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Abstract

In the paper the dynamics of the simultaneously filling and emptying of a box is studied the-

oretically and experimentally. Both situations, consisting of negatively buoyant (fountains) and

positively buoyant (plumes) discharges, have been considered. For the sake of generality, no as-

sumption is made about the value of the density deficit (between the release and the ambient fluid),

so that this study deals with the so-called non-Boussinesq general case. Experiments are carried

out with buoyant air-helium mixtures continuously released from top (fountain) or bottom (plume)

into air in a cylindrical tank with an open bottom boundary and a top vent of variable areas. At

steady state, for both fountain and plume configurations, a buoyant layer of constant thickness and

density forms under the tank ceiling. Based on mass and buoyancy conservation equations applied

on the buoyant layer, theoretical models are proposed to estimate its depth and density at steady

state. The theoretical models compare favourably with the experimental data. Subsequently, these

models allow us to compare the plume and the fountain configurations for identical source con-

ditions, box size and vent area. Even if, in the majority of situations, the plume configuration

allows a better mixing of the buoyant fluid with the environment, it is found that beyond a certain

value of the fountain height, the fountain configuration becomes more efficient than the plume

configuration for mixing phenomena.

I. INTRODUCTION

The continuous release of a buoyant fluid into confined and semi-confined environments

is a widespread phenomenon in nature and industry such as building natural ventilation [1],

chemical processes [2], geophysical flows [3, 4], to name but a few. In all these applications,

the buoyant fluid can either be injected in the form of a plume (positively buoyant release

[5]) or a fountain (negatively buoyant release [6, 7]). Thus, in a box, the release of a fluid

lighter than the ambient fluid will give rise to a plume in the case of an upward injection

(from the bottom) or a fountain in the case of a downward injection (from the ceiling).

The aim of the present study is to compare, for the same release, both configurations in

the particular case where the enclosure has a vent area at its ceiling. These two situations

correspond to the so-called ”emptying-filling box” problem.

∗ rabah.mehaddi@univ-lorraine.fr

2



In the plume case, a layer of buoyant fluid forms under the box ceiling and grows with

time due to the volume flux delivered by the plume. At the same time, a part of this fluid

escapes through the vent located at the ceiling owing to the density difference between the

buoyant layer and the outer fluid. After a while, the fluid layer thickness stabilises and

the fluid density eventually stabilise around constant values, thus defining the steady state

regime. The simultaneous filling and emptying of an enclosure has been first analysed both

theoretically and experimentally by Linden et al.[8], under the Boussinesq assumption (i.e.

for small density differences). Using the conservation equations of volume and buoyancy

for the buoyant layer, these authors obtained analytically the layer thickness as well as its

density. A striking result is that, at steady state, the layer thickness only depends on the

ratio between the vent area and the square of the enclosure height. The case of large density

difference between the plume and the ambient (i.e. non-Boussinesq case) was studied by

Vauquelin [9]. In that case, an additional parameter appears. This parameter accounts for

the influence of the source buoyancy flux. However, the weaknesses of these two theoretical

studies lie in the modelling of the plume. These studies are indeed both based on the far

field self similar solutions of the plume originally introduced by Morton et al.[5, 10]. These

solutions correspond to a plume issuing from a point source of buoyancy without source

mass and momentum fluxes. However, this model is not realistic for a real plume which has

a source of finite size. To represent the plume variables without singularities, an alternative

model, based on the so called ”plume function”, was proposed among others by Morton

[5] and Hunt & Kaye [11] for Boussinesq plumes and by Michaux & Vauquelin [12] and

Candelier & Vauquelin [13] for non-Boussinesq plumes. In this study we propose to revisit

the ”emptying-filling box” problem by using these analytical developments on turbulent

non-Boussinesq plumes.

Unlike the case of plumes, much less attention has been directed to the topic of fountains

developing in confined environments. Among the few authors interested in fountains in

confined and semi-confined environments, we can cite the work by Baines et al.[14]. These

authors studied the filling of a box with a fountain, both theoretically and experimentally.

To produce fountains, the authors injected from below salt water into a tank initially filled

up with fresh water. The fountain rises initially as a jet due to the source momentum of the

release but slows-down gradually owing to its negative buoyancy. Thus, the fountain reaches

a finite height before collapsing under the form of an annular down-flow surrounding an inner

up-flow. When this down-flow reaches the floor, a negatively buoyant layer of fluid forms,
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similarly to the plume case. The study by Baines et al.[14] mainly focused on determining

the time evolution of the buoyant layer depth and density. In particular, they identified two

phases in the filling process:

• first, the buoyant layer depth grows over time due to the fountain source volume flux

and to the volume flux of ambient air entrained by the part of the fountain that

penetrates vertically beyond the buoyant-layer depth.

