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1  |  INTRODUC TION

Oxidation of the sulfur atom in the side chain of methionine (Met) 
generates a sulfoxide (Figure 1a). This reaction converts Met into 
methionine sulfoxide (Met- O), which exists as two diastereoisomers: 
Met- R- O and Met- S- O (Lavine, 1947; Shechter et al., 1975). The intra-
cellular proportion of protein- bound Met- R- O and Met- S- O is difficult 
to estimate: while steric hindrance resulting from protein structure 
can partly determine this ratio, it is generally accepted to be racemic 
(Davies, 2005; Tsvetkov et al., 2005). Further oxidation of Met- O irre-
versibly produces methionine sulfone (Nlelsen et al., 1985), although 
this reaction is unlikely to occur under physiological conditions.

Met- O can be reduced back to Met by the enzymatic Methionine 
Sulfoxide Reductase (Msr) system which is found in the three do-
mains of life and in most bacterial species (Delaye et al., 2007). Msr 
enzymes catalyze the reduction of Met- O either by a thiol- based 
mechanism (MsrA and MsrB) or a molybdopterin- based reaction 
(MsrP) (Boschi- Muller & Branlant, 2014; Brokx et al., 2005; Gennaris 

et al., 2015; Juillan- Binard et al., 2017). While MsrA and MsrB are 
stereospecific, reducing protein- bound Met- S- O and Met- R- O re-
spectively, MsrP reduces Met- O regardless of its stereochemistry 
(Brot et al., 1981; Gennaris et al., 2015; Grimaud et al., 2001; Tarrago 
et al., 2018). MsrA and MsrB share little sequence identity but exhibit 
a similar catalytic site structure, probably resulting from conver-
gent evolution (Gladyshev, 2002). MsrA and MsrB are often found 
in the cytoplasm of bacterial cells, but in several species, including 
Neisseria, Streptococci and Haemophilus, an extracytoplasmic bifunc-
tional MsrAB protein fusion has evolved (Han et al., 2016; Kappler 
et al., 2019). MsrP is a periplasmic reductase broadly conserved in 
Gram- negative bacteria (Gennaris et al., 2015). We refer readers to 
the literature on the biochemistry, regulation and conservation of 
bacterial Msr systems (Achilli et al., 2015; Aussel & Ezraty, 2021; 
Delaye et al., 2007; Ezraty et al., 2017; Kappler et al., 2019).

Met residues are sensitive to different oxidants: Met oxida-
tion can be initiated by radical and non- radical derivatives of oxy-
gen (Vogt, 1995), reactive chlorine species (Gray et al., 2013) and 
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Abstract
Methionine is a sulfur- containing residue found in most proteins which are particu-
larly susceptible to oxidation. Although methionine oxidation causes protein damage, 
it can in some cases activate protein function. Enzymatic systems reducing oxidized 
methionine have evolved in most bacterial species and methionine oxidation proves 
to be a reversible post- translational modification regulating protein activity. In this 
review, we inspect recent examples of methionine oxidation provoking protein loss 
and gain of function. We further speculate on the role of methionine oxidation as a 
multilayer endogenous antioxidant system and consider its potential consequences 
for bacterial virulence.
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2  |    VINCENT and EZRATY

reactive nitrogen species (John et al., 2001). In particular, both hy-
drogen peroxide (H2O2) and hypochlorous acid (HOCl) can oxidize 
Met residues, although the latter exhibits a faster reaction rate 
(Davies, 2005; Pattison & Davies, 2001; Winterbourn et al., 2016). 
H2O2 and HOCl are major oxidants produced by phagocytic cells to 
combat bacterial infections (Klebanoff et al., 2013), therefore, Met- O 
homeostasis plays an important role in host- pathogen interactions.

