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Instabilities of fluid flows often generate turbulence. Using extensive direct numerical
simulations, we study two-dimensional turbulence driven by a wavenumber-localised
instability superposed on stochastic forcing, in contrast to previous studies of state-
independent forcing. As the contribution of the instability forcing, measured by a param-
eter γ, increases, the system undergoes two transitions. For γ below a first threshold, a
regular large-scale vortex condensate forms. Above this threshold, shielded vortices (SVs)
emerge within the condensate. At a second, larger value of γ, the condensate breaks down,
and a gas of weakly interacting vortices with broken symmetry spontaneously emerges,
characterised by preponderance of vortices of one sign only and suppressed inverse energy
cascade. The latter transition is shown to depend on the damping mechanism. The num-
ber density of SVs in the broken symmetry state slowly increases via a random nucleation
process. Bistability is observed between the condensate and mixed SV-condensate states.
Our findings provide new evidence for a strong dependence of two-dimensional turbulence
phenomenology on the forcing.

Key words:

1. Introduction

Two-dimensional (2D) and quasi-2D flows arise in many systems, from soap films
(Vorobieff et al. 1999) to the Earth’s atmosphere and oceans (Vallis 2017). Additional
interest stems from active fluids, where suspended energy-consuming microswimmers
can generate vortices and jets (Dombrowski et al. 2004). The basic phenomenology of 2D
turbulence was developed by Kraichnan (1967) who predicted that in such flows energy
will be transferred from small to large scales, leading to an inverse energy cascade. This
prediction was subsequently confirmed in direct numerical simulations (DNS) (Lilly 1969)
and experiments (Sommeria 1986). In finite domains, inverse cascades generate large-scale
coherent structures, typically vortices or jets, called condensates (Smith & Yakhot 1993).

Beyond 2D turbulence, inverse cascades arise in highly anisotropic 3D flows in thin
layers (Smith et al. 1996), rapidly rotating flows (Deusebio et al. 2014), strongly stratified
flows (Sozza et al. 2015), among others. Inverse energy cascades in quasi-2D turbulence
may also lead to a condensate if damping at large scales is small (van Kan & Alexakis
2019). Condensates also arise in DNS of bacterial turbulence (Linkmann et al. 2019) and
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rapidly rotating convection (Rubio et al. 2014), among others. Recent reviews of 2D and
quasi-2D turbulence are given in Boffetta & Ecke (2012) and Alexakis & Biferale (2018).

The study of flows driven by a prescribed body force has a long history. Examples
include time-independent forcing as in the Kolmogorov flow, or random forcing with a
prescribed energy injection rate. Situations where the driving is prescribed independently
of the flow configuration, as in these two examples, are attractive since they are often
amenable to a detailed analysis. However, many real fluid flows are driven by instabilities,
for instance of convective, shear or baroclinic type (Chandrasekhar 1961; Salmon 1980).
Similarly, models of active fluid flows feature scale-dependent viscosities which can be
negative at certain scales (S lomka & Dunkel 2017), a fact consistent with the measured
rheology of such flows (López et al. 2015). For instability-driven flows, the forcing explic-
itly depends on the velocity field and the injected power is proportional to the amplitude
of the forcing-scale modes. In contrast, the small-scale statistics of 3D turbulence with
hybrid forcing are mostly forcing-independent (Lundgren 2003).

Flows resulting from instabilities can differ drastically from Kraichnan’s picture of the
inverse cascade and condensation. For instance, active flows usually do not display an
inverse cascade, but form mesoscale vortices (Wensink et al. 2012). Such coherent vortices
(Burgess et al. 2017) are often associated with screening (Jiménez 2021; Grooms et al.
2010) and the resulting shielded vortices often break up into tripoles (Carton et al. 1989)
consisting of a central vortex and two satellite vortices of opposite sign 180◦ apart, as
seen in both experiment (Van Heijst et al. 1991) and DNS (Orlandi & van Heijst 1992).
In fact tripolar vortices are an exact solution of the 2D Euler equation (Kizner & Khvoles
2004) and are known to be stable point-vortex states (Kizner 2011).

We focus here on 2D turbulence driven by a parametrised force that varies continuously
from purely random to pure finite-wavenumber linear instability. We show that shielded
vortices spontaneously arise for sufficiently large instability growth rates, and that the
resulting flow displays both spontaneous symmetry breaking and bistability.