• The second phase of replenishment involves only the fountain source volume flux since

the buoyant layer has completely submerged the fountain. Then, its evolution in time

becomes linear similarly as is the filling of a bathtub with a submerged water jet.

As observed by Baines et al.[14], in order to accurately determine the growth of the buoyant

layer in the first phase the key parameter is the fountain entrainment coefficient. On the

basis of dimensional considerations, these authors found that the ratio between the bulk

entrainment flux and the source volume flux is proportional to the height of the fountain

extending above the buoyant layer. In the present study, the aim is to extend the model by

Baines et al.[14] to the simultaneous emptying-filling situation.

In some applications such as thermal comfort of buildings one may wonder if it is more

appropriate to inject hot air downward (fountain) or upward (plume), and vice versa, in the

case of air-conditioning. Intuitively, one might argue that the plume is the most efficient

flow to produce a uniform temperature field into a room. Nevertheless, Baines et al.[14]

highlights the important potential of a fountain to entrain strongly its surrounding and

then to create mixing. In this case, the comparison of the two modes of injection seems

to be relevant on this issue of thermal comfort. In addition, in other applications such as

accidental release of heavy or light gases [15], fires in building[16–18], it would be desirable,

sometimes, rather not to mix in order to maintain the natural stratification. Thus, it is also

interesting to compare these two injection modes.

To answer such questions, we propose in this paper to compare two theoretical models.

These models are based on the conservation equations of mass and buoyancy of the buoyant

layer. The aim is to take into account both the non-Boussinesq effects and the effects

associated with the finite sized source. Since these theoretical models require validation

and/or calibration, experiments are carried out with releases of air-helium mixture injected

into a cylindrical tank with a vent area at its ceiling. Note that these experiments allow

large density contrasts to be reached so that the results turn to be reliable for thermal
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FIG. 1: Schematic of the experimental apparatus.

comfort applications [19] but also for problems involving large density differences out of the

Boussinesq assumption.

The paper is organized as follows: in §2 the experimental apparatus is presented. In §3 a

model is proposed for the simultaneously filling and emptying of the box with a plume. This

model is validated against experimental data. In §4, a model for filling and emptying with

a fountain is proposed. Similarly to the plume case, the model is compared to experimental

data. In §5, the plume and fountain theoretical models are compared with identical source

conditions, box size and vent area. Finally, conclusions are presented in §6.

II. EXPERIMENTS

The experimental apparatus is schematically shown in figure (1). It is composed of a

cylindrical tank made of plexiglass, its height is 80 cm and its diameter is 120 cm. Similarly

as in the experiments by Baines et al.[14], the bottom of the cylindrical tank is fully open

to the atmosphere (i.e. the cylinder constitutes a so-called ”open-chamber”). This is an

important point for the theory because it will be assumed later that both fountains and

plumes are allowed to freely entrain the ambient fluid without any confinement effects.

Since our experiments consider the simultaneous filling and emptying-box processes, the top

surface of the cylinder tank involves a circular opening allowing the buoyant fluid to flow
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out of the box. The diameter of this opening varies in our experiments.

The turbulent fountains and plumes used to fill the tank are produced by a continuous

discharge of an air-helium mixture. In order to accurately control the density of the mixture,

air and helium initially flow through independent networks and their respective flow-rates

are measured with flowmeters (Bronkhorst type EL-FLOW, with a relative error of 2 %).

The two fluids are then mixed and the resulting mixture is made visible with passive tracers,

before being injected in a cylindrical tank through a nozzle of radius bi. Two different nozzles

have been used with respective radius of 3 mm and 6 mm. Note that the passive tracer is

ammonium salt. It is obtained by a chemical reaction of ammonia vapour with hydrochloric

acid [20, 21]. The mass of salt added to the flow is very weak and therefore does not affect

the density of the fountain.

To visualize the flow, a laser sheet produced by a 2 W argon laser is used. The laser sheet

cuts the cylindrical box at its center in order to visualize the flow development as well as

the formation of the buoyant layer. Images are recorded by a high speed camera (type PCO

1200hs) and are post-processed using Matlab software in order to determine the location of

the interface between the buoyant fluid and the ambient.

Usually, the control parameters of the release are the source ”plume function” Γi, the

source Reynolds number Re and the density deficit ηi which accounts for the non-Boussinesq

effects. These parameters are respectively defined as follows

Γi =
5gbiηi

8α
√
1− ηiu2

i

, Re =
ρiuibi
µ

and ηi =
∆ρ

ρa
, (1)

where ui is the bulk velocity at the source, ∆ρ = ρa−ρi is the density difference between the

ambient (subscript a) and the source fluid (subscript i), g is the gravitational acceleration

and α is the plume entrainment coefficient introduced by Morton et al.[10]. Note that

the source plume function Γi is equivalent to the Richardson number. It quantifies the

importance of the buoyancy with respect to the momentum at the source. When Γi < 1, the

released fluid is dominated by its momentum, then the plume is refered to as forced plume,

while when Γi > 1, the plume is dominated by its buoyancy and called lazy plume. The

case Γi = 1 corresponds to a pure plume.

