucleus (turquoise arrow) or the cytoplasm / viral factory (purple arrow). This is followed by giant 873 

replication and assembly of new virions in the periphery of the cytoplasmic viral factory, in the 874 

host nucleus or scattered in the virocell. Virions are released after host cell lysis or exocytosis of 875 

membrane-bound virions. B Structures of isolated giant viruses resolved by cryo-electron 876 

microscopy55,134–136. Note the blue-colored stargate structure on Mimivirus. C Transmission 877 

electron micrographs of ultrathin sections of non icosahedral viruses embedded in resin. The 878 

scale bars in B and C are 100 nm.  879 
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 882 
  883 

Figure 3. Expansion of the Nucleocytoviricota phylogenetic diversity through 884 

metagenomics. Shown are two species trees of the Nucleocytoviricota: the inner tree depicts 885 

the diversity of NCLDV based on the genomes of viral isolates and the outer inverted tree 886 

highlights the expansion of species diversity through genomes derived from cultivation-887 

independent sequencing approaches. Branches are colored based on affiliation to taxonomic 888 

groups consisting of isolates and extrapolated to the expanded diversity of the outer tree. 889 

Superscripts map to the proposed updated taxonomic framework for Nucleocytoviricota 890 

lineages86. 891 
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 893 
Figure 4. Experimentally verified and computationally predicted host ranges of the 894 

Nucleocytoviricota. A Shown are host lineages identified through isolation with the native host, 895 

co-cultivation, single-cell sorting, and in silico HGT-based predictions. Black outline of colored 896 

boxes indicates that experimentally verified interaction has been also predicted computationally. 897 

K-F-P-Asfarviruses: Kaumoeba-Fausto-Pacman-Asfarviruses; *genomes of this group were not 898 

included in the HGT analysis. Topology of the eukaryotic species tree adapted from38. B Lysis of 899 

host cells and entire host populations are the typical outcomes of a giant virus infection. There is 900 

growing evidence that long term persistent infections may be prevalent in algae populations, 901 

including the integration of giant virus genomes, so-called endogenization, into the host 902 

chromosome.  903 
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 904 
Figure 5: Predicted metabolic reprogramming of a giant virus-derived virocell and 905 

consequences of giant virus infection for host populations. Shown is a hypothetical virocell 906 

with a combination of metabolic roles that different giant viruses are predicted to have during 907 

host infection, based on the presence of auxiliary metabolic genes in giant virus genomes. Dark 908 

red lines denote metabolic roles that are supported by some functional data obtained through 909 

experiments.  910 
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Box 1:  912 

Toolkits for giant virus discovery: cultivation independent genomic approaches 913 

Read mapping-based approaches 914 

Mapping metagenomic reads to giant virus reference genomes has been successfully applied to 915 

detect giant viruses and estimate their abundances in the environment41,69,137–139 and several 916 

tools have been published137,140. Read mapping-based approaches are advantageous because 917 

they are sensitive enough to detect lowly abundant giant viruses139; however, they typically do 918 

not lead to the recovery of viral genomes and thus cannot provide information on genome 919 

features and coding potential. Moreover, mapping approaches are highly dependent on the 920 

quality of the reference genome database, and if low mapping stringency is used, false positive 921 

hits may occur. Detection of giant viruses may also be hindered if taxonomic classification of 922 

metagenome-assembled genomes was performed using automated tools; this has resulted in 923 

several NCLDV MAGs that have been misclassified as being of bacterial, archaeal or eukaryotic 924 

origin71,91. In addition, genes that have recently been integrated into NCLDV genomes after 925 

being horizontally acquired from bacteria or eukaryotes may produce sequence reads that map 926 

to cellular genomes, resulting in false positive hits. 927 

Marker gene surveys 928 

Detection and phylogenetic analysis of signature genes in complex environmental datasets is a 929 

commonly used approach to assess viral diversity in metagenome data. For Nucelocytoviricota 930 

genes that encode major capsid protein, DNA Polymerase B, or viral packaging ATPase have 931 

been used as marker genes. The approach is less error-prone than read mapping as it can be 932 

coupled with phylogenetic analysis to confirm the monophyly of the respective gene homologs 933 

found in known NCLDV genomes. This approach has been successfully applied in several 934 

studies69–71,90 and, while being less sensitive than read mapping, it can detect viruses that were 935 

not abundant enough in a metagenome to be successfully assembled and binned127. 936 

Genome-resolved metagenomics 937 

The reconstruction of metagenome-assembled genomes through metagenomic binning is an 938 

established approach to recover microbial genomes. Due to their virion sizes giant viruses are 939 

often present in environmental samples that have been selectively filtered to target microbes. In 940 

contrast to smaller viruses such as most bacteriophages, the large genomes of most members 941 

of the Nucleocytoviricota typically require metagenomic binning to increase genome 942 

completeness127. However, in most microbe-centric metagenome projects giant virus genome 943 

bins were frequently ignored, as tools that estimate genome quality141 predict viral genomes to 944 

be of low completeness based on their lack of cellular marker genes127 which then leads to their 945 

exclusion from downstream analyses142. Several recent studies employed custom workflows to 946 

identify giant virus MAGs and to estimate completeness and contamination by, for example, 947 

identifying copy numbers of conserved NCLDV genes74,75,77,81,85,130 or inferring deviations from 948 

lineage specific copy numbers of low-copy orthologs71. It is important to note that genome sizes 949 

of GVMAGs typically do not represent the size of the complete viral genome. 950 

Single cell genomic approaches 951 

Flow-sorting and sequencing of single viruses can be used to detect viruses in environmental 952 

samples143,144, yet only a few such studies have discovered novel giant viruses72–75,77. Due to 953 

large virion sizes and a bright signal using DNA stains73,145 giant viruses are a promising target 954 

for sorting. A drawback of this approach is that the subsequent whole genome amplification, if 955 
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performed on a single virus, may lead to low genome recovery143. An alternative approach to 956 

direct sorting of giant viruses from an environmental sample is targeted sorting of host cells74,75. 957 

Viruses actively replicating inside a host cell can produce hundreds to thousands of virions with 958 

clonal copies of viral genomes, which would greatly improve whole genome amplification143. 959 

Further, if successful, this approach enables identification of the virus and its native host. 960 

Similarly, mini metagenomics uses fluorescence activated single cell sorting or microfluidics to 961 

collect tens to hundreds of cell-sized particles77,146. The presence of many identical viral 962 

particles, either through repeated sorting of clonal single viruses, an infected host cell, or the 963 

sorting of vacuoles filled with giant viruses, would then increase genome recovery.  964 
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