2. Setup

We study the 2D Navier-Stokes equation for an incompressible velocity field u ≡ (u, v),

∂tu + u · ∇u = −∇p+ f − νn(−∇2)nu− β|u|2u, ∇ · u = 0, (2.1)

in the domain D = [0, 2π]2 with periodic boundary conditions, with pressure p, hyper-
viscosity νn of order n (n = 4 in most runs), damping coefficient β > 0 and forcing

f = γL[u] + (1− γ)fε. (2.2)

Here γ ∈ [0, 1], and L[u] is a linear operator with Fourier transform

L̂[u](k) = ν∗k
2û(k), ν∗ > 0, (2.3)

for wavenumbers k in the annulus k = |k| ∈ [k1, k2], and L̂[u](k) = 0 otherwise. This
linear term is associated with a maximum growth rate σ ≡ ν∗k

2
2 with ν∗ chosen such

that the ratio r = γσ/(νnk
2n
2 ) between forcing and dissipation at the most strongly

forced scale k2 varies from r = 0 to r � 1 as γ increases from 0 to 1. The second term in
(2.2) involves the solenoidal zero-mean white stochastic force fε(x, t) with random phases
acting on a thin shell of wavenumbers centered on k = k2 (we also performed runs with
fε acting on all scales in [k1, k2], and found no qualitative differences in the resulting
flow). Thus the mean power injected by fε is fixed, u · fε = ε, where (·) is the ensemble
average. Random forcing is often used in numerical studies of 2D turbulence, e.g. Chan



Suppression of inverse cascade in instability-driven 2-D turbulence 3

Set # of runs γ β n Ren Initial condition

A 19 0− 0.95 1× 10−4 4 3× 109 − 4× 1018 small-amplitude random
B 6 0.2− 0.5 1× 10−4 4 3× 109 − 5× 1012 large-scale condensate
C 4 0.9 1× 10−4 − 5× 10−6 4 1× 1018 − 5× 1019 vortex gas
D 15 0− 0.95 1× 10−4 1 5× 102 − 2× 104 small-amplitude random

Table 1. Summary of runs. Sets A-C: 5122 resolution, hypervisocity ν4 = 10−14, ν∗ = 0.002
and set D: 10242 resolution, ν1 = 0.0011, ν∗ = 10ν1. For all runs, we take k1 = 33, k2 = 40,

giving Reynolds numbers Ren = UrmsL
2n−2/3
I /νn with Urms =

√∑
k E(k) and integral scale

LI =
∑
k 2πk−1E(k)/

∑
k E(k). Reynolds numbers are given at late times.

et al. (2012), although time-independent forcing has also been used, e.g. Tsang & Young
(2009). The choice (2.2) allows us to transition continuously from random forcing to
a wavenumber-localised instability. A similar superposition of random and deterministic
forcing was used by Jiménez & Guegan (2007) who maintained a fixed injection rate, while
we consider a true instability, injecting energy at a rate proportional to the forcing-scale
velocity. In a related study of an active fluid model with a negative viscosity forcing
like that in eq. (2.3), Linkmann et al. (2019) observed a large-scale condensate when a
large viscosity is imposed on all scales below the forcing scale. This assumption results in
low to moderate Reynolds numbers, a regime more amenable to study (Bos et al. 2020).
Here, we employ hyperviscosity, a well-established numerical device for reducing finite-
viscosity effects at moderate resolution (Borue & Orszag 1995), and focus instead on the
high-Reynolds number regime of instability-forced flow. This procedure ensures that our
DNS are well resolved even for the large injection rates of energy and enstrophy at large
γ. Nonlinear dissipation as in eq. (2.1) is commonly used in hydrodynamic models of
Toner-Tu type (Toner & Tu 1995) and is needed here to saturate the linear instability.