To measure the effects of the exhaust vent, the following parameter is introduced

Σ =
4
√
αCd A√
5πb2i

; (2)

where Cd is a discharge coefficient accounting for streamline contraction. Its value lies

between 0.6 − 0.7 and is generally constant for high Reynolds number [22]. [23, 24] shows
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(a) Plume configuration (b) Fountain configuration

FIG. 2: Illustration of plume and fountain filling-emptying box experiments.

TABLE I: Details of the experimental parameters for the plume case.

Configurations bi (mm) ui (m/s) ρi (kg/m
3) ηi H (mm) Γi Re

1 3 17.68 0.69 0.43 665 2.8 10−4 1955

2 6 7.95 1.025 0.16 600 8.4 10−4 2600

3 6 24.16 0.31 0.75 600 7.8 10−4 2400

that this coefficient is a function of the layer depth and its density contrast. This effect

is important in the transient phase and becomes negligible as soon as the layer reached its

steady state. In what follows, we choose the value Cd = 0.7 which seems very common in

natural ventilation problems [25, 26].

For plume releases, three configurations have been considered. For each configuration,

the source conditions (Re, Γi and ηi) and the distance between the source and the ceiling

(denoted H) are kept fixed while the vent area is varied (see table I). Seven circular vent

areas have been considered with respective diameters 50, 80, 100, 120, 150, 170 , 200 mm

and one square vent area with size of 200× 200 mm2. These configurations corresponds to

24 experiments. A visualisation of the flow pattern is shown in figure (2-(a)).

In the case of fountain releases, 34 experiments have been carried out. In these experi-

ments, the source density deficit ηi = ∆ρ/ρa has been varied in the range 0.86 > ηi > 0.28,

the parameter Γi has been varied in the range 0.0015 and 0.043. The fountain source

Reynolds number Re has been varied in the range 655 < Re < 2160. Note that the radius
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bi = 7 mm has been kept constant for all the fountain experiments. An illustration of a

typical experiment is shown in figure (2-(b)). When the steady-state is reached, there are

two possibilities: the fountain is fully submerged by the buoyant layer, or the fountain is

only partially submerged by the buoyant layer. In the first case, the air-entrainment process

induced by the fountain vanishes and therefore the volume flow-rate at the outlet opening

balances that injected into the tank from the source. In the second case, the fountain is only

partially submerged, so that the volume flow-rate at the outlet opening balances the volume

flow-rate injected into the tank from the source, plus the volume flow-rate of the ambient

air entrained by the emergent part of the fountain.

Presentations and discussions of the experimental results are postponed to the subsections

III.2 and IV.2 for both fountain and plume releases, in order to allow us to compare them

with the theoretical models that will be presented thereafter.

III. SIMULTANEOUS FILLING AND EMPTYING WITH A PLUME

In this section, we propose, as a first step, a theoretical model for the simultaneous

filling and emptying of a box with a plume. This theoretical model incorporates the non-

Boussinesq effects and the influence of the finite sized source. In a second step, the model

will be validated against experimental data.

III.1. Theoretical model

As shown schematically in figure (3), we consider the simultaneous filling and emptying

of a box with a turbulent plume. The height of the box is denoted H and the surface of

the ceiling is denoted S. The source of the buoyant plume is defined by its density ρi, its

radius bi and its volume flux Qi = π ui b
2

i . The fluid escapes from the box through a surface

A at the ceiling with a mean velocity w. The thickness of the buoyant fluid layer that forms

under the ceiling is denoted by za and its density, which is assumed to be homogeneous at

any time, is denoted by ρ∗. By using these notations, the conservation equations for the

mass and for the buoyancy of the buoyant layer read as

d(Sρ∗za)

dt
= Qm − ρ∗ w A , (3)

d(g η∗Sza)

dt
= Bi − g η∗w A , (4)
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ρ∗

w

za

H

ηi,ui,bi

A

Qm

FIG. 3: Schematic of the plume fountain filling a box and simultaneously emptied by an

opening vent on the ceiling. Note that A corresponds to the vent area.

where η∗ = (ρa − ρ∗)/ρa is the buoyant layer density deficit, Bi = Qig(ρa − ρi)/ρa is the

buoyancy flux at the source of the plume and Qm is the mass flow rate that feeds the fluid

layer in the box. To evaluate the outlet velocity w, Bernoulli’s theorem is applied between

the buoyant layer interface and the upstream of the outlet vent

1

2
ρ∗ w2 = C2

d (ρa − ρ∗) gza , (5)

where Cd is a coefficient coeffcient [23].