Whether oxidation of protein- bound Met should be classified as a 
post- translational modification (PTM) is subject to debate. On the one 
hand, this process triggers a chemical modification of a protein follow-
ing its biosynthesis. On the other hand, the term PTM generally applies 
to modifications that are mediated by enzymes, and most examples 
of bacterial Met oxidation arise, to date, from stochastic chemical re-
actions. Nonetheless, recent reports suggesting that protein- bound 
Met- O residues are also generated enzymatically in human cells 
(Manta & Gladyshev, 2017), open the door to a new definition of Met 
oxidation that has led us to classify it as a PTM in this review.

Whereas Met oxidation in proteins was initially seen as being ex-
clusively damaging, it is now clear that this process has implications for 
gene expression, damage sensing and modulation of enzymatic activ-
ity in most biological systems (Valverde et al., 2019). Here, we explore 
the different consequences of Met oxidation for bacterial proteins.

2  |  METHIONINE OXIDATION A S A 
DELETERIOUS PTM

Met- O is more hydrophilic than Met (Black & Mould, 1991), there-
fore, oxidation of Met residues within proteins may trigger major 

structural changes, misfolding or aggregation, which ultimately im-
pairs protein function (Chao et al., 1997). In principle, systemic fail-
ures can arise from the oxidation of a few Met residues in a single 
protein. For instance, protein trafficking through the cytoplasmic 
membrane is altered by Met oxidation of Ffh (Ezraty et al., 2004), 
a ubiquitous component of the Signal Recognition Particle (SRP) re-
quired for membrane insertion of transmembrane proteins (Ezraty 
et al., 2004; Steinberg et al., 2018). Although the Msr system pre-
vents global damage inflicted by Met oxidation, the reduction of 
protein- bound Met- O is not always sufficient to restore protein ac-
tivity. Upon HOCl exposure, Met residues of the Helicobacter pylori 
catalase, KatA, are oxidized, which triggers a conformational change 
in the enzyme and loss of catalytic activity (Mahawar et al., 2011) 
(Figure 1b). In this case, the Msr enzymes need to work in concert 
with the molecular chaperone GroEL to refold and repair the damaged 
protein (Alamuri & Maier, 2004; Mahawar et al., 2011). Considering 
that Met residues of GroEL are susceptible to oxidation by HOCl, 
rendering the chaperone inactive in E. coli (Khor et al., 2004), Met 
oxidation appears to be a severe obstacle to the regeneration of 
protein activity. This hypothesis is strengthened by further reports 
highlighting that (i) repair of Met- O is essential for maintaining pro-
tein stability (Ezraty et al., 2004; Kim et al., 2001) and (ii) another 
molecular chaperone, the periplasmic protein SurA, undergoes Met 
oxidation- mediated loss of activity (Gennaris et al., 2015).

Alternatively, Met oxidation of a protein can impair its func-
tion without substantially altering its structure (Figure 1b). The 
alkyl hydroperoxide reductase AhpC of H. pylori and the metal-
lochaperone CusF of E. coli both exhibits Met oxidation after 
 exposure to HOCl and H2O2 respectively (Benoit et al., 2013; 

F I G U R E  1  Consequence of methionine oxidation on protein function. (a) Structures of methionine and methionine sulfoxide. (b) The 
oxidation of methionine residues to methionine sulfoxide can lead to the inactivation or the activation of protein functions. Blue dots 
indicate Met residues, red dots indicate Met- O residues. Reactive Oxygen Species (ROS), Reactive Chlorine Species (RCS).
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    |  3VINCENT and EZRATY