We use the pseudospectral Geophysical High-Order Suite for Turbulence (GHOST)
(Mininni et al. 2011) to perform DNS of the system (2.1) using a fourth-order Runge-
Kutta scheme in time. Our runs consist of four sets, summarised in Table 1. Set A
consists of runs with small-amplitude, random initial conditions. The runs in set B were
initialised with a large-scale condensate obtained in set A for purely random forcing
(γ = 0). In set C we initialise with a vortex gas, again from set A (at γ = 0.9), and
vary β. In all the runs described below we use 5122 resolution to be able to simulate the
system for long times; 10242 runs with regular viscosity (n = 1) were also performed (set
D), and are qualitatively similar to the hyperviscous runs, although they can only reach
shorter times. We record the energy E = 〈u2〉, the enstrophy Ω =

〈
ω2
〉
, with vorticity

ω ≡ ∂xv − ∂yu and spatial average 〈·〉, the energy spectrum

E(k) =
∑

q:k− 1
26|q|<k+

1
2

|û(q)|2, (2.4)

and the spectral energy and enstrophy fluxes through wavenumber shell k

ΠE(k) =
〈
u<k · (u · ∇u)

〉
, ΠΩ(k) =

〈
ω<k (u · ∇ω)

〉
, (2.5)

cf. Frisch (1995), Eq. (2.52), where (·)<k is defined as f<k (x) =
∑

q:|q|6k f̂(q) exp(iq · x).
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Figure 1. Visualisations of the vorticity field, with contour lines showing the streamfunction
(panels (a), (b) only). (a) Large-scale condensate state at γ = 0. (b) Mixed state, with shielded
vortices clustering in large-scale vortices at γ = 0.35. (c) Dilute gas of shielded vortices at γ = 1.
Note the different color scale used in panel (c).

3. Overview of the results

Figure 1 shows snapshots of typical solutions at different γ obtained by integrating
from small-amplitude random initial conditions. At γ = 0 (random forcing) a large-
scale condensate forms. At γ = 0.35 a large-scale circulation persists, as indicated by
the streamfunction, but small tripolar vortices with positive and negative cores appear,
concentrating within the large-scale vortices of the corresponding sign. We stress that
the large-scale vortices evolve in time, constantly changing their position and shape. At
γ = 1 a state of broken symmetry is present, with a large number of same sign vortices.
We call this state a (shielded) vortex gas. In our runs with regular viscosity, we observed
the same phenomenology as in figure 1. In figure 2, we show the time evolution of energy
and enstrophy for each of the three observed regimes. When a condensate is present,
energy and enstrophy saturate quickly, but continue to grow in the case of the vortex
gas. This case is discussed in much greater detail in section 5.

The spectra associated with states at different γ are shown in figure 3(a). At γ = 0
and γ = 0.1, there is a −5/3 power-law range at scales larger than the forcing, and a
build-up of energy at k = 1, i.e. a condensate. As γ increases through 0.2, the energy
in the large scales decreases and that in the near-forcing scales increases, marking the
appearance of shielded vortices. The condensate is weaker but persists at γ = 0.5, while
the near-forcing-scale energy grows. Finally, at γ = 1 the spectrum no longer peaks at
the largest scales, but rather at scales comparable to twice the forcing scale `1 ≡ 2π/k1.
The spectral bumps seen at high k are likely related to harmonics of the main peak.
Panel (b) shows the spectrum in the vortex gas state (γ = 0.9) at different values of the
damping coefficient β, rescaled by β. At the forcing scales and below, the rescaled curves
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Figure 2. Time series of nondimensionalised energy E and enstrophy Ω for a condensate state
(γ = 0), a mixed state (γ = 0.4) and shielded vortex gas (γ = 0.95). For the former two cases,
a steady state is reached quickly, while in the vortex gas, energy and enstrophy grow slowly.

Figure 3. Energy spectra E(k) at late times, averaged over the last 500 snapshots. The grey
bar indicates the forcing range [k1, k2]. Dashed line indicates a −5/3 power law. (a) Spectra for
different γ from set A. The same color scale used here for different γ is used subsequently in
figures 4, 5, 8. (b) Spectra for different β (γ = 0.9, set C), scaled by β.

collapse. At smaller k, as β decreases, the peak near 2`1 becomes more pronounced, and
the portion of energy in large scales falls, due to larger vortex amplitudes at smaller β.