To accurately calculate Qm, the plume model needs to consider the non-Boussinesq effects

as well as the effects associated with the use of a finite sized source. To do this, the classical

approach using the plume function Γ is used here. Indeed, following [5, 12, 27–32], in the

general non-Boussinesq case, the plume characteristics, namely, the mean velocity u, the

radius b and the mean density deficit η can be written, as follows

u(z) = ui

(

Γi

Γ(z)

)1/2(
1− Γ(z)

1− Γi

)1/10

, (6)

b(z) =
√

1− ηibi

[

1 +
ηi

1− ηi

(

Γi

Γ(z)

)1/2(
1− Γ(z)

1− Γi

)1/2
]1/2

(

Γ(z)

Γi

)1/2(
1− Γi

1− Γ(z)

)3/10

,(7)

η(z)

1− η(z)
=

ηi
1− ηi

(

Γi

Γ(z)

)1/2(
1− Γ(z)

1− Γi

)1/2

, (8)

where the so-called ”plume function” Γ is related to the vertical coordinate z, via the
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following differential equation

dΓ(z)

dz
=

4α

bi
√
1− ηi

Γ
1/2
i

(1− Γi)
3/10

Γ(z)1/2 (1− Γ(z))13/10 . (9)

We recall that Γi is the source plume function.

With these definitions, the mass flow rate Qm can be evaluated as follows

Qm = ρaQi (1− ηi)

(

Γ

Γi

)1/2(
1− Γi

1− Γ

)1/2

. (10)

At steady state (i.e. t → ∞), the layer thickness as well as the density deficit in the layer

can be evaluated by combining equations (3), (4), (5) and (10). We obtain the following set

of equations

η∗ =
ηi

ηi + (1− ηi)
(

Γss

Γi

)1/2 (
1−Γi

1−Γss

)1/2
, (11)

ζa =
(1− ηi)

5/2

Γi Σ2

(

Γss

Γi

)1/2(
1− Γi

1− Γss

)1/2
(

ηi
1− ηi

+

(

Γss

Γi

)1/2(
1− Γi

1− Γss

)1/2
)2

, (12)

where ζa = za/bi is the dimensionless thickness of the layer. Parameter Σ has been defined

in relation (2) and appears naturally in equation (12). This parameter takes into account

the effects associated with vent area. The parameter Γss corresponds to the value of the

function Γ at z = za. The value of Γss can be evaluated from Eq[9] as follows

ζa =
H

bi
−

√
1− ηi
4α

|1− Γi|3/10

Γ
1/2
i

∫

Γss

Γi

dγ

γ1/2 |1− γ|13/10 , (13)

By numerically solving the two coupled equations (12) and (13), the dimensionless layer

thickness ζa can be evaluated and subsequently the density deficit η∗.

III.2. Comparison with experimental data

In this section, the model developed for the simultaneous filling and emptying of a box

with a plume will be compared with experimental data. To do this, we will focus on the

thickness of the fluid layer under the ceiling. As a reminder, three different configurations

have been considered experimentally, corresponding to 24 experiments. For each configura-

tion, the source conditions (Γi and ηi) and the box size (H/bi) are kept constant, while the

surface of the vent area (i.e. Σ) is varied.
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FIG. 4: The dimensionless thickness of the buoyant layer (ζa) as a function of the

parameter Σ, for three different configurations. The solid thick lines correspond to the

numerical solutions of Eqs[12, 13], the thin solid lines corresponds to the numerical

solutions of equation (14), the dashed thick lines corresponds to equation (15) and the

thick dashed-dotted line corresponds to equation (16). The symbols correspond to the

experimental data: (•) configuration 1, (N)configuration 2 and (�) configuration 3 .

Note that the entrainment coefficient α is set to 0.12.

The experimental data are plotted in figure 4 together with the theoretical predictions.

Note that to compute the theoretical values, the coefficient Cd and the entrainment coefficient

α have been respectively set to 0.7 and 0.12. It is seen that, for fixed source conditions,

the dimensionless layer thickness, decreases as a function of the parameter Σ. Since the

source plume conditions and the size of the box are fixed, then the parameter Σ increases

proportionally to the vent area. Thus, the larger the vent area is, the smaller the thickness

of the buoyant layer will be. In particular, when Σ = 0, their is no opening hence the

buoyant-layer depth equals the tank depth, i.e. ζa = H/bi.