Vergnes et al., 2022). Consequently, Met oxidation significantly 
decreases the catalytic activities of AhpC and CusF but has lit-
tle effect on conformational changes and their oligomeric states 
(Benoit et al., 2013; Vergnes et al., 2022). Similarly, the heat 
shock protein Hsp16.3 of Mycobacterium tuberculosis contains 
three Met that are oxidized upon treatment with H2O2 (Abulimiti 
et al., 2003). Sulfoxidation of these Met residues increases the 
tendency of oligomeric dissociation but does not significantly af-
fect the secondary structure of Hsp16.3 (Abulimiti et al., 2003). 
How Met oxidation impairs protein function in the absence of 
structural changes is not always clear. In bacteria, Met oxidation 
has been shown to prevent proper protein- substrate interaction. 
For instance, CusF carries two Met residues within its active site 
whose oxidation is critical for its copper- binding capacity (Vergnes 
et al., 2022). In multicellular organisms, Met oxidation may inhibit 
other PTMs of nearby residues and thereby modify protein fea-
tures, as reported for kinase substrate proteins of Arabidopsis 
(Hardin et al., 2009). Within the human proteome, the existence 
of a crosstalk between phosphorylation and Met oxidation has 
been suggested based on evidence that Met residues located in 
the vicinity of phosphorylation sites are preferentially oxidized in 
vivo (Veredas et al., 2017).

In general, whether Met oxidation results in protein loss- of- 
function is difficult to predict. Location, orientation and neighbour-
ing residues of Met residues prone to oxidation are likely to be major 
factors in this process (Ghesquière et al., 2011). Although new com-
putational approaches now enable prediction of Met oxidation sites 
within peptides and proteins (Delmar et al., 2021), accurate methods 
to predict functional changes caused by Met oxidation remain to be 
developed. In contrast, recent tools for protein structure prediction 
(Jumper et al., 2021) open possibilities for determining conforma-
tional changes subsequent to Met oxidation; notably relying on in 
silico glutamine substitutions, a Met- O mimicking residue (Drazic 
et al., 2013; Henry et al., 2021).

3  |  METHIONINE OXIDATION A S A 
REGUL ATORY PTM

Whereas oxidation of Met residues in proteins is usually regarded 
as being detrimental, growing evidence suggests that Met oxida-
tion allows regulation of protein activity and furthermore modulates 
key cellular functions. This vision is now commonly shared for most 
living organisms, including humans (Moskovitz & Smith, 2021). In 
bacteria, the first study to report that Met oxidation controls pro-
tein activity revealed that HypT, the E. coli hypochlorite- responsive 
transcription factor, is activated upon oxidation of its Met residues 
(Drazic et al., 2013) (Figure 1b). More precisely, sulfoxidation of 
three Met residues was sufficient to change the HypT oligomeric 
state and to promote its DNA- binding capacity, resulting in higher 
HOCl tolerance (Drazic et al., 2013, 2014). According to the current 
model, Met oxidation of HypT has a dual effect. Firstly, it restores 
oxidized metabolites as the activated form of HypT up- regulates 

genes involved in Cys and Met biosynthesis and sulfur metabo-
lism. Secondly, it helps to decrease the level of reactive oxygen 
species (ROS) because HypT in its activated form down- regulates 
genes involved in iron acquisition, thereby preventing further oxida-
tive damage generated by the Fenton reaction (Drazic et al., 2013; 
Gebendorfer et al., 2012; Imlay, 2008). Inactivation of HypT occurs 
when the cytoplasmic Msr system reduces HypT Met- O residues 
back to Met (Drazic et al., 2013), probably leading to a shutdown of 
the HypT response. Met oxidation- induced HypT activation is con-
served in Salmonella, suggesting an evolutionary benefit of such a 
mechanism (Jo et al., 2019).

More recently, the two- component system HprSR has been pro-
posed to be activated upon Met oxidation of the transmembrane 
HprS sensor (El Hajj et al., 2022) (Figure 1b). HOCl exposure oxidizes 
Met residues located in the periplasmic loop of HprS, which then 
activates the response regulator HprR. Similarly to HypT, the Met 
oxidation- mediated activation of HprS and HprR provides protec-
tion against further HOCl damage. HprR notably up- regulates the 
expression of msrP, which is known to reduce periplasmic Met- O 
(Gennaris et al., 2015). Interestingly, oxidized Met of HprS is reduced 
by MsrP (El Hajj et al., 2022). This observation suggests a model in 
which Met residues of HprS might gauge the periplasmic HOCl level 
and control the production of MsrP through a negative feedback 
mechanism (El Hajj et al., 2022).