Figure 4 shows the energy and enstrophy fluxes at γ = 0 (random forcing) and γ = 1
(vortex gas). The negative (i.e. inverse) energy flux in the vortex gas state is suppressed
at scales larger than about 2`1. A small forward energy flux feeds the remaining finite
dissipation at small scales. The forward enstrophy flux for random forcing remains so in
the vortex gas although a small inverse enstrophy flux is also present, reaching to around
k1/2. We stress that residual fluxes at γ = 1 are strongly scale-dependent, indicating
absence of self-similar cascade, in contrast to the γ = 0 case where fluxes are reasonably
constant. The suppression of nonlinear transfers by coherent vortices is reminiscent of
that in decaying 2D turbulence (McWilliams 1984). In our case, there are two competing
time scales, however: the instability growth rate at which energy is injected into the
forcing scales, and the rate at which energy is transferred out of the forcing scales by
nonlinearity. If energy is injected too rapidly for nonlinear transfer to remove it, it builds
up near the forcing scales, and coherent vortices form, further suppressing nonlinear
fluxes. In the absence of any cascade mechanism, nonlinear damping is required to
saturate the build-up of near-forcing-scale energy.
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Figure 4. (a) Energy flux ΠE and (b) enstrophy flux ΠΩ , rescaled by
∆Πi = maxk(Πi) − mink(Πi), i = E,Ω, averaged over 500 time steps at late times, for
γ = 0 (random forcing), and γ = 1 (vortex gas). Unrescaled fluxes in the gas are significantly
greater than at γ = 0 and fluxes are strongly scale-dependent: ΠE is suppressed at large scales,
while ΠΩ is forward, with a weak local inverse transfer. Shaded region indicates forcing.

4. Vorticity statistics and radial profiles

The spectra and fluxes of inviscid invariants are useful tools for analysing turbulence
but have two shortcomings. First, spectral studies discard phase information and in
particular vortex signs. Second, in the presence of coherent structures, such studies do
not provide us with the corresponding physical space picture. To address these points, we
begin by considering the statistics of the signed vorticity. Figure 5 shows the probability
density function (PDF) of vorticity, P (ω), for three different values of γ from set A,
generated from over 800 snapshots. At γ = 0 (random forcing) the central region of
the PDF near ω = 0 is close to a Gaussian, but there are heavy tails at larger |ω|.
This is consistent with the results of Pasquero & Falkovich (2002). For γ = 0.3, the
shielded vortices that are present manifest themselves in the form of significantly longer
heavy tails in the PDF, but the PDF remains approximately symmetric. At γ = 1, the
amplitude of the shielded vortices extends to larger |ω| due to stronger driving, and a
pronounced skewness in the PDF develops, reflecting the broken symmetry. The log-
log plot in figure 5 shows that the heavy tails are of power-law form with exponent
close to −1. Power-law tailed PDFs can correspond to rare events in time or in space.
Here, they represent the spatial localisation of vorticity inside shielded vortices, which
are coherent over long times. Figure 6(a) shows the radial vorticity profile within the
shielded vortices, computed in the vortex gas. The profile is averaged over many vortices
with arbitrary orientation, resulting in an effective azimuthal average. A nearly Gaussian
core is surrounded by a shield of opposite-sign vorticity, with |ω| = 0 at r ≈ 2π/k1 ≡ `1,
i.e. the largest forcing scale. In addition to the Gaussian profile, we also compare the
vorticity profile to the theoretical result of Jiménez (1994) for hyperviscous vortices,
which also predicts a sign change in vorticity with radius, not unlike what we observe
here. However, panel 5b shows that the circulation C associated with the vortices in our
DNS vanishes beyond r > `1. Since C = 2π

∫ r
0
ω(r)rdr =

∫
C(r) u · d`, the vanishing of

C(r) indicates that the vortices do not generate a velocity outside this radius, and that
they are thus well shielded. In contrast, the hyperviscous vortices of Jiménez (1994) are
not shielded since their circulation tends to a nonzero constant as r increases. For a
Gaussian profile ω(r), the near circular symmetry of the core P (ω)dω ∝ 2πrdr implies,



Suppression of inverse cascade in instability-driven 2-D turbulence 7

Figure 5. (a) Lin-log plot of the vorticity PDF sampled over all spatial points, aggregated over
800 snapshots, for three different values of γ from set A. The dashed curve centered on ω = 0 is
a Gaussian fit. (b) Same quantities in a log-log plot. The tails have power-law form: the thick
dashed line shows a power law with exponent −1.