To evaluate the improvement brought by this model, the experimental and numerical

results are compared with the simplified model obtained with the self-similar solutions of a

point source plume. This model can be found in [9] where the layer thickness is expressed
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by the following equation

[

(

H

bi
− ζa

)5/3

+Θ

]2
(

H

bi
− ζa

)5/3

=

(

5

6α

)5

Σ2ζa , (14)

where

c =
1

3

(

25

6π α2

)2/3

and Θ =
cB2/3

g H5/3
.

Note that the non-Boussinesq effects are taken into account through the parameter Θ. By

setting Θ = 0 in (14), the classical Boussinesq case (see [8, 26]) is then recovered as follows

[

H

bi
− ζa

]5

=

(

5

6α

)5

Σ2ζa . (15)

This last relation shows that in the Boussinesq case and for point source conditions, the

layer thickness is simply obtained through the geometrical parameters H/bi and Σ. Both

Boussinesq and non-Boussinesq relations are plotted in figure 4. As can be seen the theo-

retical predictions of the simplified models follow the same behaviour as the experimental

data. However, they predict much thinner thickness than what is actually seen. This is

true even with the simplified model taking into account non-Boussinesq effects. To improve

those models, Woods et al. [25] proposed a model that accounts for the effect associated

with the lower opening as well as for the virtual origin correction. They obtained an implicit

equation which reads as follows

(

Σ2 + Σ′2

Σ′2

)(

H

bi
− ζa + ζv

)5

−2
Σ2

Σ′2
ζ5/3v

(

H

bi
− ζa + ζv

)10/3

+ ζ10/3v

Σ2

Σ′2

(

H

bi
− ζa + ζv

)5/3

=

(

5

6α

)5

Σ2ζa . (16)

where ζv is the dimensionless virtual origin corrected by the source volume flux defined as

follows

ζv =

(

5

6α

)3/5(
10

9π2α

)1/5
Q

3/5
i

biB
1/5
i

.

and the parameter Σ′ as follows

Σ′ =
4
√
αCd S√
5πb2i

,

where S is the surface of the lower boundary which is completely open. As can be seen, when

Σ′ → ∞, equation (16) tends to that of a plume issuing from a point source i.e. equation

(15). It can be observed in figure (4) that this model allows to improve the theoretical

predictions as compared to those using the self-similar solutions of the plume variables.

12



w

za

H

Qe

ηi,ui,bi

ρ∗
A

FIG. 5: Schematic of the fountain filling a box and simultaneously emptied by an opening

vent on the ceiling. Note that A corresponds to the vent area.

This shows that the better the primary variables are modelled near the source, the better

the predictions are. Obviously, by using the Γ function which actually turns out to be

equivalent of solving numerically the MTT equations, the agreement is even better.

IV. SIMULTANEOUS FILLING AND EMPTYING WITH A FOUNTAIN

This section is devoted to the fountain problem. When the steady-state is reached, there

are two possibilities: the fountain is fully submerged by the buoyant layer, or the fountain is

only partially submerged by the buoyant layer. In the first case, there is no air entrainment

at the bottom of the cylinder tank (which is fully open to the atmosphere). As a result, the

volume flow-rate at the outlet vent must be equal to that injected into the tank from the

source. The second case is more interesting. When the fountain is only partially submerged,

the volume flow-rate at the outlet vent balances the volume flow-rate discharged at the

source plus the volume flow-rate of the ambient air entrained by the fountain which comes

from the bottom of the cylinder tank. The model developed in this section will analyse these

two situations.
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IV.1. Theoretical model

Similarly to the plume problem, the fountain source volume flux is denoted by Qi and its

density is denoted by ρi (see figure 5). The conservation equations for the mass and for the

buoyancy of the buoyant layer are, however, slightly different. They are written as follows

d(Sρ∗za)

dt
= ρi Qi + ρa Qe − ρ∗ w A , (17)

d(g η∗Sza)

dt
= Bi − g η∗w A , (18)

where Qe is the volume flux of ambient fluid entrained by the fountain. Concerning the

outlet velocity w, it is identical to the expression [5] given in the plume problem. Note that

the density ρ∗ is assumed to be uniform in the buoyant fluid layer.

To complete the model, a closure model is still required for the volume flux entrained

by the fountain (i.e. Qe). Here, we first focus on the situation where the fountain is not

submerged by the buoyant layer. In the case of filling a box with Boussinesq fountains,

Baines et al.[14] showed that the entrained volume is proportional to the emergent part of

the fountain, i.e. proportional to zf − za. In the present case of non-Boussinesq fountains,

we propose the following expression

Qe = βnb

(

ρi
ρa

)1/2
Qi

bi
(zf − za) , (19)

where βnb is a constant that plays the role of an entrainment coeffcient for the turbulent

fountains. In comparison with the relation proposed by Baines et al. [14], this constant of

proportionality involved in their expression has been replaced by βnb (ρi/ρa)
1/2 in order to

take into account the effects of density difference[33].