Proteins bearing multiple Met that are susceptible to oxidation 
can exhibit different degrees of Met oxidation. One can thus won-
der whether differential Met oxidation results in different functional 
outcomes. The E. coli recombinase RecA carries two Met residues 
which are particularly susceptible to oxidation: Met164 and Met35 
(Henry et al., 2021) (Figure 1b). By relying on a combination of RecA 
variants whose Met are substituted by glutamine or alanine, Henry 
et al. demonstrated that while oxidation of Met164 activated RecA- 
dependent SOS induction, oxidation of Met35 altered RecA function 
leading to both loss of SOS induction and loss of recombinase activ-
ity (Henry et al., 2021). Because Met164 is more prone to oxidation 
than Met35, Met164 could act as a frontline sensor for intracellular 
oxidative stress. According to this hypothesis, partial oxidation of 
RecA would result in the DNA- damage stress response being trig-
gered and RecA being replenished through a Met oxidation- based 
positive feedback activation (Henry et al., 2021). Together with 
HypT and HprS, RecA illustrates that Met oxidation contributes to 
redox sensing in bacteria.

4  |  METHIONINE OXIDATION A S AN 
ANTIOXIDANT DEFENSE MECHANISM

Besides its regulatory aspect, Met oxidation has been suggested to 
act as an endogenous antioxidant system. This theory, first elabo-
rated in the late 90's by the group of Earl R. Stadtman, proposes that 
surface- exposed Met (that are readily accessible to oxidants) essen-
tially serve as oxidant scavengers shielding key residues from oxida-
tive damage. Pioneering observations showing that the oxidation of 
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4  |    VINCENT and EZRATY

the glutamine synthetase's surface- exposed Met had little effect on 
its enzymatic activity (Levine et al., 1996) incited further investiga-
tion into the role of Met in antioxidant systems. By replacing 40% of 
protein- bound Met residues in Escherichia coli with norleucine (the 
non- oxidizable carbon analogue of Met), Luo and Levine found that 
cells containing protein- bound norleucine were more susceptible to 
oxidative stress than cells containing protein- bound Met, which led 
the authors to conclude that Met residues in proteins act as an anti-
oxidant defense mechanism (Luo & Levine, 2009). It has since been 
reported that certain bacterial proteins use their Met as antioxi-
dant baits (Alamuri & Maier, 2006; Melkani et al., 2006; Schmalstig 
et al., 2018). In H. pylori, the deletion of the genes encoding the ure-
ase UreAB results in high sensitivity to HOCl. However, inactivation 
of the urease function does not result in a defect in HOCl resistance, 
suggesting an antioxidant role independent of its catalytic activity. 
The UreAB complex consists of 25 Met of which 11 are oxidation- 
prone and repaired by the Msr system (Schmalstig et al., 2018). 
These results suggest that the cyclic oxidation– reduction of Met 
residues in proteins lowers the cellular level of oxidants.

In their study, Rosen et al. noticed that oxidation of Met residues 
in the outer membrane and periplasmic proteins had little impact on 
bacterial viability, in contrast to the inner membrane and cytoplas-
mic proteins (Rosen et al., 2009). This observation raises the ques-
tion of whether the Met antioxidant system works on a multilayer 
basis. Arguably, Met residues located in the cell envelope act as the 
first line of defence against exogenous oxidative stress, mopping 
up oxidants and preventing their diffusion inside the cell (Figure 2). 
Once in the cell, oxidants encounter Met- rich proteins (MRPs), such 
as the periplasmic MrpX protein whose role is to scavenge oxidants 
(Melnyk et al., 2015). MRPs exhibit local or global enrichment of Met 
in their primary sequence (the average Met content in E. coli pro-
teins is ~2.9% [McCaldon & Argos, 1988; Maisonneuve et al., 2008; 
Liang et al., 2012]), are broadly conserved (Liang et al., 2012) and 