Figure 6. (a) Circles: average shielded vortex profile at γ = 0.9 (set A). Approximately Gaussian
core (orange dash-dot line: Gaussian fit, blue solid line: hyperviscous prediction from Jiménez
(1994) with hyperviscosity exponent n = 4 as used here) surrounded by an opposite-signed
shield. Radial extent is set by `1 ≡ 2π/k1. Inset: population average over many tripolar vortices
with arbitrary orientations. (b) Circulation C(r) = 2π

∫ r
0
ω(r′)r′dr′ for an average shielded

vortex (black circles) becomes vanishingly small beyond r & `1, indicating vanishing azimuthal
velocity and no long-range interactions. Blue solid line: as in panel (a).

in approximate agreement with figure 5,

P (ω) ∝ 2πr(ω)/(dω(r)/dr)|r=r(ω) ∝ ω
−1. (4.1)

We have also computed the radial vorticity profile in shielded vortices for the runs in set
D, with regular viscosity (hyperviscous exponent n = 1) and find qualitatively the same
fully-shielded profiles, with the vortex size set by `1 as in the hyperviscous runs. This
indicates that the shielding is not an artifact of hyperviscosity, but rather an intrinsic
result of the nonlinear dynamics.

5. Spontaneous symmetry breaking and vortex census

As mentioned, shielded vortices of one core sign appear in the flow at late times, provided
the instability growth rate is large enough. Rotating turbulence also displays cyclone-
anticyclone asymmetry (Bartello et al. 1994) but this asymmetry is the result of forced
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Figure 7. Top: Absorption of a weak SV into the shield of a stronger one of opposite sign.
Bottom: Life cycle of a dipole born from two colliding SVs of similar strength. In both cases
γ = 0.9. Time is given in terms of t̃ = σt. Colors show vorticity (blue positive, red negative).

Figure 8. Vortex census data obtained as described in the text. (a) Total number of vortices
Ntot vs. time for different γ. (b) Fraction of + vortices vs. time. (c) Enstrophy per vortex.

symmetry breaking. Here, the flow maintains approximate symmetry in ω as it develops
from unbiased small-amplitude initial conditions, but if γ is large enough, this transient
leads to a symmetry-broken phase where one or other sign dominates. To understand
the physical space processes enabling symmetry breaking, we highlight in figure 7 two
examples of typical interactions in this phase between opposite-signed shielded vortices
(for γ = 0.9). In the top row, a stronger vortex encounters a weaker one. The latter is

stripped of its shield, undergoes shearing, and merges with the shield of the stronger
vortex. A circular shield forms (t̃ = 95.89), which then breaks up into a tripolar one
(t̃ = 97.17) as seen in experiments (Kloosterziel & Van Heijst 1991). The interaction
described above is part of the symmetry-breaking process: from random small-amplitude
initial conditions emerges a sea of vortices of both signs. Statistically, the populations
are equal, but due to fluctuations, some vortices are stronger than their nearby opposite-
signed counterparts. The interaction then eliminates the weaker vortices near stronger
ones, and thus leads to a population imbalance. Asymmetric interactions are more likely
at large γ, due to larger differences in the strength of vortices born at different times.

The above scenario presumes an asymmetry between interacting vortices. Figure 7
(bottom) shows a typical scenario ensuing when the vortices have comparable amplitudes:
both vortices are stripped of their shields, forming a propagating dipole pair, cf. Jiménez
(2020). At t̃ = 77.15, the dipole encounters a shielded vortex with a negative core, and
the resulting collision strengthens the negative vortex, leading to an asymmetric dipole
at t̃ = 77.32 whose curved trajectory results in a collision with a shielded vortex with
a positive core at t̃ = 78.19. The result is again an asymmetric dipole, but this time
with a dominant positive vortex. Note that after each collision the dominant component
is determined by the core of the target vortex. In a subsequent interaction the dipole
shears out the subdominant vortex into a shield around the positive core, finally becoming
tripolar. The process of dipole formation, collisions and return to a single shielded vortex
does not a priori favour either vortex sign. However, due to the asymmetric interaction
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described earlier, vortices of one sign may become more numerous. Thus, dipoles are more
likely to collide with vortices of the dominant sign, thereby reinforcing their dominance.