Having now established an entrainment model for the fountain, we are able to evaluate

the simultaneous filling and emptying process at steady state. Using equations (19) and (5)

into (17) and (18), at the steady state, we are led to the following set of equations

Σ (1− ηi)
1/4

η
1/2
i Γ

1/2
i

√

(1− η∗)η∗ζa = (1− ηi)
1/2 + βnb(ζf − ζa) , (20)

(

η∗

ηi

)3/2(
1− ηi
1− η∗

)1/2
(1− ηi)

1/4 Σζ
1/2
a

Γ
1/2
i

= 1 , (21)

where ζf = zf/bi is dimensionless fountain height. By dividing equation (20) by (21), we

obtain, for the density deficit of the buoyant layer, the following expression

η∗ =
ηi

1 + βnb (1− ηi)
1/2 (ζf − ζa)

. (22)
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By combining relations (21) and (22) , and after some algebra, the following equation is

obtained

(ζf − ζa)
3 +

3− ηi

βnb (1− ηi)
1/2

(ζf − ζa)
2+

(

3− 2ηi
β2

nb (1− ηi)
+

Γi Σ
2

(1− ηi) β3

nb

)

(ζf − ζa)

− Γi Σ
2

(1− ηi) β3

nb

ζf +
1

(1− ηi)
1/2 β3

nb

= 0 . (23)

This cubic equation admits three roots. Two of these roots are complex and the third one

is real and positive. It corresponds to the stabilised buoyant layer depth.

In the case where the fountain is completely submerged, the entrained volume flux is

identically null (i.e. Qe = 0). Thus, by using the previous notations, we obtain

η = ηi , (24)

ζa =

√
1− ηi
Γi Σ2

. (25)

From these relations, it is easy to seen that if

Σ >
(1− ηi)

1/4

(Γiζa)
1/2

, (26)

then, the fountain is not fully submerged by the buoyant layer. Consequently, in that case,

Eq[23] still holds for the evaluation of the buoyant layer depth.

IV.2. Comparison with experimental data

The comparison between the theory and the experiments essentially focus on the stabilised

buoyant layer depth. Indeed, its value is evaluated for each experiment and compared to

the theoretical value derived from equation (23). However, before proceeding with this

comparison, estimations of the free parameters βnb and ζf are needed.

Concerning the value of ζf , it is evaluated directly from experimental data. Figure 6

shows the fountain height measured at the steady state as a function of the length scale Lb,

it is seen that it is well approximated by

zf ≈ 1.8 Lb , (27)

where the length scale Lb is defined as Lb = (Mi/ρi)
3/4 / (Bi(ρa/ρi))

1/2 (see [20, 35]) and

the momentum flux as Mi = π ρi b
2

i u
2

i . This length scale has been originally introduced by
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FIG. 6: Plot of the fountain height as a function of the length scale Lb: the blue squares

correspond to the experimental points, the solid black line corresponds to zf ≈ 1.8 Lb , the

dotted line corresponds to zf ≈ 1.84 Lb given by [6, 34] and the dashed line corresponds to

zf ≈ 1.92 Lb given by [20]. The bars correspond to the amplitude of oscillation of the

fountain height set to 0.14Lb as suggested by [20].

Turner [6] who found zf ≈ 1.84 Lb for forced fountain in the boussinesq case. Mehaddi et

al.[20] extended this result for the case of non-Boussinesq fountains and found experimentally

a coefficient of proportionality of 1.92. This result was confirmed numerically by Vaux et

al. [35] with a slightly different coefficient of proportionality of 1.8.

Note that the fountain height fluctuates naturally around a mean value. As shown by

[36] for Boussinesq fountain and by [20] for non Boussinesq fountains, the amplitude of

fluctuations of the fountain height is proportional to the jet length, meaning that δz ∝ Lb.

In figure 6 these oscillations have been incorporated in the form of bars with an amplitude

δz ≈ 0.14 Lb . (see [20]).