potentially connected to the Msr system. For instance, in Azospira 
suillum, mrpX is part of the same operon as msrP (Melnyk et al., 2015). 
Phylogenetic analyses reveal that, in most Enterobacteriaceae, an 
MRP named YeaC (Met content in E. coli ~ 9%) is encoded by a gene 
that lies immediately downstream of msrB. In addition to MRPs, the 
cytoplasmic pool of free Met is also known to scavenge oxidants 
(Spero et al., 2022) and enzymatic systems have evolved to reduce 
free Met- O (Dhouib et al., 2016; Ezraty et al., 2005; Lin et al., 2007). 
As mentioned above, at the protein- level, surface- exposed Met resi-
dues shield catalytic sites from oxidative damage (Levine et al., 1996). 
Similarly to biofilms where peripheral cells prevent the diffusion of 
oxidants towards the interior of cell clusters (Stewart et al., 2016), 
envelope- located Met, MRPs, surface- exposed protein- bound Met 
and free Met residues could hamper the penetration of oxidants into 
the interior of cells and proteins. This “millefeuille” model is made 
even more efficient, as Met- O residues of most of these components 
are known to be rescued by the Msr system.

5  |  INVOLVEMENT OF METHIONINE 
OXIDATION IN BAC TERIAL VIRULENCE 
AND INFEC TION

Met oxidation is an important determinant of bacterial virulence. 
Most evidence comes from the characterization of msr mutants from 
various species that show impaired growth or diminished infection 
capabilities within host cells. For instance, msr mutants of F. tula-
rensis, S. typhimurium, H. pylori, M. smegmatis and S. aureus exhibit 
decreased survival rates in phagocytic cells (Denkel et al., 2011; 
Douglas et al., 2004; Mahawar et al., 2011; Saha et al., 2017; Singh 
et al., 2015). In addition, the deletion of msr genes attenuates the 
ability of pathogenic species to colonize infectious models, includ-
ing mammals, insects and plants (Denkel et al., 2011; Hassouni 

F I G U R E  2  The “millefeuille” model. 
In this speculative model, peripheral Met 
act as a shield against oxidative damage. 
Exogenous oxidants, such as Reactive 
Oxygen Species (ROS) and Reactive 
Chlorine Species (RCS) first encounter 
Met of outer- membrane proteins. 
Other lines of defense are made up of 
periplasmic and cytoplasmic Met- rich 
proteins and free cytoplasmic Met that 
scavenge oxidants. Within proteins, 
surface- exposed Met prevent critical 
oxidative damage of catalytic sites. Blue 
dots indicate Met residues, red dots 
indicate Met- O residues.

ROS / RCS

1st line
Met / cell envelope
Rosen et al. 2009

3rd line
Free Met pool

Spero et al. 2022

4th line
Catalytic site shield
Levine et al. 1996

2nd line
Met-rich proteins

Melnyk et al. 2015

Met
Met-O
cataly�c site
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    |  5VINCENT and EZRATY

et al., 1999; Hitchcock et al., 2010; Romsang et al., 2013; Saha 
et al., 2017; Zhao et al., 2010).

Recent findings suggest that Met oxidation of bacterial pro-
teins could modulate human host cell responses to infection by the 
pathobiont Haemophilus influenza (Nasreen et al., 2020). Loss of the 
MsrAB fusion- protein decreases survival in mice but also changes 
the expression of host genes encoding proteins with bactericidal 
functions (Nasreen et al., 2020). Interestingly, in H. influenza MsrAB 
is located in the periplasm and repairs cell envelope proteins, includ-
ing different adhesins that had undergone Met oxidation damage 
(Nasreen et al., 2022; Skaar et al., 2002). It thus is possible that Met 
oxidation of bacterial cell surface proteins affects host- pathogen in-
teractions. In this regard, msr genes have been shown to preserve 
adherence of bacterial cells (Lei et al., 2011; Wizemann et al., 1996). 
In Fusobacterium nucleatum, MsrAB is essential for attachment to 
multiple tissues (Scheible et al., 2022), and in several human colo-
nizers, the absence of msr genes reduces biofilm formation (Jalal & 
Lee, 2020; Nasreen et al., 2020).