To track the vortex population, we perform a census. For this we exploit the fact that
saturated shielded vortices differ only weakly in strength, cf. figure 1. We thus filter the
vorticity field, setting to zero any values with magnitude below a threshold of 75% of the
maximum vorticity magnitude (we verified that the result is insensitive to the precise
choice of this threshold). Finally, we apply a maximum filter at the scale of vortex cores
to determine the position of all vortices at a given instant. Figure 8 shows the total
number of vortices Ntot and the fraction of positive vortices vs. time for different γ.

Panel (a) shows that for γ < 0.6, the number of vortices fluctuates around Ntot ≈ 20,
and does not show any increasing trend. The flow field for these runs resembles that
in figure 1(b). There the positive/negative vortices are physically separated, since they
cluster inside large-scale vortices of the same sign. For all runs at γ > 0.6, however,
Ntot increases with time. The larger γ, i.e. the larger the growth rate, the more rapid is
this increase. Despite the long integration time of σt . O(104), Ntot continues to slowly
drift. The moderate resolution allows us to discern this slow trend. The increase is due
to random nucleation events occurring in the sea of turbulence between vortices, which
requires a vortex seed to mature without being disrupted by shear. This is likely why
Ntot rises faster at larger γ: vortices reach large amplitudes more rapidly and are harder
to disrupt.

Figure 8(b) shows the fraction of vortices with positive core vs. time for different γ. At
γ < 0.6, this quantity fluctuates between 0 and 1, without converging to any particular
value. At γ = 0.6, a long transient, σt ∼ 3000, leads to a state of only negative vortices.
At larger γ, the elimination of vortices with one sign is more rapid, but the emergent
dominant sign is random. We quantify this transition by the enstrophy Ω defined earlier.
The enstrophy per vortex saturates quickly, and subsequently remains constant in time
and increases with γ (see figure 8(c)). There is a striking separation between the fast
saturation in the amplitude of individual vortices, and the slow nucleation of new vortices.

6. Multistability

Figure 9 summarises the transitions between the different states shown in figure 1, as
a function of γ, in terms of the late-time enstrophy Ω. At small γ 6 0.30, the large-scale
condensate (LSC) state exists, without any coherent shielded vortices. For γ < 0.2, the
LSC states form spontaneously from small initial conditions (set A). At 0.2 6 γ 6 0.3,
LSC states are stable when the flow is initialised in an LSC state (set B), but the system
does not spontaneously form an LSC from small initial conditions. For 0.2 6 γ 6 0.55,
one observes an LSC with coherent vortices of both signs, as shown in figure 1(b). Over
the range 0.2 6 γ 6 0.3, there is bistability between LSC states with and without shielded
vortices. For yet larger growth rates γ > 0.6, a state of broken symmetry forms from all
initial conditions investigated. As described in the previous section, in this regime the
number of vortices Ntot steadily grows and figure 9 therefore shows the enstrophy at
the end of each simulation. We expect that Ntot will keep growing until a high-density,
potentially crystalline, state is reached. A detailed study of this saturation process and
of the final steady state requires very long simulations, and merits a separate study.

Given the rich state space shown in figure 9, one may ask to what extent the results
described here are specific to the choice of forcing we employed. To address this, we
first tested different widths of the forcing range by varying k1, k2. For a given domain
size, when k1 is close to k2, the discrete Fourier grid generates an underlying anisotropy.
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Figure 9. Summary of states at different γ in terms of the mean enstrophy (error bars indicate
standard deviation). For γ 6 0.3, a large-scale condensate (LSC) is observed. The LSC states
at 0.2, 0.25, 0.3 are from set B. Mixed states, where a LSC coexists with shielded vortices (SV)
of both signs, are seen for 0.2 6 γ 6 0.55. Symmetry breaking occurs for γ > 0.6.