For the coefficient βnb, in the Boussinesq case (i.e. ρi/ρa → 1), Baines al al. [14]

set the value of βnb to 0.25, while Burridge and Hunt[37] showed that a good value for

this coefficient, in their case of forced Boussinesq fountains in unbounded environment, lies

between 0.29 and 0.32. Thus, it can be expected that a value of βnb ≈ 0.3 may be used for

our problem. However, the simplification, which consists in considering that the majority of
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FIG. 7: (a) Variation of za as a function of Lb for a fixed value of Σ = 14.1. The

experimental data are shaded according to the density deficit ηi, the blue solid line

corresponds to the numerical solution of (23) with ηi = 0.2 and the red line corresponds to

ηi = 0.9. (b) Variation of za as a function of Lb for two different values of Σ, the coloured

circles correspond to experimental data and the solid lines correspond to the theoretical

predictions. The red color corresponds to Σ = 14.1 and the blue color corresponds to

Σ = 31.8.

the entrained fluid come from the fountain lateral edges may be insufficient. Indeed, a part

of the entrained fluid may also come from the fountain top. Accordingly to account for a

part of this effect, the value of βnb may be adjusted to fit experimental data. As a result,

in the present investigation, the value of this coefficient has been varied systematically to
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FIG. 8: Variation of za as a function Σ for two different values of Γi: the blue color

corresponds to Γi = 0.0087 and the red color corresponds to Γi = 0.0114.

minimize the difference between experiments and theory. The coefficient of determination

R2 around the one-to-one line has been evaluated for βnb = (0.25, 0.30, 0.35, 0.40, 0.45),

we found respectively R2 = (0.68, 0.79, 0.84, 0.84, 0.83). Thus, in the following, the value

βnb = 0.35 is chosen.

In figure 7-a, the thickness za is plotted as a function of the jet-length Lb for a fixed

value of the outlet surface and with different values of the density ratio ηi. We obtain that

the thickness of the fluid layer varies linearly as a function of Lb. In this figure, the theory

is represented in the form of two curves for two limiting values of ηi, namely ηi = 0.2 and

ηi = 0.9. We notice that the theory reproduces in a satisfactory way the variation of the

thickness za. We also notice that the density deficit has a negligible effect on this thickness.

In figure 7-b we have also plotted the variation of the thickness for two different vent areas

namely Σ = 14.1 and Σ = 31.8. Here again, it can be observed that the model reproduces

satisfactorily the behaviour of the thickness as a function of Lb. To reinforce these results

we have fixed the value of jet-length Lb or in other terms (Γi and ηi) while varying the

sizes of the outlets. Here again we observe the same behaviour as the plume case namely

the decrease of the layer thickness as a function of the parameter Σ and this behaviour is

satisfactorily reproduced by the present model.

Finally, figure 9 shows the comparison between all the experimental points and the the-

oretical results. As it can be seen, a fairly good agreement is achieved.
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FIG. 9: Comparison between the experimental data and the numerical solution of (23).

V. COMPARISON BETWEEN PLUME AND FOUNTAIN CONFIGURATIONS

So far we have established two theoretical models for the simultaneous filling and emp-

tying of an enclosure. As a reminder, the configurations considered are the release of a

light fluid under the form of a turbulent plume or under the form of a turbulent fountain.

The question that can now be asked is which configuration (fountain or plume) results in a

larger fluid layer and in a lower density deficit. Alternatively, for given source conditions and

enclosure size, does a plume entrains more efficiently its surrounding than a fountain? To

answer this question let us note that from the two models, the following functional relations

can be inferred

ζaf and η∗f = f (Γi,Σ, ηi) and ζf <
H

bi
, (28)

ζap and η∗p = f

(

Γi,Σ, ηi,
H

bi

)

, (29)

where ζaf , ζap , η
∗

f and η∗p are respectively the layer depth resulting from the fountain config-

uration, the layer depth resulting from the plume, the density in the fountain configuration

and the density in the plume configuration. It is seen in relation (28) that the height of the

box is an implicit parameter which limits the height of the fountain ζf .

We first discuss the plume and fountain configurations in terms of the layer depth. To

evaluate which configuration gives rise to the largest layer, we plot in figures (10) and (11)

19



-0.2

0.2

0.4

0.6

0.8

0

0 50 100 150 200 250

(

ζ a
p
−

ζ a
f

)

b i
/H

(a)
Γi = 10−2

Γi = 5 10−3

Γi = 3 10−3

Γi = 2 10−3

Γi = 10−3

Γi = 8 10−4

-0.2

0.2

0.4

0.6

0.8

0

0 50 100 150 200 250

(

ζ a
p
−

ζ a
f

)

b i
/H

Σ

(b)

Γi = 5 10−3

Γi = 10−3

Γi = 5 10−4

Γi = 3 10−4

FIG. 10: Difference
(

ζap − ζaf
)

bi/H as a function of Σ for different values of Γi: (a)

corresponds to ηi = 0.05, (b) corresponds to ηi = 0.85 and for both figures H/bi = 200.