The majority of studies linking virulence and Met oxidation sug-
gests that bacterial Met residues are amongst the primary targets of 
host- derived oxidants. Indeed, HOCl and H2O2 are produced as ox-
idative bursts by macrophages and neutrophils as a defense mech-
anism (Gaut et al., 2001; John et al., 2001; Mastroeni et al., 2000; 
Vriesema et al., 2000). The bactericidal effect of HOCl linearly cor-
relates with the degree of Met oxidation of inner membrane and 
cytosolic E. coli proteins (Rosen et al., 2009) and, consistently, host 
cells lacking enzymatic systems producing HOCl or H2O2 are less 
efficient at killing microbes (Rosen et al., 2009). Overall, these re-
ports highlight the importance of the Msr enzymes in invading host 
cells. This suggests that bacteria's ability to repair Met- O is a priority 
for in- host survival and further effective colonization. It is thus not 
surprising that the MsrAB protein has been considered a candidate 
for a vaccine against Neisseria gonorrhoeae (Jen et al., 2019). One 
should however note that MsrA/B are conserved in humans, which 
could potentially lead to cross- reactivity issues, however, the peri-
plasmic reductase MsrP is restricted to bacteria, and could therefore 
be a promising target for novel therapeutics against Gram- negative 
bacteria.

Considering that bacterial stress responses are triggered by Met 
oxidation of distinct regulators upon exposure to oxidants generated 
by the innate immune system (e.g., HypT, RecA, HprS), the regula-
tory role of Met oxidation could have evolved as a means to protect 
invading cells against host attack.

6  |  OUTLOOK

The last decade of investigations into protein- bound Met oxida-
tion has led us to review our perception of this PTM. It is now 
clear this process participates in gene regulation and cell signal-
ling. Moreover, the reversible nature of Met oxidation allows it 
to function as a modulator of signal transduction pathways, in 
a similar way to disulfide bond formation/reduction (Cremers & 

Jakob, 2013) and phosphorylation/dephosphorylation events 
(Dworkin, 2015).

Recent advances in the prediction (Aledo et al., 2017; Delmar 
et al., 2021; Sankar et al., 2018) and quantification of Met- O sites 
within proteins (Bettinger et al., 2020; Ghesquière & Gevaert, 2014) 
will help uncover which parts of the bacterial proteome undergo 
Met oxidation. In live cells, genetically encoded stereospecific flu-
orescent sensors of Met- O allow the assessment of average cellular 
Met- O levels (Tarrago et al., 2015). Nonetheless, despite intense re-
search and technical advances, the dynamics of Met- O biogenesis 
and repair remain hard to estimate due to the difficulty of monitor-
ing nascent Met oxidation events in vivo.

Consequently, the fraction of spontaneously arising Met- O 
residues in bacteria remains to be elucidated. The observation 
that Msr enzymes are required for protein stability in aerobic and 
unstressed growth conditions (Ezraty et al., 2004), suggests that a 
basal level of Met- O exists in the absence of exogenous oxidative 
stress. Yet, questions remain including: (i) whether this fraction 
participates in regulating cellular functions, (ii) how much of this 
fraction is actively repaired by the Msr system and (iii) whether 
such spontaneous events are associated with specific subcellular 
locations.

Finally, the recent observation that Met- O residues are gen-
erated in response to chlorate stress in different bacterial spe-
cies (Loiseau et al., 2022; Spero et al., 2022) paves the way for 
new investigations into the biogenesis of Met- O in the absence 
of oxygen.
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