The dynamics in this limit are not very relevant physically, since they originate in the
numerical discretisation alone. When the wavenumber shell is widened, this anisotropy
disappears. In this regime, we always observe shielded vortices, provided the instability
forcing is sufficiently strong. This remains so when the dispersion relation (2.3) is modified
to a top-hat profile. In addition, we considered anisotropic forcing, illustrated in figure 11,
obtained by truncating the annulus k1 6 |k| 6 k2 of instability-forced wavenumbers
k = (kx, ky) by requiring that kx be below some cut-off wavenumber kc chosen such
that kc < k1, and observed both shielded vortices and symmetry breaking for all values
of kc that we considered. We also repeated the runs in set A with a modified random
forcing fε acting on the same scales [k1, k2] as the instability (instead of a thin shell
centered on k2) and observed the same transitions as shown in figure 9 at approximately
the same γ. We conclude that our qualitative results are robust to changes in the details
of the forcing. In addition to varying the forcing, one can also investigate the impact
of nonlinear dissipation in our model. The dissipation acts on all scales, but the forcing
is spectrally localised. To test whether this is relevant, we performed DNS where the
nonlinear dissipation is filtered in Fourier space so it only acts on the forcing scales
[k1, k2]. In this case, we find that the inverse energy cascade is no longer suppressed,
as evidenced by the energy spectrum shown in figure 10. The right panel of this figure
shows the corresponding vorticity field. Shielded vortices appear at early times, but the
shields are subsequently lost, and do not suppress the inverse cascade. This experiment
tells us that nonlinear dissipation that acts on all scales larger than the forcing scale is
crucial for suppressing the inverse cascade, by dissipating energy efficiently and keeping
it from reaching large scales. However, the suppression of the inverse cascade remains
spontaneous, since an inverse cascade persists for random forcing, and only disappears
for strong instability-type forcing. We mention, finally, that multistability occurs in
quasi-2D turbulence (van Kan et al. 2019; Favier et al. 2019) and beyond (Ravelet et al.
2004) although we observed no spontaneous transitions between different branches.
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Figure 10. Left: Spectra for nonlinear damping β|u|2u either full, or filtered in Fourier space to
be non-zero only within the forcing range. Right: vorticity field at long time for the filtered case.
Inverse energy transfer occurs when nonlinear dissipation is filtered, but is suppressed otherwise,
indicating that the damping plays an important role in the suppression.

7. Conclusions

We have shown that 2D turbulence forced by a combination of random forcing and
instability differs in a fundamental way in the presence of damping from the phenomenol-
ogy identified by Kraichnan. Shielded vortices with Gaussian cores and forcing-scale
size arise at γ ≈ 0.2, and undergo spontaneous symmetry breaking at γ ≈ 0.6. We
identified interactions of opposite-signed vortices reinforcing population imbalances and
enabling symmetry breaking. Bistability between condensate/mixed states occurs for
0.2 6 γ 6 0.3. Such dependence of the observed flow on the forcing is an instance of non-
universality, which complements other aspects of 2D turbulence that are known to be non-
universal (Linkmann et al. 2020). Non-universality has also been discussed in the context
of wave turbulence in the nonlinear Schrödinger equation (Vladimirova et al. 2012).
There, a large-scale condensate with an isotropic spectrum forms for random pumping,
but for instability pumping spontaneous symmetry breaking generates an anisotropic
spectrum, not unlike what we have described here.

Although mesoscale vortices have been observed in active turbulence (Wensink et al.
2012) and 2D turbulence with hybrid forcing (Jiménez & Guegan 2007), we reiterate that
our case differs from the former by the use of hyperviscosity (high Reynolds numbers),
and from the latter by a state-dependent injection rate. A definitive study of this system
using regular viscosity and systematically varying the Reynolds will nevertheless required
in the future. It is interesting that the snapshot in figure 2 of Jiménez & Guegan (2007)
contains a tripolar vortex, something which is hard to extract from spectral analysis
without a parallel physical space perspective.

Quasi-2D instability-driven turbulence is of particular relevance in geophysical appli-
cations. Our 2D results suggest such turbulence may behave very differently from its
counterpart with state-independent forcing, a topic that merits further study.
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Figure 11. Left: illustration of the truncated wavenumber shell for anisotropic forcing. Right:
vorticity field for kc = 20, from transient evolution, showing that shielded vortices also form for
anisotropic forcing. Parameters are k1 = 33, k2 = 40, γ = 1; remaining parameters as in set A.
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Appendix A. Anisotropic forcing

Here we briefly describe the case where the forcing was made anisotropic. The left
panel of figure 11 illustrates how the wavenumber shell of forced modes was restricted by
imposing kx < kc. The right panel shows a snapshot (from the transient regime) of the
flow for kc = 20 < k1 = 33 < k2 = 40. Shielded vortices form, and eventually undergo
symmetry breaking. The flow is qualitatively similar to that with isotropic forcing.
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