The dashed lines correspond to ζap − ζaf = 0.

the difference
(

ζap − ζaf
)

bi/H . If the resulting layer from a plume release is larger than

the layer resulting from a fountain release, then the ratio
(

ζap − ζaf
)

bi/H will be positively

valued. In figures (10-a) and (10-b),
(

ζap − ζaf
)

bi/H is plotted as a function of Σ for fixed

ηi and Γi. In that case, an increase of Σ corresponds to the increase of the vent area A. Let

us first note that for a fixed Γi, the difference
(

ζap − ζaf
)

bi/H decreases according to the

parameter Σ. Indeed, an increase in the value of Σ induces, for similar injection conditions,

a decrease in the thickness of the fluid layer in both configurations. However, in view of

figure 8, it appears that the thickness of the fluid layer decreases more strongly for the plume

configuration than that of the fountain configuration. Moreover, it is also seen that the value

of
(

ζap − ζaf
)

bi/H approaches zero as the Γi decreases. In particular, it is observed that

for large values of Σ, the layer resulting from the fountain becomes bigger than that of the
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FIG. 11: Difference
(

ζap − ζaf
)

bi/H as a function of Σ for different values of ηi: (a)

corresponds to a Γi = 5 10−3, (b) corresponds to Γi = 8 10−4 and for both figures

H/bi = 200. The solid lines correspond to ζap − ζaf = 0.

plume. However, it is also seen that for the majority of situations, the plume configuration

seems to be more efficient. In figures (11-a) and (11-b), the influence of the density deficit

is depicted, for two different values of the parameter Γi. It is seen that the efficiency of the

plume configuration diminishes as the density deficit ηi increases. This fact can be explained

by the strong dependency of the plume entrainment coefficient to the density deficit.

In figures (12) and (13) the ratio η∗p/η
∗

f is plotted as a function of the parameter Σ. If

η∗p/η
∗

f < 1 corresponding to ∆ρ∗p < ∆ρ∗f , the plume configuration mixes more efficiently

with the ambient fluid while in the opposite case (η∗p/η
∗

f > 1), it is the fountain that mixes

better. In figures (12-a) and (12-b), the ratio η∗p/η
∗

f is plotted for a fixed ηi and different

values of Γi. It can be seen that similarly to the layer depth, the ratio η∗p/η
∗

f is lower
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FIG. 12: Ratio η∗p/η
∗

f as a function of Σ for different values of Γi: (a) corresponds to a

source density deficit of ηi = 0.05, (b) corresponds to ηi = 0.85 and for both figures

H/bi = 200. The dashed lines correspond to η∗p/η
∗

f = 1.

than 1, which confirms that the plume configuration is more efficient in the majority of the

tested situations in terms of mixing. However, below a certain value of Γi, the fountain

configuration produces a layer with lower density than the plume case.

In figures (13-a) and (13-b), the effect of the source density deficit is evaluated by fixing

the parameter Γi and varying ηi. It is seen that the non-Boussinesq effects (larger values of

ηi) do not change the general trend of the ratio η∗p/η
∗

f as a function of Σ for Γi = 5 10−3. In

that case, the plume always dominates because the fountain height is not large enough to

mix its surrounding.
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FIG. 13: Ratio η∗p/η
∗

f as a function of Σ for different values of ηi: (a) corresponds to

Γi = 5 10−3, (b) corresponds to Γi = 8 10−4 and for both figures H/bi = 200. The solid

lines correspond to η∗p/η
∗

f = 1.

VI. CONCLUSION

In this paper we have investigated theoretically and experimentally the simultaneous

filling and emptying of a box, in the non-Boussinesq case. Two configurations have been

considered, namely the configuration where a light fluid was released from bottom (plume)

and the case where a light fluid was released for the above (fountain). In both configurations,

the compartment contains a vent area at the ceiling. To compare these configurations, a

new model for the plume filling box has been first established. The model is based on the

plume theory expressed with the Γ function and in the non-Boussinesq general case. This

configuration allows us to take into account the density effects and also the effects associated

of the finite sized source. New experiments have been conducted with an air helium setup
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for the plume filling box model. The comparison between the experiments and the model

shows a good agreement. In addition, a model for the fountain filling box model has also

been established. This model is based on a new formulation of the fountain entrainment

that accounts for the non-Boussinesq effects. Here again an experimental campaign have

been undertaken. The experimental data have been compared to the theory and a fairly

well agreement have been observed.

Finally, these two models have been compared, in the case where the fountain and the

plume have the same source conditions and fixed box geometrical characteristics (the box

height and the vent area). This comparison has shown that the plume configuration pro-

duced, in most cases, a thicker layer of fluid under the ceiling, and therefore a lower average

density, than that resulting from a fountain discharge. As the jet length Lb increases, the gap

between the fountain and plume configurations decreases. This observation simply reflects

the proportional relationship between the height of the fountain and the entrainment rate.

Thus, beyond a certain value of the jet length Lb, the fountain configuration becomes better

in terms of its ability to produce a wider layer and better mixed with its environment. This

final result is of importance in applications where a choice may have to be made between

an upward or a downward discharge.
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